JPH0466958A - Developer and image forming method - Google Patents

Developer and image forming method

Info

Publication number
JPH0466958A
JPH0466958A JP2176775A JP17677590A JPH0466958A JP H0466958 A JPH0466958 A JP H0466958A JP 2176775 A JP2176775 A JP 2176775A JP 17677590 A JP17677590 A JP 17677590A JP H0466958 A JPH0466958 A JP H0466958A
Authority
JP
Japan
Prior art keywords
toner
particle size
image
developer
mum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2176775A
Other languages
Japanese (ja)
Inventor
Katsuji Ko
勝治 胡
Takahiro Kashiwagawa
貴弘 柏川
Norio Saruwatari
紀男 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2176775A priority Critical patent/JPH0466958A/en
Publication of JPH0466958A publication Critical patent/JPH0466958A/en
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

PURPOSE:To form a developer excellent in an image printing characteristic and an improved image by specifying the mean particle size of a magnetic carrier and an average toner volume particle size. CONSTITUTION:The toner has 10+ or -2 mum of a volume means particle size and contains 2-20% of it at <= 5 mum of the size and contains 20-80% by a number ratio of it being <= 5 mum. The toner binder resins are preferably mainly polyester resin, epoxy resin and a resin mixed mutually with those or other type. The magnetic carrier is ferrite, etc., with 40+ or -20 mum of the means particle size, and 40-120 emu/g of a saturated magnetization sigmaS at a 10 KOe magnetic field. With the developer, the toner packed density of a transfer image (on recording paper) is improved and the image printability is improved even with a small amount of the toner. Also by incorporating the magnetic powder in the toner, an adhering strength between the toner and a magnetic roller in a developing device is increased and a print with less fogging is offered.

Description

【発明の詳細な説明】 [概要] 電子写真法などにおいて形成される静電荷像を現像する
ための現像剤および画像形成方法に関し、面画印刷特性
に優れた現像剤および良好な画質を形成することができ
る画質形成方法を提供することを目的とし、 磁性キャリアとトナーから成る現像剤において、前記磁
性キャリアとして平均粒径が40±20μmであるもの
を用い、前記トナーとして体積粒径の平均が10±2μ
mであり、かつ、5μm以下のものを2%〜20%含有
するものを用いるように構成する。
[Detailed Description of the Invention] [Summary] Regarding a developer and an image forming method for developing electrostatic images formed in electrophotography, etc., a developer with excellent surface image printing characteristics and a good image quality are formed. The purpose of the present invention is to provide a developer comprising a magnetic carrier and a toner, in which the magnetic carrier has an average particle diameter of 40±20 μm, and the toner has an average volume particle diameter of 40±20 μm. 10±2μ
m and contains 2% to 20% of particles with a diameter of 5 μm or less.

(2)静電荷像を第1現像器により現像して第1現像の
トナー像とし、次に形成される静電荷像を第2現像器に
より現像して第2現像のトナー像として2色記録を行う
画像形成方法において、前記現像剤を前記第2現像に用
いることを特徴とする画像形成方法。
(2) The electrostatic charge image is developed by a first developing device to form a first developed toner image, and the electrostatic charge image formed next is developed by a second developing device and recorded in two colors as a second developed toner image. An image forming method characterized in that the developer is used for the second development.

[産業上の利用分野] 本発明は、電子写真法などにおいて形成される静電荷像
を現像するための現像剤および画像形成方法に関する。
[Industrial Field of Application] The present invention relates to a developer and an image forming method for developing electrostatic images formed in electrophotography and the like.

複写機またはレーザプリンタなどにおいて採用されてい
る電子写真法は、一般には、光導電性絶縁体層上に−様
な静電荷を与え、絶縁体層上に光像を照射することによ
り、静電荷を部分的に除去して静電潜像を形成し、その
静電荷の残った部分にトナーと呼ばれる微粉末を付着さ
せて潜像を可視化してトナー画像を形成(現像という)
し、トナー画像を記録紙に固着(定着という)して印刷
物を得るものである。
Electrophotography, which is used in copiers, laser printers, etc., generally applies a -like static charge on a photoconductive insulating layer and irradiates a light image onto the insulating layer to remove the static charge. is partially removed to form an electrostatic latent image, and a fine powder called toner is attached to the remaining part of the electrostatic charge to visualize the latent image and form a toner image (referred to as development).
Then, the toner image is fixed (referred to as fixing) to the recording paper to obtain printed matter.

U従来の技術] 前記トナーは天然又は合成高分子物質よりなる結着樹脂
に着色剤および帯電制御剤などを分散させたものを5〜
25μm程度に粉砕した微粉末であって、通常、鉄粉ま
たはフェライト粉などの担体物質(キャリア)に混合さ
れて現像剤を形成し前記現像に用いられているが、前記
トナー画像はそのトナーのみで形成されている。
U Prior Art] The toner is a binder resin made of a natural or synthetic polymer material in which a colorant, a charge control agent, etc. are dispersed.
It is a fine powder pulverized to about 25 μm and is usually mixed with a carrier such as iron powder or ferrite powder to form a developer and used for the development, but the toner image is produced by using only that toner. It is formed of.

従来の現像剤のトナーとしては、製造性、印字特性の面
から体積粒径の平均が10μm前後のものが使用されて
おり、キャリアとして60〜120μmのものを使用す
れば、従来粒径トナーで良好な印刷画像が得られる。
Conventional developer toners with an average volume particle size of around 10 μm are used from the viewpoint of manufacturability and printing characteristics, and if a carrier with a particle size of 60 to 120 μm is used, it is possible to use a toner with a conventional particle size. A good printed image can be obtained.

[発明が解決しようとする課題] しかしながら、このような従来の現像剤にあっては、高
解像、ソフトタッチ現像の面から40μm程度の小粒径
キャリアを用いた場合、面画印刷特性が不良になる問題
点かあった。特に、フォトコンドラム1回転で2色印刷
を行う電子写真の第2現像で顕著に現れる。すなわち、
このような現像剤を用いて画像を形成すると、良好な画
質の可視画像が得られなかった。
[Problems to be Solved by the Invention] However, with such conventional developers, when using a carrier with a small particle size of about 40 μm in terms of high resolution and soft touch development, surface image printing characteristics are poor. There was a problem with it becoming defective. This is particularly noticeable in the second development of electrophotography in which two-color printing is performed with one rotation of the photocon drum. That is,
When an image was formed using such a developer, a visible image of good quality could not be obtained.

本発明は、このような従来の問題点に鑑みてなされたも
のであって、面画印刷特性に優れた現像剤および良好な
画質を形成することができる画像形成方法を提供するこ
とを目的とする。
The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a developer with excellent surface image printing characteristics and an image forming method capable of forming good image quality. do.

[課題を解決するための手段] 前記目的を達成するために、本発明の現像剤は、磁性キ
ャリアとトナーから成る現像剤において、前記磁性キャ
リアとして平均粒径が40±20μmであるものを用い
、前記トナーとして体積粒径の平均が10±2μmであ
り、かつ、5μm以下のものを2%〜20%含有するも
のを用いるものである。
[Means for Solving the Problems] In order to achieve the above object, the developer of the present invention comprises a magnetic carrier and a toner, in which the magnetic carrier has an average particle size of 40±20 μm. The toner used has an average volume particle size of 10±2 μm and contains 2% to 20% of particles having a volume particle diameter of 5 μm or less.

また本発明の画像形成方法は、静電荷像を第1現像器に
より現像して第1現像のトナー像とし、次に形成される
静電荷像を第2現像器により現像して第2現像のトナー
像として2色記録を行う画像形成方法において、 前記現像剤を前記第2現像に用いるものである。
Further, in the image forming method of the present invention, an electrostatic charge image is developed by a first developing device to form a first developed toner image, and then the formed electrostatic charge image is developed by a second developing device to form a second developed toner image. In an image forming method in which two-color recording is performed as a toner image, the developer is used for the second development.

以下、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

トナーの製造方法は、従来のトナーの製造方法と殆ど同
一である。
The toner manufacturing method is almost the same as the conventional toner manufacturing method.

まず、トナー組成物であるバインダ樹脂、着色剤、及び
必要に応じて添加される添加剤などをエクストルーダま
たはニーダなどを用いて、溶融混練し、トナー塊を得る
。得られたトナー塊を冷却後、超音波ジェット粉砕機等
により、粉砕分級することにより、トナーを得ることが
できるが、本発明のトナーは分級時において、微粉カッ
ト工程を削除し、製造するため、微粉量を多くてきる。
First, a toner composition such as a binder resin, a colorant, and additives added as necessary are melt-kneaded using an extruder or kneader to obtain a toner mass. After cooling the obtained toner mass, the toner can be obtained by pulverizing and classifying it using an ultrasonic jet pulverizer or the like. However, the toner of the present invention is manufactured by omitting the fine powder cutting step at the time of classification. , increase the amount of fine powder.

トナーは体積平均粒径が10±2μmであり、かつ、5
μm以下を2〜20%含有する。また、個数割合で5μ
m以下を20〜80%含有する。
The toner has a volume average particle size of 10 ± 2 μm, and
Contains 2 to 20% of micrometers or less. Also, the number ratio is 5μ
Contains 20 to 80% of less than m.

また、トナーのバインダ樹脂としては、種々の樹脂が用
いられるか、好ましくは、主に、ポリエステル樹脂、エ
ポキシ樹脂、スチレン−アクリル系樹脂、これら相互の
混合樹脂、または、これらと他の系統との混合樹脂を用
いることができる。
Various resins may be used as the binder resin for the toner, preferably polyester resins, epoxy resins, styrene-acrylic resins, mixed resins of these resins, or mixtures of these resins with other systems. Mixed resins can be used.

着色剤としては、ニグロシン染料、カーボンブラック、
キナクリドン、モノアゾ、ビスアゾ、ペリレン、ナフト
ール、銅フタロシアニンなどを用いることができる。さ
らに、電荷制御剤として、含金染料、脂肪酸エステル、
アミノ基を有する化合物を加えてもよい。
Colorants include nigrosine dye, carbon black,
Quinacridone, monoazo, bisazo, perylene, naphthol, copper phthalocyanine, etc. can be used. Furthermore, as charge control agents, metal-containing dyes, fatty acid esters,
A compound having an amino group may also be added.

磁性キャリアとしては、フェライト、マグネタイトなど
があり、平均粒径として40±20μm。
Examples of the magnetic carrier include ferrite and magnetite, and the average particle size is 40±20 μm.

10KOeの磁場における飽和磁化σ、か40〜120
 emu/gのものが好ましい。
Saturation magnetization σ in a magnetic field of 10 KOe, or 40 to 120
emu/g is preferred.

トナー中に含有される磁性粉としては、フェライト、マ
グネタイトが使用でき、平均粒径0,1〜1μmであり
、その含有量はトナー100重量部あたり、20〜80
重量部、好ましくは40〜70重量部である。
As the magnetic powder contained in the toner, ferrite and magnetite can be used, and the average particle size is 0.1 to 1 μm, and the content is 20 to 80 parts per 100 parts by weight of the toner.
Parts by weight, preferably 40 to 70 parts by weight.

次に、前記現像剤を用いた画像形成方法を説明する。Next, an image forming method using the developer will be explained.

電子写真法により、静電荷像支持体に形成した静電荷像
を上述の現像剤により現像する。例えば、第1図に示す
ように矢印方向に回転される光導電性感光体により成る
ドラム1の表面にコロナ帯電器等の帯電機構2により静
電荷が付与され、次に、露光機構3により光像か投射さ
れて静電荷像が形成されるが、この静電荷像を現像剤を
充填した第1現像器4により現像し、第1現像のトナー
像とする。次に、再度ドラム1の表面にコロナ帯電器等
の帯電機構5により静電荷が付与され、次に、露光機構
6により光像が投射されて静電荷像が形成されるが、こ
の静電荷像を上述の現像剤を充填した第2現像器7によ
り現像して第2現像のトナー像とする。
An electrostatic image formed on an electrostatic image support by electrophotography is developed using the above developer. For example, as shown in FIG. 1, a charging mechanism 2 such as a corona charger applies an electrostatic charge to the surface of a drum 1 made of a photoconductive photoreceptor rotated in the direction of the arrow, and then an exposure mechanism 3 applies light to the surface of the drum 1. The image is projected to form an electrostatic charge image, and this electrostatic charge image is developed by the first developing device 4 filled with a developer to form a first developed toner image. Next, an electrostatic charge is applied to the surface of the drum 1 again by a charging mechanism 5 such as a corona charger, and then a light image is projected by an exposure mechanism 6 to form an electrostatic charge image. is developed by the second developing device 7 filled with the above-mentioned developer to form a second developed toner image.

本発明は、粒径5μm以下を2〜20%含有するトナー
から成る現像剤および該現像剤による画像形成方法であ
り、次のような効果が得られる。
The present invention is a developer comprising a toner containing 2 to 20% of particles with a particle size of 5 μm or less, and an image forming method using the developer, which provides the following effects.

すなわち、トナーにおいて、微粉(5μm以下)を多量
に含むことにより、転写像(記録紙上)のトナーの充填
密度が向上し、少量のトナーでも面画印刷性か向上する
。また、平均粒径を10±2μmにすることにより、微
粉たけのトナーに比べ、キャリアフィルミングを低減す
ることかできる。
That is, by including a large amount of fine powder (5 μm or less) in the toner, the toner packing density of the transferred image (on the recording paper) is improved, and even with a small amount of toner, the surface printability is improved. In addition, by setting the average particle size to 10±2 μm, carrier filming can be reduced compared to toner with only fine powder.

また、トナーに磁性粉を含有させることにより、トナー
と現像器内のマグロールとの付着力を増加させ、トナー
飛散をおさえ、かぶりの少ない印刷物を提供することが
できる。
Further, by containing magnetic powder in the toner, the adhesion force between the toner and the mag roll in the developing device is increased, toner scattering can be suppressed, and printed matter with less fog can be provided.

磁性キャリアの平均粒径を40±20と小粒径にするこ
とにより、ソフトタッチ現像と面画印刷性が向上する。
By making the average particle size of the magnetic carrier as small as 40±20, soft-touch development and surface image printability are improved.

また、磁性キャリアの10KOeの磁場における飽和磁
化を40〜120 e m u / gにすることによ
り、磁気ブラシの穂立ちを柔らかくすることができ、面
画印刷性と2色同時印刷性を向上することができる。
In addition, by setting the saturation magnetization of the magnetic carrier to 40 to 120 emu/g in a magnetic field of 10 KOe, the spikes of the magnetic brush can be softened, improving surface printing performance and two-color simultaneous printing performance. be able to.

次に、前記現像剤を2色同時印刷を行うプリンタにおい
て第2現像に用いることにより、前記現像剤の特徴を活
かし、第1現像のドラム上の現像トナーを掻き取るよう
な悪影響を及ぼさないようにすることができる。
Next, by using the developer for the second development in a printer that performs two-color simultaneous printing, the characteristics of the developer are taken advantage of, and the developer toner on the first development drum is not scraped off. It can be done.

次に、微粉トナーを増量した場合、なぜ、面画印刷性が
向上するかについて検討した。その結果を下記に示す。
Next, we investigated why surface printability improves when the amount of fine powder toner is increased. The results are shown below.

トナーとして下記の2種類を用いた。The following two types of toner were used.

従来粒径トナー 平均粒径10,6μm、  5μm以下の個数割合25
%微粉増量トナー; 平均粒径9.3μm、  5μm以下の個数割合45%
上記2種のトナーを用いて、現像、転写におけるトナー
粒径分布の変化を調べた。その結果、2種のトナーとも
現像前後で粒径分布は変化しないが、転写前後で粒径分
布が変化することがわかった。
Conventional particle size toner average particle size 10.6 μm, number ratio of 5 μm or less 25
% fine powder increased toner; average particle size 9.3 μm, number ratio of 5 μm or less 45%
Using the above two types of toner, changes in toner particle size distribution during development and transfer were investigated. As a result, it was found that the particle size distribution of the two types of toners did not change before and after development, but the particle