JPH0468034B2 - - Google Patents

Info

Publication number
JPH0468034B2
JPH0468034B2 JP14480288A JP14480288A JPH0468034B2 JP H0468034 B2 JPH0468034 B2 JP H0468034B2 JP 14480288 A JP14480288 A JP 14480288A JP 14480288 A JP14480288 A JP 14480288A JP H0468034 B2 JPH0468034 B2 JP H0468034B2
Authority
JP
Japan
Prior art keywords
phosphorus
water
anthracite
cristobal
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14480288A
Other languages
Japanese (ja)
Other versions
JPH01315388A (en
Inventor
Yosha Yoshino
Yasuya Mikami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Mining Co Ltd
Original Assignee
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co Ltd filed Critical Nittetsu Mining Co Ltd
Priority to JP14480288A priority Critical patent/JPH01315388A/en
Publication of JPH01315388A publication Critical patent/JPH01315388A/en
Publication of JPH0468034B2 publication Critical patent/JPH0468034B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、湖沼や河川水の富栄養化防止はもと
より、下水処理施設や産業排水とりわけ畜産排水
処理施設などの広い分野の水中の燐の除去法に関
するものである。 (従来技術) 湖沼、河川水、各種処理場の排水などの水中の
栄養塩類の除去技術はおくれており、(1)ホテイア
オイの植裁による浄化法、(2)本発明者らによる水
砕スラツグおよびゼオライトを利用した富栄養塩
類の除去法(特願昭62−172105号)の2方式が知
られている程度である。 (発明が解決しようとする問題点) ホテイアオイによる浄化法は、千葉県手賀沼や
茨城県千波湖等で実施されているが、植裁期間が
6月から9月の夏期であつて短期間であり、その
上ホテイアオイによる燐の取り込み量も著しく小
さく、湖沼等の燐の除去法としては余り効果がな
い。また、本発明者らの提案した水砕スラツグお
よびゼオライトを利用した富栄養塩類の除去法で
は、(1)アンモニア性窒素が15分以内の接触時間で
85〜95%の高い除去率を示すのに対して、燐酸性
燐の除去率が75%以下であること、(2)燐の除去率
を90%とするためには30分以上の接触時間が必要
であり、それだけ充填層を厚くする必要があるこ
と、(3)また、処理水中の有機物、無機物により成
るSSが水砕スラツグ、ゼオライトの細孔を埋め
てしまうために燐の除去能を著しく低下させるこ
と、などの欠点があつた。 (問題点を解決するための手段) 本発明者らは、これらの欠点を除くために鋭意
研究を重ねた結果。(1)表1に示すように、クリス
トバール鉱石による燐の除去速度の方が、水砕ス
ラツグによる燐の除去速度よりも速く、その上除
去率も高いこと、(2)前段にアンスラサイト層を置
くと細孔の目づまり等がなく長時間、高除去率で
の燐の除去が可能であること、(3)アンスラサイト
の粒子が余り小さいと処理水の過速度が小さく
なり、一方、粒子が余り大きいと処理水中のSS
がアンスラサイト層を通過してクリストバール鉱
石の表面に付着し、細孔を埋めること、などを知
見した。 本発明は上記の知見に基ずくもので、クリスト
バール鉱石の粉砕生成物を、0.5mm〜3mmの粒子
径範囲に調製したアンスラサイトの後段に組み込
んだ多段式サンドフイルターによる水中の燐酸性
燐の除去法である。本発明で使用するクリストバ
ール鉱石は、鉱石のPHが7よりも低い酸性(PH
5.8〜6.5)を示すものであつて、水砕スラツグ、
ゼオライトのようなアルカリ性のものとは異なつ
ており、これが燐との反応を促進している。ま
た、細孔も巾があり、これが排水の通過を容易に
し、短時間の接触時間での燐の除去効果をあげて
いる。前段のアンスラサイトの粒子径を0.5mm〜
3mmとしたのは、0.5mm以下の粒子径では処理水
中のSSによる目ずまりが著しいのと、逆洗時ま
たは投入時の沈降がおそくて取り扱いが不便であ
るためである。また3mm以上では、前段にアンス
ラサイトを置いた目的であるSSの除去が十分で
なくなるために不適となる。
(Industrial Field of Application) The present invention relates to a method for removing phosphorus from water in a wide range of fields such as prevention of eutrophication of lakes and rivers, as well as sewage treatment facilities, industrial wastewater treatment facilities, especially livestock wastewater treatment facilities. (Prior art) Technology for removing nutrients from water such as lake water, river water, and wastewater from various treatment plants is lagging behind. There are only two known methods: and a method for removing eutrophic salts using zeolite (Japanese Patent Application No. 172105/1982). (Problems to be solved by the invention) The water hyacinth purification method has been implemented in Teganuma, Chiba Prefecture, Senba Lake, Ibaraki Prefecture, etc.; Furthermore, the amount of phosphorus taken up by water hyacinth is extremely small, making it ineffective as a method for removing phosphorus from lakes and marshes. In addition, in the eutrophic salt removal method using granulated slag and zeolite proposed by the present inventors, (1) ammonia nitrogen is removed within 15 minutes of contact time;
(2) In order to achieve a 90% phosphorus removal rate, a contact time of 30 minutes or more is required. (3) In addition, SS, which is made up of organic and inorganic substances in the treated water, fills the pores of the granulated slag and zeolite, which reduces the ability to remove phosphorus. There were disadvantages such as a significant decrease in (Means for Solving the Problems) The present inventors have made extensive research to eliminate these drawbacks. (1) As shown in Table 1, the phosphorus removal rate by Cristobal ore is faster than that by granulated slag, and the removal rate is also high; (2) there is an anthracite layer in the previous stage; (3) If the anthracite particles are too small, the overspeed of the treated water will be small; If the particles are too large, SS in the treated water
They discovered that the anthracite layer passes through the anthracite layer, attaches to the surface of Cristobal ore, and fills the pores. The present invention is based on the above knowledge, and uses a multi-stage sand filter in which the crushed product of Cristobal ore is incorporated into anthracite prepared to have a particle size in the range of 0.5 mm to 3 mm. This is a removal method. The Cristobal ore used in the present invention is acidic (PH
5.8 to 6.5), which shows granulated slag,
It is different from alkaline materials such as zeolite, which promotes the reaction with phosphorus. The pores are also wide, which facilitates the passage of waste water and improves the effectiveness of phosphorus removal in a short contact time. The particle size of the anthracite in the first stage is 0.5 mm ~
The reason for setting the value to 3 mm is that particles with a diameter of 0.5 mm or less cause significant clogging due to SS in the treated water, and are slow to settle during backwashing or charging, making handling inconvenient. Moreover, if it is 3 mm or more, it is not suitable because the removal of SS, which is the purpose of placing anthracite in the front stage, will not be sufficient.

【表】 本発明で使用する多段型サンドフイルターは第
1図に示すような、たて型でも、第2図に示すよ
うな横型でも良い。又、第3図及び第4図に示す
ように、クリストバール鉱石層の後段にゼオライ
ト層を設置しても良い。 (実施例) 茨城県土浦市の新川および大塚池から川水(燐
酸性燐0.05〜0.5mg/)を3m3/h汲み上げ、
本発明によるアンスラサイトの後段にクリストバ
ール鉱石層を備えた多段型サンドフイルターで現
地試験を行つたところ、従来の水砕スラツグ方式
の燐の除去率が75%であつたのに対し、90%以上
の除去率を示した。また寿命も約10倍であつた。 (発明の効果) 本発明によれば、簡単な装置により長時間にわ
たり、高い除去率で燐の除去が可能であるので、
その実用上の価値は大である。
[Table] The multistage sand filter used in the present invention may be a vertical type as shown in FIG. 1 or a horizontal type as shown in FIG. 2. Furthermore, as shown in FIGS. 3 and 4, a zeolite layer may be installed after the Cristobal ore layer. (Example) 3 m 3 /h of river water (phosphoric acid phosphorus 0.05 to 0.5 mg/h) was pumped up from Shinkawa and Otsuka Pond in Tsuchiura City, Ibaraki Prefecture.
Field tests using the multistage sand filter of the present invention, which has a layer of Cristobal ore behind the anthracite, revealed that the phosphorus removal rate was 90%, compared to 75% with the conventional granulated slag method. The removal rate was as follows. The lifespan was also approximately 10 times longer. (Effects of the Invention) According to the present invention, phosphorus can be removed with a high removal rate over a long period of time using a simple device.
Its practical value is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図はそれぞれ本発明に係る方法を
実施した装置の概略図である。
1 to 4 are schematic diagrams of apparatuses implementing the method according to the invention, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 クリストバール鉱石の粉砕生成物を0.5mm〜
3mmの粒子径範囲に調製したアンスラサイトの後
段に組み込んだ多段型サンドフイルターによる水
中の燐酸性燐の除去法。
1 Grinding product of Cristobal ore from 0.5mm
A method for removing acidic phosphorus in water using a multi-stage sand filter installed after anthracite prepared to a particle size range of 3 mm.
JP14480288A 1988-06-14 1988-06-14 Method for removing phosphorus in water by means of multistage sand filter Granted JPH01315388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14480288A JPH01315388A (en) 1988-06-14 1988-06-14 Method for removing phosphorus in water by means of multistage sand filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14480288A JPH01315388A (en) 1988-06-14 1988-06-14 Method for removing phosphorus in water by means of multistage sand filter

