JPH046740A - Ion implantating device - Google Patents

Ion implantating device

Info

Publication number
JPH046740A
JPH046740A JP10645490A JP10645490A JPH046740A JP H046740 A JPH046740 A JP H046740A JP 10645490 A JP10645490 A JP 10645490A JP 10645490 A JP10645490 A JP 10645490A JP H046740 A JPH046740 A JP H046740A
Authority
JP
Japan
Prior art keywords
potential
ion
electrostatic lens
electrode
deceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10645490A
Other languages
Japanese (ja)
Other versions
JP2866705B2 (en
Inventor
Osamu Tsukagoshi
修 塚越
Rikao Sugimoto
杉本 鯉力雄
Yasuo Mihara
康雄 美原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP10645490A priority Critical patent/JP2866705B2/en
Publication of JPH046740A publication Critical patent/JPH046740A/en
Application granted granted Critical
Publication of JP2866705B2 publication Critical patent/JP2866705B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To implant large-current ion beams into a substrate with low energy of several kV through tens kV by providing a decelerating electrostatic lens system with the preset structure, and operating it for decelerating and for focusing. CONSTITUTION:An ion source 1 is held at several kV through tens kV against the ground potential, and a beam transport system to a focusing aperture 5 is held at minus tens kV against the ground potential. A decelerating electrostatic lens system 7 constituted of five hollow electrodes 71-75 is provided behind the focusing aperture 5. The electrode 71 is set to the same potential as the beam transport system, the electrodes 73, 75 are set to the ground potential, the electrode 72 is set to the intermediate potential of the electrodes 71, 73, and the electrode 74 is set to a negative potential. The extracting voltage is increased, and a large quantity of ion beams are extracted. The ion beams are focused by the lens system 7, and implantation actions can be performed by the low potential difference between the ion source 1 and a substrate 9 as a result.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、イオン源からイオン引出し系、質量分析管を
含むビームトランスポート系を介して大電流イオンビー
ムを基板に注入するイオン注入装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ion implantation apparatus that implants a high-current ion beam into a substrate from an ion source through a beam transport system including an ion extraction system and a mass spectrometer tube. It is something.

[従来の技術〕 従来の低エネルギ大電流イオン注入装置は、第3図に示
すように、イオン源Aと、引出し電極系Bと、質量分析
管Cと、集束アパーチャDとて構成されており、イオン
源Aは接地電位に対して打ち込みエネルギによって決ま
る電圧Va (例えば5keVで注入うしようとする際
には5 kV)に保たれ、引出し電極系Bの最終電極よ
り後方に位置する質量分析管C及び集束アパーチャDを
含む全ビームトランスポート系は図示したように接地電
位に保たれる。
[Prior Art] A conventional low-energy, high-current ion implanter is composed of an ion source A, an extraction electrode system B, a mass spectrometer tube C, and a focusing aperture D, as shown in FIG. , the ion source A is maintained at a voltage Va determined by the implantation energy with respect to the ground potential (for example, 5 kV when implanting at 5 keV), and the mass spectrometer tube located behind the final electrode of the extraction electrode system B is The entire beam transport system, including C and focusing aperture D, is kept at ground potential as shown.

イオン源Aから引出し電極系Bにより引出されたイオン
ビームは、イオン源Aの電位に相当するエネルギでビー
ムトランスポート系に入り、質量分析管Cによって質量
分析され、所定のイオン種のみを含むイオンビーム、例
えばAs 、P、B等のイオンビームにされ、そして集
束アパーチャDを通って集束された後、回転基板ホルダ
E上に装着された各ウェハFに注入される。
The ion beam extracted from the ion source A by the extraction electrode system B enters the beam transport system with energy corresponding to the potential of the ion source A, and is mass analyzed by the mass spectrometer tube C to identify ions containing only predetermined ion species. The beam, for example As, P, B, etc., is made into a beam of ions and, after being focused through a focusing aperture D, is implanted into each wafer F mounted on a rotating substrate holder E.

[発明が解決しようとする課題] 近年ICメモリーの製作に当って、Bの浅い接合を作る
必要が高まり、そのため5 keV或いはそれ以下数k
eVのエネルギでBイオンビームを注入する必要が起き
てきた。
[Problem to be solved by the invention] In recent years, in the production of IC memories, it has become increasingly necessary to create shallow B junctions, and therefore
It has become necessary to implant a B ion beam with an energy of eV.

しかしなから、従来の大電流イオン注入装置を用いて数
kV〜十数kVのイオンを注入しようとすると、注入さ
れるイオンビーム量が極端に減って、効率良く高いスル
ープットで注入を行うことは不可能であった。すなわち
、イオン源Aから引出し電極系Bによって引出される電
流は引出し電圧の3/2乗に比例するので、引出し電圧
を高くしなければならない。イオン源か低電位であり、
ビームトランスポート系が接地電位であると、引出し電
圧はイオン源Aと引出し電極系Bとの電位差となるので
、大電流を引出すのに必要な40kVfu度の電位差を
作ることはできなくなる。またイオンビムが5 keV
であると、通常1.2 mにも及ぶビームトランスポー
ト系を介して大電流ビームをトランスポートすることは
空間電荷効果のために困難となる。
However, when attempting to implant ions of several kV to over 10 kV using a conventional high-current ion implanter, the amount of ion beam to be implanted is drastically reduced, making it impossible to implant efficiently and with high throughput. It was impossible. That is, since the current extracted from the ion source A by the extraction electrode system B is proportional to the 3/2 power of the extraction voltage, the extraction voltage must be increased. ion source or low potential;
If the beam transport system is at ground potential, the extraction voltage will be the potential difference between the ion source A and the extraction electrode system B, and it will no longer be possible to create the 40 kVfu degree potential difference required to extract a large current. Also, the ion beam is 5 keV
Therefore, it is difficult to transport a high current beam through a beam transport system that typically extends up to 1.2 m due to space charge effects.

このように、従来の大電流イオン注入装置を用いて数k
V〜十数kVのイオンを注入することは、引出し電圧や
ビームトランスポート系における空間電荷効果の影響で
、効率か悪く高いスループットを得ることかできないと
いう問題かあった。
In this way, several k
Implanting ions with a voltage of V to several tens of kV has a problem in that efficiency is poor and high throughput cannot be obtained due to the effects of extraction voltage and space charge effects in the beam transport system.

本発明は、このような従来の装置の問題を解決して、数
kV〜十数kVの低エネルギで大電流イオンビームを基
板に注入できるようにしたイオン注入装置を提供するこ
とを目的としている。
SUMMARY OF THE INVENTION The present invention aims to solve the problems of conventional devices and to provide an ion implantation device that can implant a high current ion beam into a substrate at low energy of several kV to more than 10 kV. .

[課題を解決するための手段] 上記の目的を達成するために、本発明は、イオン源から
イオン引出し系、質量分析管を含むビムトランスポート
系を介して大電流イオンビームを基板に注入するイオン
注入装置において、高い電位勾配をもつようにされた三
枚の穴あき電極と加減速用の二枚の穴あき電極とから成
る減速静電レンズ系を設け、イオン源を接地電位に対し
て数kv〜十数kvに、イオン源から減速静電レンズ系
までのビームトランスポート系を接地電位に対して負の
数十kvに、減速静電レンズ系の第1の穴あき電極をビ
ームトランスポート系と同し負の数十kvに、減速静電
レンズ系の第3の穴あき電極を接地電位に、減速静電レ
ンズ系の第2の穴あき電極を第1の穴あき電極と第3の
穴あき電極との中間の電位に、減速静電レンズ系の第4
の穴あき電極を負の電位に、また減速静電レンズ系の第
5の穴あき電極を接地電位にそれぞれ保ち、減速静電レ
ンズ系をイオンビームの減速機能と共に集束レンズとし
て用いることを特徴としている。
[Means for Solving the Problems] In order to achieve the above object, the present invention injects a high current ion beam into a substrate from an ion source via a beam transport system including an ion extraction system and a mass spectrometer tube. In an ion implanter, a deceleration electrostatic lens system consisting of three perforated electrodes designed to have a high potential gradient and two perforated electrodes for acceleration/deceleration is installed, and the ion source is connected to ground potential. The beam transport system from the ion source to the decelerating electrostatic lens system is several tens of kV negative with respect to the ground potential, and the first perforated electrode of the decelerating electrostatic lens system is connected to the beam transformer. Same as the port system, the third perforated electrode of the deceleration electrostatic lens system is connected to the ground potential, and the second perforated electrode of the deceleration electrostatic lens system is connected to the first perforated electrode. The fourth part of the deceleration electrostatic lens system is placed at an intermediate potential with the third perforated electrode.
The fifth perforated electrode of the deceleration electrostatic lens system is maintained at a negative potential and the fifth perforated electrode of the deceleration electrostatic lens system is held at a ground potential, respectively, and the deceleration electrostatic lens system is used as a focusing lens with the function of decelerating the ion beam. There is.

[作  用] 本発明にるイオン注入装置においては、イオン源で発生
され、引出し電極系で引出され、質量分析管により同一
電荷をもつ単一原子イオン又は分子イオンにされ、集束
アパーチャを通って集束されてきたイオンビームは、減
速静電レンズで減速されて、基板に注入される。この場
合、イオン源は接地電位に対して数kV〜十数kVの電
位に保たれ、引出し電極系及び質量分析管等を含む、減
速静電レンズの第1の穴あき電極までのビームトランス
ポート系は負の数十kVの電位に保たれるので、イオン
ビームは、イオン源の電位とビームトランスポート系の
電位との電位差に相当する電圧すなわち約40kVの電
圧で引出される。イオン源から引出し電極系によって引
出されるイオンビーム量は引出し電圧の372乗にほぼ
比例するので、大電流イオンビームを引出すことができ
る。
[Function] In the ion implantation apparatus according to the present invention, ions are generated in an ion source, extracted by an extraction electrode system, converted into single atomic ions or molecular ions with the same charge by a mass spectrometer tube, and passed through a focusing aperture. The focused ion beam is decelerated by a deceleration electrostatic lens and then implanted into the substrate. In this case, the ion source is kept at a potential of several kV to more than ten kV with respect to ground potential, and the beam transport including the extraction electrode system, mass spectrometer tube, etc. to the first perforated electrode of the deceleration electrostatic lens Since the system is kept at a negative potential of several tens of kV, the ion beam is extracted at a voltage corresponding to the potential difference between the potential of the ion source and the potential of the beam transport system, ie, a voltage of approximately 40 kV. Since the amount of ion beam extracted from the ion source by the extraction electrode system is approximately proportional to the extraction voltage to the 372nd power, a large current ion beam can be extracted.

またイオン源から集束アパーチャまではイオンビームは
イオン源の電位とビームトランスポート系の電位との電
位差に相当する電位すなわち約40keVて輸送される
。イオンビームの空間電荷効果による拡がりはそのエネ
ルギの3/2乗に反比例するのて、従来の数kVのビー
ムの輸送に比較して格段と容易に大電流を輸送すること
かできる。
Further, the ion beam is transported from the ion source to the focusing aperture at a potential corresponding to the potential difference between the potential of the ion source and the potential of the beam transport system, that is, about 40 keV. Since the spread of the ion beam due to the space charge effect is inversely proportional to the 3/2 power of its energy, it is possible to transport a large current much more easily than in the conventional transport of a beam of several kilovolts.

また、減速静電レンズ基においては、第1の穴あき電極
にはビームトランスポート系と同し−Vtの電位か、第
3の穴あき電極には接地電位か、第2の穴あき電極には
第1、第3の穴あき電極に印加される電位の中間の電位
(例えば−1/2Vt )が、それぞれ印加され、構造
的に高い電位勾配が与えられるようにし、これによりイ
オンの空間電荷効果に抗してビームの集束作用が得られ
る。
In addition, in the deceleration electrostatic lens base, the first perforated electrode is at the same potential of -Vt as the beam transport system, the third perforated electrode is connected to the ground potential, and the second perforated electrode is connected to the potential of -Vt. A potential intermediate between the potentials applied to the first and third perforated electrodes (e.g. -1/2Vt) is applied to each of the first and third perforated electrodes, giving a structurally high potential gradient, thereby increasing the space charge of the ions. A beam focusing effect is obtained against the effect.

さらに、減速静電レンズ基の第4の穴あき電極を負の電
位に、また減速静電レンズ基の第5の穴あき電極を接地
電位にそれぞれ接続することにより、減速静電レンズ基
を出て基板に達するイオンビームと残留気体との衝突に
よって生した低エネルギの電子はイオンビームの空間電
荷による電位に捕らえられ、イオンビームに沿って逆流
してくるか、これらの電子は減速静電レンズ基の第4の
穴あき電極によって塞き止められ、低エネルギの電子を
イオンビームの中に溜込み、イオンの空間電荷を中和さ
せ、空間電荷効果によるビームの拡がりを抑えることか
できる。基板は接地電位にされ、結果的にはイオン源の
電位と基板の電位との電位差に相当するVaeV (数
kV〜十数kV)でイオン注入は行われることになる。
Further, by connecting the fourth perforated electrode of the decelerating electrostatic lens base to a negative potential and the fifth perforated electrode of the decelerating electrostatic lens base to ground potential, the decelerating electrostatic lens base is output. The low-energy electrons generated by the collision between the ion beam and the residual gas that reach the substrate are captured by the potential due to the space charge of the ion beam, and either flow backward along the ion beam or are decelerated by an electrostatic lens. Blocked by the fourth perforated electrode in the base, low-energy electrons can be accumulated in the ion beam, neutralizing the space charge of the ions, and suppressing the spread of the beam due to the space charge effect. The substrate is brought to ground potential, and as a result, ion implantation is performed at VaeV (several kV to tens of kV) corresponding to the potential difference between the potential of the ion source and the potential of the substrate.

[実施例コ 以下、本発明の実施例について添附図面の第1図を参照
しながら説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be described with reference to FIG. 1 of the accompanying drawings.

第1図は本発明の一実施例を概略的に示しており、1は
例えばフリーマン型のイオン源、2はイオン源1から発
生したイオンビームを引出す引出し電極系、3は引出し
電極系2で引出されたイオンビーム4の中から同一電荷
のイオンだけを分離する質量分析管、5は、質量分析管
3て分離されたイオンビーム6が質量分析管の集束作用
で集束する場所に設けた集束アパーチャ、7は本発明の
装置の要部を成す減速静電レンズで、五つの穴あき電極
71〜75から成っている。また8はイオン注入すべき
基板9を支持する回転基板ホルダ、IOは高圧赤箱(ケ
ース)で負の電源11に接続され、接地電位に対して−
Vt、(例えば−25kV)に保たれている。
FIG. 1 schematically shows an embodiment of the present invention, in which 1 is, for example, a Freeman type ion source, 2 is an extraction electrode system for extracting the ion beam generated from the ion source 1, and 3 is an extraction electrode system 2. A mass spectrometer tube 5 separates only ions of the same charge from the extracted ion beam 4, and a focusing tube 5 is provided at a location where the ion beam 6 separated by the mass spectrometer tube 3 is focused by the focusing action of the mass spectrometer tube. The aperture 7 is a deceleration electrostatic lens that forms the essential part of the device of the present invention, and is composed of five perforated electrodes 71 to 75. Further, 8 is a rotating substrate holder that supports the substrate 9 to be ion-implanted, and IO is a high-voltage red box (case) connected to a negative power supply 11, and is - with respect to the ground potential.
Vt, (for example, -25 kV).

イオン源1は電源12に接続され、この電源12はイオ
ン源1を高圧ターミナル10に対してVa+VL(例え
ば、Va −5kV、 Vt−25kV) 1.:保ッ
テイル。
The ion source 1 is connected to a power supply 12, which connects the ion source 1 to a high voltage terminal 10 at Va+VL (eg Va -5kV, Vt-25kV)1. : Hotteiru.

減速静電レンズ7の五つの穴あき電極の内の第1の電極
71は高圧ターミナル10と同し電位のVtに接続され
、第3の電極73は接地され、第2の電極72は図示し
たように分割抵抗13により第1、第3の電極7..7
3の中間の電位に維持されている。また、減速静電レン
ズ7の第4の電極74は負の電源14に接続され、−V
dか印加され、第5の電極75は接地されている。さら
に、回転基板ホルダ8及びイオン注入すべき各基板9は
図示したように接地されている。
The first electrode 71 of the five perforated electrodes of the deceleration electrostatic lens 7 is connected to the same potential Vt as the high voltage terminal 10, the third electrode 73 is grounded, and the second electrode 72 is not shown. The divided resistor 13 connects the first and third electrodes 7. .. 7
It is maintained at a potential between 3 and 3. Further, the fourth electrode 74 of the deceleration electrostatic lens 7 is connected to the negative power supply 14, and -V
d is applied, and the fifth electrode 75 is grounded. Furthermore, the rotating substrate holder 8 and each substrate 9 into which ions are to be implanted are grounded as shown.

次に、図示装置の動作について説明する。Next, the operation of the illustrated device will be explained.

イオン源1と引出し電極系2との間にはおよそVa+V
t (Va−5kV、 vt−25kv)場合1.: 
j、t 30kV) ノミ圧か印加されているので、イ
オン源1からB゛を例に取っても5mAまでのイオンビ
ームを容易に引出すことかできる。こうしてイオン源1
から引出し電極系2によって引出されたイオンビームは
、減速静電レンズ7の第1の電極71までは電場のない
空間をva+vt eV  (上述の例テL、t30k
eV ) テ輸送されるので、質量分析管3等を高透過
率で通過し、集束アパーチャ5に効率よく集束される。
Approximately Va+V exists between the ion source 1 and the extraction electrode system 2.
t (Va-5kV, vt-25kv) 1. :
Since a chisel pressure (j, t 30 kV) is applied, an ion beam of up to 5 mA can be easily extracted from the ion source 1, taking B' as an example. In this way, ion source 1
The ion beam extracted by the extraction electrode system 2 travels through a space without an electric field until the first electrode 71 of the decelerating electrostatic lens 7.
eV), it passes through the mass spectrometer tube 3 and the like with high transmittance and is efficiently focused on the focusing aperture 5.

集束アパーチャ5から出たイオンビームはある開き角で
進み、減速静電レンズ7で再集束される共に、減速静電
レンズ7の出口では■te■たけ減速され、従って(V
a+Vt) −Vt−Va eVて基板9に注入される
The ion beam coming out of the focusing aperture 5 advances at a certain opening angle, is refocused by the decelerating electrostatic lens 7, and is decelerated by ■te■ at the exit of the decelerating electrostatic lens 7, so that (V
a+Vt) -Vt-Va eV and is injected into the substrate 9.

減速静電レンズ7の第4の電極74及び第5の電極75
は加減速電極を構成しているので、イオンビームによっ
て生した低速電子はイオンビームに捕らえられ、イオン
ビームに沿って逆流してくるものを塞き止めて第5の電
極75以降のイオンビーム中に効率よく溜込まれ、その
結果、イオンビームの空間電荷は98%以上も効率よく
中和され、例え5 keVの低エネルギのイオンビーム
ても空間電荷によるイオンビームの拡がりは僅であり、
効率よくイオン注入が行われ得る。この場合、減速静電
レンズ7の第1〜第3の電極71〜73によってレンズ
の中央部に生しる電位勾配は強いことが必要であり、コ
ンピュータを用いて行った数値例では、上記のような電
圧をこれらの電極に与えた場合にはイオンビームの中央
て4 kV/ esの電位勾配があり、5 keVのB
”1.5+g^の場合、減速静電レンズ7の人口に26
mラジアンで入ったイオンビームを出口では一10mラ
ジアンの集束ビームとすることができる。第2図にその
場合のシュミレーション図を示す。
Fourth electrode 74 and fifth electrode 75 of deceleration electrostatic lens 7
constitutes an acceleration/deceleration electrode, so the low-speed electrons generated by the ion beam are captured by the ion beam, blocking those flowing backward along the ion beam, and flowing into the ion beam after the fifth electrode 75. As a result, the space charge of the ion beam is effectively neutralized by more than 98%, and even with a low-energy ion beam of 5 keV, the spread of the ion beam due to the space charge is slight.
Ion implantation can be performed efficiently. In this case, it is necessary that the potential gradient generated at the center of the lens by the first to third electrodes 71 to 73 of the deceleration electrostatic lens 7 is strong, and in the numerical example performed using a computer, the above-mentioned When such a voltage is applied to these electrodes, there is a potential gradient of 4 kV/es at the center of the ion beam, and a B of 5 keV.
``In the case of 1.5+g^, the population of the deceleration electrostatic lens 7 is 26
An ion beam entering at m radians can be turned into a focused beam of 10 m radians at the exit. Figure 2 shows a simulation diagram in that case.

ところで、図示実施例において、イオン源1と高圧ター
ミナル■0との間にVaボルトを印加し、高圧ターミナ
ル10にVtボルトを印加するように構成することによ
って、減速静電レンズ7を加速静電レンズとして用いる
こともてき、Va+Vt eVのエネルギで基板9にイ
オンを注入することかできる。
Incidentally, in the illustrated embodiment, by applying a Va volt between the ion source 1 and the high voltage terminal 0 and applying a Vt volt to the high voltage terminal 10, the decelerating electrostatic lens 7 is used as an accelerating electrostatic It can also be used as a lens, and ions can be implanted into the substrate 9 with energy of Va+Vt eV.

この場合、静電レンズ7は強い静電レンズとして作用し
、Va−40kV、 Vt−80kVとすると、+20
keV、lO−^のA、″イオンビーム、P゛イオンビ
ームを加速注入する二とかできる。
In this case, the electrostatic lens 7 acts as a strong electrostatic lens, and if Va-40kV and Vt-80kV, +20
It is possible to perform accelerated implantation of A, ``ion beam'' and P'' ion beam of keV, lO-^.

[発明の効県] 以上説明してきたように、本発明によるイオン注入装置
においては、イオン源を接地電位に対して数kV〜十数
kVに設定し、引出し電極系、質量分析管及び集束アパ
ーチャまでのビームトランスポート系を負の数十kVに
設定しているので、イオンビームを効率よく引出し、質
量分離しそして集束させることができる。
[Effects of the Invention] As explained above, in the ion implantation apparatus according to the present invention, the ion source is set at several kV to more than ten kV with respect to the ground potential, and the extraction electrode system, mass spectrometer tube, and focusing aperture are Since the beam transport system up to this point is set to a negative voltage of several tens of kV, the ion beam can be efficiently extracted, mass separated, and focused.

また、集束アパーチャの後方に減速静電レンズを設けて
いるので、減速静電レンズに入るまでのビームトランス
ポート系で加速、集束されたイオンビームは再び減速さ
れるときに集束アパーチャを通って拡がったイオンビー
ムを再び減速静電レンズによって集束し、大電流、低エ
ネルギのイオンビームを効率良く基板に注入することか
でき、その結果低エネルギのB″ (ボロンイオン)等
の注入による浅い接合の要求される場合のイオン注入に
非常に有効なイオン注入装置を提供することができる。
In addition, since a deceleration electrostatic lens is provided behind the focusing aperture, the ion beam, which has been accelerated and focused in the beam transport system before entering the deceleration electrostatic lens, is decelerated again and spreads through the focusing aperture. By refocusing the ion beam using a decelerating electrostatic lens, it is possible to efficiently implant a high-current, low-energy ion beam into the substrate. A highly effective ion implanter can be provided for ion implantation when required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概略線図、第2図は第
1図の装置を用いて行ったシュミレーション結果を示す
概略線図、第3図は従来の大電流型イオン注入装置の一
例を示す概略線図である。 図  中、■=イオン源 2:引出し電極系 3:質量分析管 5:集束アパーチャ 7:減速静電レンズ 8:回転基板ホルダ 9:基板 IO=高圧ターミナル 第1図 第 図 25KV −12,5KVOV −5KV v R,−1,30915 <dR/dZ)−0,0267121 (X、?dZ): −0.01023 第 図
Fig. 1 is a schematic diagram showing an embodiment of the present invention, Fig. 2 is a schematic diagram showing simulation results using the apparatus shown in Fig. 1, and Fig. 3 is a conventional large current ion implantation device. It is a schematic diagram showing an example. In the figure, ■ = ion source 2: extraction electrode system 3: mass spectrometer tube 5: focusing aperture 7: deceleration electrostatic lens 8: rotating substrate holder 9: substrate IO = high voltage terminal Fig. 1 Fig. 25KV - 12,5KVOV - 5KV v R, -1,30915 <dR/dZ) -0,0267121 (X,?dZ): -0.01023 Fig.

Claims (1)

【特許請求の範囲】[Claims] 1、イオン源からイオン引出し系、質量分析管を含むビ
ームトランスポート系を介して大電流イオンビームを基
板に注入するイオン注入装置において、高い電位勾配を
もつようにされた三枚の穴あき電極と加減速用の二枚の
穴あき電極とから成る減速静電レンズ系を設け、イオン
源を接地電位に対して数kv〜十数kvに、イオン源か
ら減速静電レンズ系までのビームトランスポート系を接
地電位に対して負の数十kvに、減速静電レンズ系の第
1の穴あき電極をビームトランスポート系と同じ負の数
十kvに、減速静電レンズ系の第3の穴あき電極を接地
電位に、減速静電レンズ系の第2の穴あき電極を第1の
穴あき電極と第3の穴あき電極との中間の電位に、減速
静電レンズ系の第4の穴あき電極を負の電位に、また減
速静電レンズ系の第5の穴あき電極を接地電位にそれぞ
れ保ち、減速静電レンズ系をイオンビームの減速機能と
共に集束レンズとして用いることを特徴とするイオン注
入装置。
1. In an ion implanter that injects a high-current ion beam into a substrate from an ion source through an ion extraction system and a beam transport system including a mass spectrometer tube, three perforated electrodes with a high potential gradient are used. A deceleration electrostatic lens system consisting of a and two perforated electrodes for acceleration and deceleration is provided, and the ion source is set at several kV to more than ten kV with respect to the ground potential, and a beam transformer from the ion source to the deceleration electrostatic lens system is installed. The port system is set to several tens of kV negative with respect to the ground potential, the first perforated electrode of the deceleration electrostatic lens system is set to several tens of kV negative, which is the same as the beam transport system, and the third perforated electrode of the deceleration electrostatic lens system is set to several tens of kV negative with respect to the ground potential. The perforated electrode is brought to ground potential, the second perforated electrode of the decelerating electrostatic lens system is brought to a potential intermediate between the first perforated electrode and the third perforated electrode, and the fourth perforated electrode of the decelerating electrostatic lens system is placed at a potential intermediate between the first perforated electrode and the third perforated electrode. The perforated electrode is kept at a negative potential, and the fifth perforated electrode of the deceleration electrostatic lens system is kept at a ground potential, and the deceleration electrostatic lens system is used as a focusing lens with an ion beam deceleration function. Ion implanter.
JP10645490A 1990-04-24 1990-04-24 Ion implanter Expired - Fee Related JP2866705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10645490A JP2866705B2 (en) 1990-04-24 1990-04-24 Ion implanter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10645490A JP2866705B2 (en) 1990-04-24 1990-04-24 Ion implanter

Publications (2)

Publication Number Publication Date
JPH046740A true JPH046740A (en) 1992-01-10
JP2866705B2 JP2866705B2 (en) 1999-03-08

Family

ID=14434043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10645490A Expired - Fee Related JP2866705B2 (en) 1990-04-24 1990-04-24 Ion implanter

Country Status (1)

Country Link
JP (1) JP2866705B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0685872A1 (en) * 1994-05-31 1995-12-06 Hitachi, Ltd. Ion implanter
WO1997017716A1 (en) * 1995-11-08 1997-05-15 Applied Materials, Inc. An ion implanter with post mass selection deceleration
WO1997017717A1 (en) * 1995-11-08 1997-05-15 Applied Materials, Inc. An ion implanter with post mass selection deceleration
DE19655209C2 (en) * 1995-11-08 2003-02-20 Applied Materials Inc Ion implantation system with a substrate neutralization device
DE19655206C2 (en) * 1995-11-08 2003-02-20 Applied Materials Inc Ion implantation system with improved field control
GB2386247A (en) * 2002-01-11 2003-09-10 Applied Materials Inc Ion beam generator
US7064491B2 (en) 2000-11-30 2006-06-20 Semequip, Inc. Ion implantation system and control method
JP2009516334A (en) * 2005-11-15 2009-04-16 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド Ribbon ion beam forming technology

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729027A (en) * 1994-05-31 1998-03-17 Hitachi, Ltd. Ion implanter
EP0685872A1 (en) * 1994-05-31 1995-12-06 Hitachi, Ltd. Ion implanter
DE19655208C2 (en) * 1995-11-08 2003-02-20 Applied Materials Inc Ion implanter for implantation of ions into substrates e.g. semiconductor wafers in electronic device mfr.
DE19655206C2 (en) * 1995-11-08 2003-02-20 Applied Materials Inc Ion implantation system with improved field control
US5969366A (en) * 1995-11-08 1999-10-19 Applied Materials, Inc. Ion implanter with post mass selection deceleration
GB2344214A (en) * 1995-11-08 2000-05-31 Applied Materials Inc An ion implanter with improved beam definition
GB2344213A (en) * 1995-11-08 2000-05-31 Applied Materials Inc An ion implanter with improved field control
GB2344213B (en) * 1995-11-08 2000-08-09 Applied Materials Inc An ion implanter with improved field control
GB2344214B (en) * 1995-11-08 2000-08-09 Applied Materials Inc An ion implanter with improved beam definition
DE19655209C2 (en) * 1995-11-08 2003-02-20 Applied Materials Inc Ion implantation system with a substrate neutralization device
WO1997017716A1 (en) * 1995-11-08 1997-05-15 Applied Materials, Inc. An ion implanter with post mass selection deceleration
WO1997017717A1 (en) * 1995-11-08 1997-05-15 Applied Materials, Inc. An ion implanter with post mass selection deceleration
DE19655205C2 (en) * 1995-11-08 2003-02-20 Applied Materials Inc Ion implanter for implantation of ions into e.g. semiconductor substrates in electronic device mfr.
US7064491B2 (en) 2000-11-30 2006-06-20 Semequip, Inc. Ion implantation system and control method
US7528550B2 (en) 2000-11-30 2009-05-05 Semequip, Inc. Ion implantation system and control method
US7609003B2 (en) 2000-11-30 2009-10-27 Semequip, Inc. Ion implantation system and control method
GB2386247A (en) * 2002-01-11 2003-09-10 Applied Materials Inc Ion beam generator
US6777882B2 (en) 2002-01-11 2004-08-17 Applied Materials, Inc. Ion beam generator
GB2386247B (en) * 2002-01-11 2005-09-07 Applied Materials Inc Ion beam generator
JP2009516334A (en) * 2005-11-15 2009-04-16 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド Ribbon ion beam forming technology

Also Published As

Publication number Publication date
JP2866705B2 (en) 1999-03-08

Similar Documents

Publication Publication Date Title
EP1082747B1 (en) Acceleration and analysis architecture for ion implanter
US3786359A (en) Ion accelerator and ion species selector
US5300891A (en) Ion accelerator
GB2076588A (en) Exb mass separator
JPS62296357A (en) Charge neutralizing apparatus for ion implanter
JPH10106475A (en) Mev neutral beam ion implantation device
JPH046740A (en) Ion implantating device
JPS60207237A (en) Device for generating desired ion by separating ion by energy selecting method
GB1279449A (en) Apparatus for ion implantation
JP2921500B2 (en) Ion implanter
US5783823A (en) Apparatus to be used in the field of accelerator mass spectrometry
US5306922A (en) Production of high beam currents at low energies for use in ion implantation systems
JPS62122045A (en) Acceleration and deceleration method for charged particle
US9583308B1 (en) Light bath for particle suppression
KR950034512A (en) Ion Injection Device
US6177679B1 (en) Ion implanter with impurity interceptor which removes undesired impurities from the ion beam
Attal et al. ORION project: acceleration of ion clusters and highly charged biomolecules from 10 MeV to 1 GeV
EP0491311B1 (en) Ion implanting apparatus and method
JP2797310B2 (en) Multi-charged ion implanter
JP2740663B2 (en) Ion implanter
JPH07105901A (en) Ion implanting device
JPH04124267A (en) Ion implanting device
JPS62188150A (en) Ion implantation equipment
Cucchetti et al. Diagnostics and modeling in the development of the VIISta 810 ion implanter
JP3105931B2 (en) Electron beam irradiation apparatus and electron beam irradiation method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091218

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees