JPH0467760B2 - - Google Patents

Info

Publication number
JPH0467760B2
JPH0467760B2 JP14843787A JP14843787A JPH0467760B2 JP H0467760 B2 JPH0467760 B2 JP H0467760B2 JP 14843787 A JP14843787 A JP 14843787A JP 14843787 A JP14843787 A JP 14843787A JP H0467760 B2 JPH0467760 B2 JP H0467760B2
Authority
JP
Japan
Prior art keywords
discharge lamp
output
circuit
induction coil
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14843787A
Other languages
Japanese (ja)
Other versions
JPS63313500A (en
Inventor
Masaki Shinomya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP14843787A priority Critical patent/JPS63313500A/en
Publication of JPS63313500A publication Critical patent/JPS63313500A/en
Publication of JPH0467760B2 publication Critical patent/JPH0467760B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)

Description

【発明の詳細な説明】 [技術分野] 本発明は、フイラメントなどの電極を備えてい
ない所謂無電極放電灯を点灯する放電灯点灯装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a discharge lamp lighting device for lighting a so-called electrodeless discharge lamp which is not equipped with an electrode such as a filament.

[背景技術] 無電極放電灯は、内壁面に蛍光体が塗布された
ガラスなどに形成された透光性のバルブ内に、放
電ガスとしてアルゴンなどの希ガスと共に、金属
蒸気としての水銀蒸気を封入し、バルブの外面に
沿つて誘導コイルを周設して形成される。この無
電極放電灯は、上記誘導コイルに高周波発生回路
により高周波電圧を印加し、誘導コイルに流れる
高周波電流によつて発生する磁束で誘導電界を発
生させて放電ガスを放電させ、金属蒸気である水
銀蒸気を低圧放電させた場合に生じる主に254n
mの紫外線が、蛍光体にて可視光に変換されるこ
とにより発光する。
[Background Art] An electrodeless discharge lamp uses mercury vapor as a metal vapor along with a rare gas such as argon as a discharge gas in a light-transmitting bulb made of glass or the like with a phosphor coated on the inner wall. It is formed by enclosing the bulb and surrounding the outer surface of the bulb with an induction coil. This electrodeless discharge lamp applies a high-frequency voltage to the induction coil using a high-frequency generation circuit, and generates an induced electric field with the magnetic flux generated by the high-frequency current flowing through the induction coil, thereby discharging the discharge gas, which is a metal vapor. Mainly 254n produced when mercury vapor is discharged at low pressure
The ultraviolet light of m is converted into visible light by the phosphor, thereby emitting light.

ところで、水銀蒸気が紫外線を発する効率は、
その蒸気圧に大きく左右され、またこの蒸気圧は
バルブの温度、正確にはバルブ内面の内で最も温
度の低い最冷点の温度によつて決定させる。通常
最冷点の温度が40〜50℃位で紫外線の発光効率が
最大となる。そして、最冷点の温度が低いと、そ
れに伴つて蒸気圧も低下し、余剰の水銀は最冷点
の部分で結露し、このため紫外線の発光効率は低
下する。
By the way, the efficiency with which mercury vapor emits ultraviolet light is
It is greatly influenced by the vapor pressure, and this vapor pressure is determined by the temperature of the valve, or more precisely, the temperature of the coldest point on the inner surface of the valve. Usually, the luminous efficiency of ultraviolet rays reaches its maximum when the temperature of the coldest point is around 40 to 50 degrees Celsius. When the temperature at the coldest point is low, the vapor pressure also decreases, and excess mercury condenses at the coldest point, resulting in a decrease in ultraviolet light emission efficiency.

無電極放電灯の点灯前にバルブの壁面が低温で
あると、点灯直後は水銀蒸気の蒸気圧が低くな
り、発光も弱くなる。また、水銀の蒸気圧が低い
と非常に高い電圧でないと始動しないこともあ
る。そして、このままで無電極放電灯を点灯し続
けると、バルブ内で消費される電力によつてバル
ブの温度は次第に上昇し、それにともなつて水銀
の蒸気圧も高くなつて、発光も強くなつてくる。
つまり、点灯前のバルブの温度が低いと、点灯後
の光量が変動する。
If the wall surface of the bulb is cold before lighting the electrodeless discharge lamp, the vapor pressure of mercury vapor will be low immediately after lighting, and the light emission will be weak. Also, if the vapor pressure of mercury is low, the engine may not start unless the voltage is extremely high. If the electrodeless discharge lamp continues to be lit in this state, the temperature of the bulb will gradually rise due to the electricity consumed within the bulb, and the vapor pressure of mercury will also increase, causing the luminescence to become stronger. come.
In other words, if the temperature of the bulb before lighting is low, the amount of light after lighting will fluctuate.

このような光量の変動は、コピー機などの原稿
読取用光源として用いるときには非常に問題とな
る。このため、通常の光源ではバルブをヒータで
くるみ点灯前にヒータに通電しておいてバルブを
予熱する方法がよく採られる。しかし、無電極放
電灯ではバルブ外面に沿つて誘導コイルが周設さ
れるため、導電体であるヒータが誘導コイルに近
接することになり、点灯中にもヒータによる損失
を生じ、無電極放電灯にはヒータを用いることが
できない。そこで、無電極放電灯では誘導コイル
でヒータを兼用することが考えられる。この場
合、予熱中に無電極放電灯が点灯すると、その光
が感光体に照射され、感光体の寿命が短くなるの
で、予熱用として誘導コイルに流す電流は、無電
極放電灯が点灯しないような低い周波数の交流あ
るいは直流を用いなければならない。従つて、誘
導コイルに流す電流を、点灯中と予熱時とで高周
波と低周波とに切り換える必要があり、放電灯点
灯装置の回路構成が複雑となる問題があつた。ま
た、このように誘導コイルを予熱用として兼用す
る場合、点灯中は誘導コイルの損失を小さくする
ため、その抵抗値は極めて小さいものでなくては
ならないので、予熱用の電流は発熱を得るために
充分に大きなものでなくてはならず、このため部
品形状が大きくなるとともにコストがアツプする
問題もあつた。
Such fluctuations in the amount of light become a serious problem when used as a light source for reading originals in a copy machine or the like. For this reason, with ordinary light sources, a method is often adopted in which the bulb is wrapped in a heater and the heater is energized to preheat the bulb before lighting. However, in electrodeless discharge lamps, an induction coil is installed around the outer surface of the bulb, so the heater, which is a conductor, is placed close to the induction coil, causing loss due to the heater even when the lamp is lit. cannot use a heater. Therefore, it may be possible to use an induction coil as a heater in an electrodeless discharge lamp. In this case, if the electrodeless discharge lamp is turned on during preheating, the light will irradiate the photoreceptor and the life of the photoreceptor will be shortened. A low frequency alternating current or direct current must be used. Therefore, it is necessary to switch the current flowing through the induction coil between high frequency and low frequency during lighting and during preheating, posing a problem that the circuit configuration of the discharge lamp lighting device becomes complicated. In addition, when the induction coil is used for preheating as well, the resistance value must be extremely small to reduce the loss of the induction coil during lighting, so the preheating current must be used to generate heat. Therefore, there was a problem that the shape of the part became large and the cost increased.

[発明の目的] 本発明は上述の点に鑑みて為されたものであ
り、その目的とするところは、無電極放電灯の誘
導コイルを予熱用に兼用して、低温時の光量低下
や始動不良を防止し、しかも構成が簡単でかつ低
コスト化を実現できる放電灯点灯装置を提供する
ことにある。
[Object of the Invention] The present invention has been made in view of the above-mentioned points, and its purpose is to use the induction coil of an electrodeless discharge lamp for preheating, thereby reducing the light intensity drop at low temperatures and starting the lamp. To provide a discharge lamp lighting device which prevents defects, has a simple configuration, and can realize cost reduction.

[発明の開示] (構成) 本発明は、金属蒸気を含む放電ガスが封入され
た透光性のバルブの外面に沿つて誘導コイルを周
設した無電極放電灯を、上記誘導コイルに高周波
電圧を印加して発生する誘導電界によつて点灯す
る放電灯点灯装置であつて、上記誘導コイルに高
周波電圧を印加して無電極放電灯を点灯する放電
灯点灯回路と、無電極放電灯のバルブ壁の温度が
所定値以下となつたことを検出する温度検出手段
とを備え、上記放電灯点灯回路にてランプ点灯時
には始動電圧を越えるピーク値を有する断続波を
誘導コイルに印加すると共に、消灯時でかつ温度
検出手段出力が生じているときにはピーク値が始
動電圧を越えない連続波を誘導コイルに印加する
ものであり、放電灯点灯回路にて点灯時はピーク
値が始動電圧以上の電圧を誘導コイルに印加する
ことにより、無電極放電灯を確実に始動すること
ができるようにし、また消灯時でかつ温度検出手
段出力が生じているとき、つまり無電極放電灯を
予熱する必要があるときには、放電灯点灯回路に
よつてピーク値が始動電圧を越えない連続波を誘
導コイルに印加することにより、無電極放電灯は
始動しないがバルブの壁面の温度が速やかに所望
の温度になるに充分な電力を誘導コイルに供給し
て無電極放電灯を予熱できるようにし、無電極放
電灯の低温時の始動特性と光出力の立上り特性を
改善するようにし、しかも上述のような放電灯点
灯回路とすることにより、構成が簡単でかつ低コ
スト化が実現できるようにしたものである。
[Disclosure of the Invention] (Structure) The present invention provides an electrodeless discharge lamp in which an induction coil is provided along the outer surface of a translucent bulb filled with a discharge gas containing metal vapor. A discharge lamp lighting device that lights an electrodeless discharge lamp by applying a high frequency voltage to the induction coil, and a discharge lamp lighting circuit that lights an electrodeless discharge lamp by applying a high frequency voltage to the induction coil, and a bulb of the electrodeless discharge lamp. Temperature detection means detects when the wall temperature falls below a predetermined value, and when the discharge lamp lighting circuit applies an intermittent wave having a peak value exceeding the starting voltage to the induction coil when the lamp is lit, the lamp is turned off. When the temperature detecting means outputs at 300 kHz, a continuous wave whose peak value does not exceed the starting voltage is applied to the induction coil, and when the discharge lamp lighting circuit is lit, a voltage whose peak value is greater than the starting voltage is applied to the induction coil. By applying voltage to the induction coil, the electrodeless discharge lamp can be reliably started, and when the lamp is off and the temperature detection means output is occurring, that is, when the electrodeless discharge lamp needs to be preheated. By applying a continuous wave whose peak value does not exceed the starting voltage to the induction coil using the discharge lamp lighting circuit, the electrodeless discharge lamp will not start, but it will be sufficient to quickly bring the temperature of the wall surface of the bulb to the desired temperature. In order to preheat the electrodeless discharge lamp by supplying a certain amount of electric power to the induction coil, and to improve the starting characteristics of the electrodeless discharge lamp at low temperatures and the rise characteristics of the light output, the discharge lamp lighting circuit as described above is provided. By doing so, the configuration is simple and costs can be reduced.

実施例 1 第1図乃至第5図に本発明の一実施例を示す。
本実施例の無電極放電灯1も従来例と同様のもの
であり、内壁面に蛍光体が塗布されたガラスなど
にて形成された透光性のバルブ2内に放電ガスと
してアルゴンなどの希ガスと共に、金属蒸気とし
ての水銀蒸気を封入し、バルブ2の外面に沿つて
誘導コイル3を周設したものである。本実施例の
誘導コイル3は、バルブ2の外面に薄い帯状の銅
線を1ターン巻回したものである。但し、放電灯
点灯装置の出力インピーダンスとの関係で銅線を
数ターン巻いた方が良い場合もある。上記無電極
放電灯1のバルブ2の壁面には温度検出手段を構
成する温度センサ7を密着させて取着して、温度
センサ7を無電極放電灯1のバルブ2の壁面に熱
的に結合させ、バルブ2壁面の温度が所定値以下
となつたことを検出するようにしてあり、この温
度センサ7としては、例えばサーミスタなどが用
いられる。本実施例のバルブ2の一端部には突起
部4を設けてあり、この突起部4により発光効率
が低下することを防止するようにしてある。つま
り、点灯中には無電極放電灯1が高温となつて、
最冷点の温度も上昇することにより、発光効率が
低下する。そこで、無電極放電灯1の発光効率を
良くするために、この部分を最冷点とする突起部
4を設けてある。この突起部4には補助ヒータ6
が取着され、最冷点の温度が発光効率が最大とな
る温度に設定できるようにしてある。この補助ヒ
ータ6としては、所望の温度を越えるとその抵抗
値が急上昇する、自己発熱型ポジテイブサーミス
タ等が用いられる。
Embodiment 1 An embodiment of the present invention is shown in FIGS. 1 to 5.
The electrodeless discharge lamp 1 of this embodiment is similar to the conventional example, and contains a rare gas such as argon as a discharge gas in a transparent bulb 2 made of glass or the like whose inner wall is coated with phosphor. Mercury vapor as metal vapor is sealed together with the gas, and an induction coil 3 is provided along the outer surface of the bulb 2. The induction coil 3 of this embodiment is made by winding one turn of thin strip-shaped copper wire around the outer surface of the bulb 2. However, depending on the output impedance of the discharge lamp lighting device, it may be better to wind the copper wire several turns. A temperature sensor 7 constituting a temperature detection means is closely attached to the wall surface of the bulb 2 of the electrodeless discharge lamp 1, and the temperature sensor 7 is thermally coupled to the wall surface of the bulb 2 of the electrodeless discharge lamp 1. The temperature sensor 7 is configured to detect when the temperature of the wall surface of the valve 2 falls below a predetermined value, and a thermistor or the like is used as the temperature sensor 7, for example. A protrusion 4 is provided at one end of the bulb 2 of this embodiment, and this protrusion 4 is designed to prevent the luminous efficiency from decreasing. In other words, the electrodeless discharge lamp 1 becomes hot during lighting,
As the temperature at the coldest point also increases, the luminous efficiency decreases. Therefore, in order to improve the luminous efficiency of the electrodeless discharge lamp 1, a protrusion 4 is provided to make this part the coldest point. This protrusion 4 has an auxiliary heater 6
is attached so that the temperature of the coldest point can be set to the temperature at which the luminous efficiency is maximized. As this auxiliary heater 6, a self-heating type positive thermistor or the like is used, the resistance of which increases rapidly when the temperature exceeds a desired temperature.

放電灯点灯装置5は、この誘導コイル3に高周
波電力を供給するもので、効率良く無電極放電灯
に電力を供給するため、出力の周波数を無線周
波、例えば13.56MHzとしてある。
The discharge lamp lighting device 5 supplies high frequency power to the induction coil 3, and in order to efficiently supply power to the electrodeless discharge lamp, the output frequency is set to a radio frequency, for example, 13.56MHz.

以下、この放電灯点灯装置5に関する原理的な
説明を行う。この放電灯点灯装置には、外部から
商用周波電源あるいは直流電源が供給されると共
に、無電極放電灯1を点灯及び消灯するための点
滅信号が入力されるようになつている。無電極放
電灯1を点灯する場合、放電灯点灯装置5から無
電極放電灯1の誘導コイル3に無電極放電灯1を
点灯するに充分な高周波出力を供給する。また、
無電極放電灯1を消灯してある場合でも、温度セ
ンサ7にて検出されたバルブ2の壁面温度が所定
値より低いときには、放電灯点灯装置5の高周波
出力を制限して誘導コイル3に供給する。このよ
うな動作は、温度センサ7出力と所定値とを比較
する比較回路出力と、点滅信号との簡単な論理回
路により実現できる。
The principle of this discharge lamp lighting device 5 will be explained below. This discharge lamp lighting device is supplied with a commercial frequency power source or a DC power source from the outside, and also receives a blinking signal for turning on and off the electrodeless discharge lamp 1. When lighting the electrodeless discharge lamp 1, a high frequency output sufficient to light the electrodeless discharge lamp 1 is supplied from the discharge lamp lighting device 5 to the induction coil 3 of the electrodeless discharge lamp 1. Also,
Even when the electrodeless discharge lamp 1 is turned off, if the wall surface temperature of the bulb 2 detected by the temperature sensor 7 is lower than a predetermined value, the high frequency output of the discharge lamp lighting device 5 is limited and supplied to the induction coil 3. do. Such an operation can be realized by a simple logic circuit including a comparison circuit output that compares the temperature sensor 7 output with a predetermined value and a blinking signal.

ところで、放電灯の点灯開始に要する電圧(始
動電圧)は、一般に点灯を維持する電圧(維持電
圧)よりも大きい。従つて、ここで点灯に充分な
高周波出力とは、この始動電圧を越えるものであ
り、制限された高周波出力とは、始動電圧を越え
ない程度のものである。しかし、この始動電圧と
維持電圧との大きさの関係は誘導コイル3を用い
る無電極放電灯1においては必ずしも一定しな
い。無電極放電灯1のバルブ2内の放電を維持す
る電界強度は、主に電磁誘導により誘起されるも
ので、このとき誘導コイル3の両端に誘起される
電圧は、この電界強度を誘導コイル3の周に沿つ
て積分したものに概ね等しい。これがさきの維持
電圧に相当する。一方、無電極放電灯1の始動に
要する電界強度は、維持に要する電界強度よりは
極めて大きいものであるが、電流が極めて小さい
ために静電的な誘導電界になる。誘導コイルによ
つて生じる静電的な電界の最も大きいところは、
たいてい誘導コイル3への給電部であつて、ここ
では隣接する端子間の電位差があまり大きくなく
ても、距離が小さいために電界強度としては大き
いものが得られるので、無電極放電灯1を始動さ
せることができ、このときの端子間電圧が始動電
圧となる。従つて、始動電圧と維持電圧との大き
さの関係は、特に誘導コイル3の形状によつて大
きく影響を受ける。例えば、誘導コイル3の巻数
を多くすると、維持電圧は概ね巻数に比例して大
きくなり、これに対して始動電圧はあまり大きく
ならない。そこで、始動電圧と維持電圧との関係
の逆転、すなわち始動電圧が維持電圧より小さく
なることが起こる。この場合、無電極放電灯1の
予熱のために印加される電圧は、無電極放電灯1
が点灯することがないように小さくしなければな
らないことから、誘導コイル3における発熱が小
さくなつて予熱の効果が小さくなる。従つて、巻
数が少なくするか、無電極放電灯1と誘導コイル
3との間に静電シールドを設けて静電的な誘導電
界を弱めることで、始動電圧を維持電圧に対して
高めるようにしなければならない。
Incidentally, the voltage required to start lighting a discharge lamp (starting voltage) is generally higher than the voltage (maintaining voltage) required to maintain lighting. Therefore, the high frequency output sufficient for lighting is one that exceeds this starting voltage, and the limited high frequency output is one that does not exceed this starting voltage. However, the relationship between the starting voltage and the sustaining voltage is not necessarily constant in the electrodeless discharge lamp 1 using the induction coil 3. The electric field strength that maintains the discharge within the bulb 2 of the electrodeless discharge lamp 1 is mainly induced by electromagnetic induction, and the voltage induced across the induction coil 3 at this time It is approximately equal to the integral along the circumference of . This corresponds to the sustaining voltage mentioned earlier. On the other hand, although the electric field strength required to start the electrodeless discharge lamp 1 is much larger than the electric field strength required for maintenance, the current is extremely small, resulting in an electrostatic induced electric field. The point where the electrostatic field generated by the induction coil is greatest is
This is usually the power supply part to the induction coil 3, and even if the potential difference between adjacent terminals is not very large, a large electric field strength can be obtained due to the short distance, so it is used to start the electrodeless discharge lamp 1. The voltage between the terminals at this time becomes the starting voltage. Therefore, the relationship between the starting voltage and the sustaining voltage is greatly influenced by the shape of the induction coil 3 in particular. For example, when the number of turns of the induction coil 3 is increased, the sustaining voltage increases approximately in proportion to the number of turns, whereas the starting voltage does not increase much. Therefore, the relationship between the starting voltage and the sustaining voltage is reversed, that is, the starting voltage becomes smaller than the sustaining voltage. In this case, the voltage applied for preheating the electrodeless discharge lamp 1 is
Since the induction coil 3 must be made small so that it does not light up, the heat generation in the induction coil 3 becomes small and the preheating effect becomes small. Therefore, the starting voltage is increased relative to the maintenance voltage by reducing the number of turns or by providing an electrostatic shield between the electrodeless discharge lamp 1 and the induction coil 3 to weaken the electrostatic induction electric field. There must be.

そこで、上気方法により、始動電圧を維持電圧
に近く、あるいは始動電圧を維持電圧より高く
し、予熱時の印加電圧は電圧値としては点灯時と
同程度の大きさにしておく。この場合、誘導コイ
ル3における電力損は周波数が同じであれば、そ
の端子間電圧の2乗にほぼ比例するので、誘導コ
イル3の損失が例えばランプ定格電力の10%とす
ると、維持電圧と同程度に予熱時の印加電圧があ
れば、損失も同程度で、予熱による無電極放電灯
1の温度上昇は、ランプ定格動作時の温度上昇の
10%以上は期待できる。また、それ以上の結果を
望むのであれば、始動電圧をより高く設計し、予
熱時の印加電圧もそれに応じて高くすれば良い。
Therefore, by using the upper air method, the starting voltage is set close to or higher than the sustaining voltage, and the voltage applied during preheating is kept at the same voltage value as during lighting. In this case, if the frequency is the same, the power loss in the induction coil 3 is approximately proportional to the square of the voltage between its terminals, so if the loss in the induction coil 3 is, for example, 10% of the lamp rated power, it is equal to the maintenance voltage. If the applied voltage during preheating is about the same level, the loss is also about the same, and the temperature rise of the electrodeless discharge lamp 1 due to preheating is equal to the temperature rise during rated operation of the lamp.
More than 10% can be expected. If a better result is desired, the starting voltage may be designed to be higher and the voltage applied during preheating may be increased accordingly.

無電極放電灯1を点灯するには、上気始動電圧
よりも高い電圧を加えれば良く、誘導コイル3の
インダクタンスと放電灯点灯装置内に設けられた
コンデンサとの間での共振による昇圧作用でこれ
を得ることにすれば、無電極放電灯1が始動した
後は無電極放電灯が負荷となつて共振回路のQが
低下し、さきの維持電圧にまで誘導コイル3の端
子間電圧を低下させることができる。なお、無電
極放電灯1の光出力を小さくしたいときには、一
旦上記の高圧を加えて無電極放電灯1を始動した
後に、高周波出力を低下させるか、あるいは高周
波出力を断続させることによつて平均的な出力を
低下させればよい。ところが、この場合にも出力
電圧のピーク値は始動電圧より高くしておく。
To light the electrodeless discharge lamp 1, it is sufficient to apply a voltage higher than the upper air starting voltage. If we decide to obtain this, after the electrodeless discharge lamp 1 starts, the electrodeless discharge lamp becomes a load and the Q of the resonant circuit decreases, reducing the voltage across the terminals of the induction coil 3 to the previous maintenance voltage. can be done. Note that when you want to reduce the light output of the electrodeless discharge lamp 1, you can first start the electrodeless discharge lamp 1 by applying the above-mentioned high voltage, and then reduce the high frequency output or intermittent the high frequency output to reduce the average All you have to do is reduce the output. However, even in this case, the peak value of the output voltage is set higher than the starting voltage.

また、予熱時は出力電圧のピーク値は始動電圧
よりも低くする。なお、加熱の効果を高めるため
には断続させるよりも連続して誘導コイル3に電
圧を印加する方が良いことは言うまでもない。
Further, during preheating, the peak value of the output voltage is set lower than the starting voltage. It goes without saying that in order to enhance the heating effect, it is better to apply the voltage to the induction coil 3 continuously rather than intermittently.

上述の原理に基づき、点灯時にはピーク値を始
動電圧より高くし、予熱時にはピーク値を始動電
圧より低くした本発明の一実施例の放電灯点灯回
路を第2図乃至第5図に示す。
Based on the above-mentioned principle, a discharge lamp lighting circuit according to an embodiment of the present invention is shown in FIGS. 2 to 5, in which the peak value is set higher than the starting voltage during lighting, and the peak value is lower than the starting voltage during preheating.

本実施例では、第2図に示すように、交流電源
8をダイオードブリツジDBにて整流すると共
に、平滑コンデンサC1にて平滑して直流電圧を
得ており、この直流電圧を断続して断続波を作成
する断続波作成回路9と、この断続波作成回路9
出力を平滑する平滑回路10と、誘導コイル3に
印加する高周波電圧を発生する第3図に示す高周
波発振回路12と、ランプ点灯時には上記断続波
発生回路9出力を高周波発振回路12に供給する
と共に、消灯時でかつ温度センサ7出力が生じて
いるとき平滑回路10出力を高周波発振回路12
に供給する切換回路11とを備えている。
In this embodiment, as shown in Fig. 2, the AC power supply 8 is rectified by a diode bridge DB and smoothed by a smoothing capacitor C1 to obtain a DC voltage. An intermittent wave creation circuit 9 that creates an intermittent wave, and this intermittent wave creation circuit 9
A smoothing circuit 10 that smooths the output, a high frequency oscillation circuit 12 shown in FIG. 3 that generates a high frequency voltage to be applied to the induction coil 3, and a high frequency oscillation circuit 12 shown in FIG. , when the lights are off and the temperature sensor 7 output is occurring, the smoothing circuit 10 output is sent to the high frequency oscillation circuit 12.
A switching circuit 11 is provided.

断続波作成回路9は、スイツチング用のトラン
ジスタQ1と、このトランジスタQ1のスイツチン
グを制御する制御部13とからなり、制御部13
から出力される第5図aに示す方形波によりトラ
ンジスタQ1をイツチングして同図bのイにて示
す断続波を作成する。
The intermittent wave generation circuit 9 includes a switching transistor Q 1 and a control section 13 that controls switching of this transistor Q 1 .
The transistor Q1 is turned on by the square wave shown in FIG.

平滑回路10は、ダイオードD1、コイルL1
及びコンデンサC2にて構成され、トランジスタ
Q1のオン期間にコイルL1を介してコンデンサC2
に充電された電荷を、トランジスタQ1のオフ期
間にコンデンサC2、ダイオードD1、コイルL1
閉回路に流すことにより、第5図bのロに示す連
続波に断続波作成回路9出力を変換している。な
お第5図bの波形は、出力に負荷を接続してある
ときの状態を示す。
The smoothing circuit 10 includes a diode D 1 , a coil L 1 ,
It consists of a capacitor C 2 , and a transistor
Capacitor C 2 through coil L 1 during on-period of Q 1
By flowing the charged electric charge through the closed circuit of capacitor C 2 , diode D 1 , and coil L 1 during the off-period of transistor Q 1 , the output of the intermittent wave generation circuit 9 becomes a continuous wave as shown in FIG. is being converted. Note that the waveform in FIG. 5b shows the state when a load is connected to the output.

切換回路11に関しては、第2図では切換接点
r1のみを示してあり、他の構成は省略してある
が、上述したように温度センサ7出力と所定値と
を比較する比較回路出力と、点滅信号との簡単な
論理回路により構成され、切換接点r1はこの論理
回路出力にて駆動されるリレーなどの接点が用い
られる。
Regarding the switching circuit 11, in FIG.
Although only r 1 is shown and the other components are omitted, as mentioned above, it is composed of a simple logic circuit with a comparison circuit output that compares the temperature sensor 7 output and a predetermined value, and a blinking signal. As the switching contact r1 , a contact such as a relay driven by the output of this logic circuit is used.

高周波発振回路12としては、トランジスタ
Q2、コンデンサC3〜C5、コイルL2、抵抗R1にて
構成された自励式のものを用いてあり、この高周
波発振回路12の高周波出力は入力端子C、Eに
印加される直流電圧値に比例したものとなる。従
つて、切換接点r1を断続波作成回路9側である端
子a側に切り換えると、ピーク値が始動電圧より
高い断続した高周波出力が得られるようにし、こ
の出力を無電極放電灯1を点灯するための出力と
して用いる。また、切換接点r1を平滑回路10側
である端子b側に切り換えると、ピーク値が始動
電圧より低い連続した高周波出力が得られるよう
にし、予熱するための出力として用いる。なお、
無電極放電灯1を調光する場合には、断続波作成
回路9の制御部13出力である方形波のデユーテ
イ比を変えることにより適宜光状態に無電極放電
灯1の点灯状態を制御することができる。
As the high frequency oscillation circuit 12, a transistor
Q 2 , capacitors C 3 to C 5 , coil L 2 , and resistor R 1 are self-excited. It is proportional to the voltage value. Therefore, when switching contact r1 is switched to the terminal a side, which is the intermittent wave generation circuit 9 side, an intermittent high frequency output whose peak value is higher than the starting voltage is obtained, and this output is used to light the electrodeless discharge lamp 1. Used as output for Furthermore, when the switching contact r1 is switched to the terminal b side, which is the smoothing circuit 10 side, a continuous high frequency output whose peak value is lower than the starting voltage is obtained, and is used as an output for preheating. In addition,
When dimming the electrodeless discharge lamp 1, the lighting state of the electrodeless discharge lamp 1 is controlled to an appropriate light state by changing the duty ratio of the square wave that is the output of the control unit 13 of the intermittent wave generation circuit 9. I can do it.

第4図は、上述の高周波発振回路12を、小出
力の高周波発振回路14と、この高周波波発振回
路14出力を増幅する電力増幅回路15とで構成
したものであり、上述の高周波発振回路12と同
様に高周波発振回路14を制御することにより同
様の結果を得ることができる。
FIG. 4 shows the above-mentioned high-frequency oscillation circuit 12 configured by a small-output high-frequency oscillation circuit 14 and a power amplifier circuit 15 that amplifies the output of this high-frequency wave oscillation circuit 14. A similar result can be obtained by controlling the high frequency oscillation circuit 14 in the same manner.

このように、点灯時には高周波発振回路12,
12′から始動電圧以上のピーク値を有する断続
波を誘導コイル3に印加することにより、確実に
無電極放電灯1を点灯することができ、また予熱
時には断続波作成回路9出力を平滑回路10にて
平滑した電源電圧が高周波発振回路12,12′
に供給されるから、高周波発振回路12,12′
出力のピーク値を始動電圧以下に下げることがで
き、しかもこの平滑回路10出力は連続波である
ことから、誘導コイル3に印加される平均電力は
大きく、無電極放電灯1の予熱を効率良く行うこ
とができ、予熱のために付加される回路も少なく
て済む。さらに、このように誘導コイル3を無電
極放電灯1の点灯前の予熱用に兼用する場合に、
点灯時に等しい、あるいは近い周波数で駆動する
ことは次のような利点がある。予熱に必要な発熱
を得るには大電流が必要である。この電流は点灯
動作中も誘導コイル3のインダクタンスに応じて
流れているが、第3図の回路例のように、通常の
点灯時には点灯回路中のキヤパシタがこのインダ
クテイブな電流をキヤンセルしており、直流電源
より供給される電流はそれよりもずつと小さくて
良い。ところで、本実施例においては、予熱動作
においても点灯時と周波数が等しいかあるいは近
接しているので、誘導コイル3に流れるインダク
テイブな電流をキヤパシタによりキヤンセルする
効果はそのまま利用でき、直流電源より供給する
電流は小さくて済む。このために無電極放電灯の
予熱に別段の電源の準備が不要であり、回路も非
常に簡便となる。
In this way, when lighting, the high frequency oscillation circuit 12,
By applying an intermittent wave having a peak value higher than the starting voltage to the induction coil 3 from 12', the electrodeless discharge lamp 1 can be reliably lit. The power supply voltage smoothed by the high frequency oscillation circuit 12, 12'
is supplied to the high frequency oscillation circuits 12, 12'.
The peak value of the output can be lowered below the starting voltage, and since the output of this smoothing circuit 10 is a continuous wave, the average power applied to the induction coil 3 is large, and the preheating of the electrodeless discharge lamp 1 can be efficiently performed. can be performed, and requires less circuitry to be added for preheating. Furthermore, when the induction coil 3 is also used for preheating the electrodeless discharge lamp 1 before lighting,
Driving at the same or close frequency during lighting has the following advantages. A large current is required to generate the heat necessary for preheating. This current flows according to the inductance of the induction coil 3 even during lighting operation, but as shown in the circuit example in Figure 3, during normal lighting, the capacitor in the lighting circuit cancels this inductive current. The current supplied by the DC power source may be much smaller than that. By the way, in this embodiment, since the frequency during preheating operation is the same or close to that during lighting, the effect of canceling the inductive current flowing through the induction coil 3 by the capacitor can be used as is, and the frequency is supplied from the DC power source. The current only needs to be small. Therefore, there is no need to prepare a separate power source for preheating the electrodeless discharge lamp, and the circuit becomes very simple.

実施例 2 第6図及び第7図に本発明の他の実施例を示
す。本実施例は、小出力の高周波発振回路14
と、この周波波発振回路14出力を増幅する電力
増幅回路15とを備え、上記高周波発振回路14
出力を断続波に変換して電力増幅回路14に入力
する出力断続手段16と、高周波発振回路14出
力を減衰して電力増幅回路15に入力する出力減
衰手段17と、ランプ点灯時には高周波発振回路
14出力を出力断続手段16にて断続した出力を
電力増幅回路15に入力すると共に、消灯時でか
つ温度センサ7出力が生じているとき高周波発振
回路14出力を出力減衰手段17にて減衰した出
力を電力増幅回路15に入力する制御手段18と
で構成してある。なお、本実施例の場合には直流
電源19を電源として高周波発振回路14及び電
力増幅回路15が動作する。
Embodiment 2 Another embodiment of the present invention is shown in FIGS. 6 and 7. In this embodiment, a small output high frequency oscillation circuit 14
and a power amplification circuit 15 for amplifying the output of this frequency wave oscillation circuit 14.
Output intermittent means 16 converts the output into an intermittent wave and inputs it to the power amplifier circuit 14; Output attenuation means 17 attenuates the output of the high frequency oscillation circuit 14 and inputs it to the power amplifier circuit 15; and the high frequency oscillation circuit 14 when the lamp is lit. The output which is intermittent by the output intermittent means 16 is input to the power amplifier circuit 15, and the output which is attenuated by the output attenuation means 17 is output from the high frequency oscillation circuit 14 when the light is off and the temperature sensor 7 output is being generated. It is composed of a control means 18 which is input to the power amplification circuit 15. In the case of this embodiment, the high frequency oscillation circuit 14 and the power amplification circuit 15 operate using the DC power supply 19 as a power source.

出力断続手段16はトランジスタQ3、及び抵
抗R4で、出力減衰手段17はトランジスタQ4
及び抵抗R2,R3で構成されている。
The output intermittent means 16 is a transistor Q 3 and a resistor R 4 , and the output attenuation means 17 is a transistor Q 4 ,
and resistors R 2 and R 3 .

これら出力断続手段16及び出力減衰手段17
のトランジスタQ3,Q4のスイツチング制御は次
のように制御手段18にて行う。調光量に応じて
デユーテイ比を設定するための方形波である調光
信号をS1(ハイレベルの比率が大きいとき光出力
を絞る)、無電極放電灯1の点灯及び消灯のため
の点滅信号をS2(ハイレベルで点灯)、温度センサ
7にてバルブ2の壁面温度が所定値以下になつた
ことを示す低温信号をS3(ハイレベルで低温)と
し、出力断続手段16用の制御出力X、出力減衰
手段17用の制御出力をYとする。これにより上
述の第1の実施例の動作を実現する理論式を示す
と、 X=A・B+・ Y=・C となる。この理論式を具体回路にて構成すると、
3個のアンド回路20〜22、オア回路23、イ
ンバータ24,25にて構成され、この回路の動
作は第7図に示すようになり、動作は上述の第1
の実施例と略同様であるので説明は省略する。
These output intermittent means 16 and output attenuation means 17
The switching control of the transistors Q 3 and Q 4 is performed by the control means 18 as follows. The dimming signal, which is a square wave, is used to set the duty ratio according to the amount of dimming S1 (light output is reduced when the high level ratio is large), and blinks to turn on and off the electrodeless discharge lamp 1. The signal S 2 (lights up at high level), and the low temperature signal indicating that the wall surface temperature of the valve 2 has fallen below a predetermined value by the temperature sensor 7 is set as S 3 (low temperature at high level). Let the control output be X, and the control output for the output attenuation means 17 be Y. The theoretical formula for realizing the operation of the first embodiment described above is as follows: X=A.B+.Y=.C. When this theoretical formula is constructed using a concrete circuit,
It is composed of three AND circuits 20 to 22, an OR circuit 23, and inverters 24 and 25, and the operation of this circuit is as shown in FIG.
Since this embodiment is substantially the same as that of the embodiment, the explanation will be omitted.

本実施例のように高周波発振回路14出力を制
御することは、第1の実施例のように高周波発振
回路14の電流を制御する場合に比べて、取り扱
う電力が小さい利点がある。つまり、高周波発振
回路14が直流を高周波に変換する効率は40%か
ら高々70%程度であつて、出力の高周波に対して
入力の直流電力は大きいものであるからである。
このため、回路素子を小さく、損失も少なくでき
る利点があり、振幅の減衰も単純な抵抗の組み合
わせによる減衰器で良くなる。
Controlling the output of the high frequency oscillation circuit 14 as in the present embodiment has the advantage of handling less electric power than controlling the current of the high frequency oscillation circuit 14 as in the first embodiment. In other words, the efficiency with which the high frequency oscillation circuit 14 converts direct current into high frequency is about 40% to 70% at most, and the input direct current power is large compared to the high frequency output.
Therefore, there is an advantage that the circuit elements can be made smaller and loss can be reduced, and amplitude attenuation can be achieved by using an attenuator using a simple combination of resistors.

[発明の効果] 本発明は上述のように、金属蒸気を含む放電ガ
スが封入された透光性のバルブの外面に沿つて誘
導コイルを周設した無電極放電灯を、上記誘導コ
イルに高周波電圧を印加して発生する誘導電界に
よつて点灯する放電点灯装置であつて、上記誘導
コイルに高周波電圧を印加して無電極放電灯を点
灯する放電灯回路と、無電極放電灯のバルブ壁の
温度が所定値以下となつたことを検出する温度検
出手段とを備え、上記放電灯点灯回路にてランプ
点灯時には始動電圧を越えるピーク値を有する断
続波を誘導コイルに印加すると共に、消灯時でか
つ温度検出手段出力が生じているときにはピーク
値が始動電圧を越えない連続波を誘導コイルに印
加するものであり、放電灯点灯回路にて点灯時は
ピーク値が始動電圧以上の電圧を誘導コイルに印
加することにより、無電極放電灯を確実に始動す
ることができるようにし、また消灯時でかつ温度
検出手段出力が生じているとき、つまり無電極放
電灯を予熱する必要があるときには、放電灯点灯
回路によつてピーク値が始動電圧を越えない連続
波を誘導コイルに印加することにより、無電極放
電灯は始動しないがバルブの壁面の温度が速やか
に所望の温度になるに充分な電力を誘導コイルに
供給して無電極放電灯を予熱できるようにし、無
電極放電灯の低温時の始動特性と光出力の立上り
特性を改善でき、しかも上述のような放電灯点灯
回路とすることにより、構成が簡単でかつ低コス
ト化が実現できる効果がある。
[Effects of the Invention] As described above, the present invention provides an electrodeless discharge lamp in which an induction coil is provided along the outer surface of a translucent bulb filled with a discharge gas containing metal vapor. A discharge lighting device that lights an electrodeless discharge lamp by applying a voltage and generates an induced electric field, the discharge lamp circuit lighting an electrodeless discharge lamp by applying a high frequency voltage to the induction coil, and a bulb wall of the electrodeless discharge lamp. temperature detection means for detecting that the temperature of the discharge lamp has fallen below a predetermined value, and the discharge lamp lighting circuit applies an intermittent wave having a peak value exceeding the starting voltage to the induction coil when the lamp is turned on, and when the lamp is turned off. When the output of the temperature detection means is generated, a continuous wave whose peak value does not exceed the starting voltage is applied to the induction coil, and when the discharge lamp lighting circuit is lit, a voltage whose peak value is greater than the starting voltage is induced. By applying voltage to the coil, the electrodeless discharge lamp can be started reliably, and when the lamp is off and the temperature detection means output is occurring, that is, when the electrodeless discharge lamp needs to be preheated, By applying a continuous wave whose peak value does not exceed the starting voltage to the induction coil using the discharge lamp lighting circuit, the electrodeless discharge lamp will not start, but the temperature on the bulb wall will be sufficient to quickly reach the desired temperature. To provide a discharge lamp lighting circuit which can preheat an electrodeless discharge lamp by supplying electric power to an induction coil, improve the starting characteristics of the electrodeless discharge lamp at low temperatures and the rising characteristics of light output, and further provides a discharge lamp lighting circuit as described above. This has the effect of simplifying the configuration and reducing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略構成図、第2
図は同上の要部回路図、第3図は同上の他の要部
回路図、第4図は第3図の別の回路図、第5図は
同上の動作説明図、第6図は本発明の他の実施例
の回路図、第7図は同上の動作説明図である。 1は無電極放電灯、2はバルブ、3は誘導コイ
ル、5は放電灯点灯装置、7は温度センサ、9は
断続波作成回路、10は平滑回路、11は切換回
路、12,12′は高周波発振回路、14は高周
波発振器、15は電力増幅器、16は出力断続手
段、17は出力減衰手段、18は制御手段であ
る。
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention, and FIG.
The figure is the main part circuit diagram of the same as above, Fig. 3 is another main part circuit diagram of the same as above, Fig. 4 is another circuit diagram of Fig. A circuit diagram of another embodiment of the invention, FIG. 7 is an explanatory diagram of the same operation. 1 is an electrodeless discharge lamp, 2 is a bulb, 3 is an induction coil, 5 is a discharge lamp lighting device, 7 is a temperature sensor, 9 is an intermittent wave generation circuit, 10 is a smoothing circuit, 11 is a switching circuit, 12 and 12' are A high frequency oscillation circuit, 14 is a high frequency oscillator, 15 is a power amplifier, 16 is an output intermittent means, 17 is an output attenuation means, and 18 is a control means.

Claims (1)

【特許請求の範囲】 1 金属蒸気を含む放電ガスが封入された透光性
のバルブの外面に沿つて誘導コイルを周設した無
電極放電灯を、上記誘導コイルに高周波電圧を印
加して発生する誘導電界によつて点灯する放電灯
点灯装置であつて、上記誘導コイルに高周波電圧
を印加して無電極放電灯を点灯する放電灯点灯回
路と、無電極放電灯のバルブ壁の温度が所定値以
下となつたことを検出する温度検出手段とを備
え、上記放電灯点灯回路にてランプ点灯時には始
動電圧を越えるピーク値を有する断続波を誘導コ
イルに印加すると共に、消灯時でかつ温度検出手
段出力が生じているときにはピーク値が始動電圧
を越えない連続波を誘導コイルに印加して成るこ
とを特徴とする放電灯点灯装置。 2 上記放電灯点灯回路を、直流電源電圧を断続
して断続波を作成する断続波作成回路と、この断
続波作成回路出力を平滑する平滑回路と、誘導コ
イルに印加する高周波電圧を発生する高周波発振
回路と、ランプ点灯時には上記断続波発生回路出
力を高周波発振回路に供給すると共に、消灯時で
かつ温度センサ出力が生じているとき平滑回路出
力を高周波発振回路に供給する切換回路とで構成
して成る特許請求の範囲第1項記載の放電灯点灯
装置。 3 上記放電灯点灯回路を、高周波電圧を発生す
る高周波発振回路と、この高周波発振回路出力を
電力増幅して誘導コイルに印加する電力増幅回路
と、上記高周波発振回路出力を断続波に変換する
出力断続手段と、高周波発振回路出力を減衰する
出力減衰手段と、ランプ点灯時には高周波発振回
路出力を出力断続手段にて断続した出力を電力増
幅回路に入力すると共に、消灯時でかつ温度セン
サ出力が生じているとき高周波発振回路出力を出
力減衰手段にて減衰した出力を電力増幅回路に入
力する制御手段とで構成して成る特許請求の範囲
第1項記載の放電灯点灯装置。
[Scope of Claims] 1. An electrodeless discharge lamp in which an induction coil is placed around the outer surface of a transparent bulb filled with a discharge gas containing metal vapor, and a high-frequency voltage is applied to the induction coil. A discharge lamp lighting device that lights the electrodeless discharge lamp by applying a high frequency voltage to the induction coil, and a discharge lamp lighting device that lights the electrodeless discharge lamp by applying a high frequency voltage to the induction coil, and a discharge lamp lighting device that lights the electrodeless discharge lamp by applying a high frequency voltage to the induction coil, and the temperature of the bulb wall of the electrodeless discharge lamp is set to a predetermined temperature. Temperature detection means for detecting whether the temperature has fallen below the starting voltage is applied to the induction coil when the lamp is lit in the discharge lamp lighting circuit, and temperature detection means is provided when the lamp is turned off. A discharge lamp lighting device characterized in that a continuous wave whose peak value does not exceed a starting voltage is applied to an induction coil when an output is generated. 2. The discharge lamp lighting circuit includes an intermittent wave generation circuit that generates an intermittent wave by intermittent DC power supply voltage, a smoothing circuit that smoothes the output of this intermittent wave generation circuit, and a high frequency wave generator that generates a high frequency voltage to be applied to the induction coil. It consists of an oscillation circuit and a switching circuit that supplies the above-mentioned intermittent wave generation circuit output to the high frequency oscillation circuit when the lamp is on, and supplies the smoothing circuit output to the high frequency oscillation circuit when the lamp is off and the temperature sensor output is occurring. A discharge lamp lighting device according to claim 1, comprising: 3 The discharge lamp lighting circuit includes a high-frequency oscillation circuit that generates a high-frequency voltage, a power amplification circuit that amplifies the power of the high-frequency oscillation circuit output and applies it to the induction coil, and an output that converts the high-frequency oscillation circuit output into an intermittent wave. an intermittent means, an output attenuation means for attenuating the output of the high frequency oscillation circuit, and when the lamp is on, the output of the high frequency oscillation circuit is input to the power amplifier circuit by the output intermittent means, and when the lamp is off, a temperature sensor output is generated. 2. A discharge lamp lighting device according to claim 1, further comprising a control means for inputting an output obtained by attenuating an output of a high frequency oscillation circuit by an output attenuation means to a power amplification circuit when the high frequency oscillation circuit is in operation.
JP14843787A 1987-06-15 1987-06-15 Lighting device for discharge lamp Granted JPS63313500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14843787A JPS63313500A (en) 1987-06-15 1987-06-15 Lighting device for discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14843787A JPS63313500A (en) 1987-06-15 1987-06-15 Lighting device for discharge lamp

Publications (2)

Publication Number Publication Date
JPS63313500A JPS63313500A (en) 1988-12-21
JPH0467760B2 true JPH0467760B2 (en) 1992-10-29

Family

ID=15452774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14843787A Granted JPS63313500A (en) 1987-06-15 1987-06-15 Lighting device for discharge lamp

Country Status (1)

Country Link
JP (1) JPS63313500A (en)

Also Published As

Publication number Publication date
JPS63313500A (en) 1988-12-21

Similar Documents

Publication Publication Date Title
US4286194A (en) Generator for use with loads having changing impedance characteristics
US4219760A (en) SEF Lamp dimming
US5321337A (en) Ballast having starting current restraint circuitry for preventing a large in-rush current and protection circuitry for preventing damage due to a start-up failure
US4352045A (en) Energy conservation system using current control
WO1989001234A1 (en) Power supply for microwave discharge light source
US6157142A (en) Hid ballast circuit with arc stabilization
JPH0467760B2 (en)
JPH0646599B2 (en) Electrodeless discharge lamp device
JP5227112B2 (en) Electrodeless discharge lamp lighting device and lighting apparatus using the same
JP2010123522A (en) Electrodeless discharge lamp lighting device and luminaire
RU2354085C2 (en) Illuminating device and method of using it
JPH08298193A (en) Stabilizer for fluorescent lamp
JP2009140862A (en) High-pressure discharge lamp lighting device, light source device, and method of controlling the same
JP5129703B2 (en) Electrodeless discharge lamp lighting device and lighting apparatus using the same
JP4505942B2 (en) Discharge lamp lighting device
JPH0567493A (en) Electric power supply device for microwave heating
JP2002352990A (en) Lighting equipment for electric discharger lamp
JP2004335234A (en) Electrodeless discharge lamp lighting device and illumination device
KR20020060342A (en) Igniter circuit of the high intensity discharge lamp
JPS6280998A (en) Light emitting gas discharger power supply system
KR100711812B1 (en) The ballast for hid-lamp with contactless control
JP2005063862A (en) Electrodeless discharge lamp lighting apparatus and lighting device
JP2010123524A (en) Electrodeless discharge lamp lighting device and luminaire
JP2009129789A (en) Electrodeless discharge lamp lighting device, and illumination fixture
JPH0845686A (en) Ballast for fluorescent lamp