Publications (2)

Publication Number Publication Date
JPH01315388A JPH01315388A (en) 1989-12-20
JPH0468034B2 true JPH0468034B2 (en) 1992-10-30

Family

ID=15370804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14480288A Granted JPH01315388A (en) 1988-06-14 1988-06-14 Method for removing phosphorus in water by means of multistage sand filter

Country Status (1)

Country Link
JP (1) JPH01315388A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972211A (en) * 1998-03-19 1999-10-26 Jones; Terry L. Water filtration system
CN103785357B (en) * 2014-01-17 2015-11-25 中国科学院南京土壤研究所 A kind of preparation method for purifying the lanthanum-carried charcoal of phosphorus polluted-water

Also Published As

Publication number Publication date
JPH01315388A (en) 1989-12-20

Similar Documents

Publication Publication Date Title
US4377483A (en) Method of removing dissolved heavy metals from aqueous waste liquids
CN105540987A (en) Water deep purification method
JPH0226557B2 (en)
CN104528868A (en) Application of magnetic particles in in-situ treatment of eutrophic water and sedimentary phosphate
JPH07974A (en) Method of removing heavy metal and radioactive contamination factor from contamination process stream
JP3927465B2 (en) Method for imparting arsenic removal function to filtration tank, water treatment method for groundwater, and water treatment device for groundwater
JPH0468034B2 (en)
JP2000140891A (en) Method for recovering phosphorus in sludge and device therefor
JP3797296B2 (en) Purification method of bottom sludge
JP2001509734A (en) Separation of heavy metals and materials used for them
CN101423277A (en) Water purification process with arsenic removal function
CN103787444B (en) Spathic iron ore active sand phosphorus removing method
US4032439A (en) Effluent treatment process
CN101967019A (en) High-efficiency magnetic alga removal and oxygenation aeration combined scenic water bloom purifying boat
CN114644423A (en) Magnetic core flocculation treatment process for tailing wastewater
CN205528261U (en) Stainless steel pickling wastewater treatment device
JPH09206800A (en) Treatment of water-area bottom mud
JPH03186393A (en) Treatment of waste water containing fluorine
SU1293121A1 (en) Method of treating waste water of pig-breeding farms
SU1000422A1 (en) Method and apparatus for purifying effluents
EP2990383B1 (en) A method and a system for filtering liquid
JP4225844B2 (en) Muddy water treatment method
KR930001811B1 (en) Sludge treating method
JP2791053B2 (en) Wastewater treatment method
Duncan et al. The use of immobilized yeast cells for heavy metal removal from wastewaters

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees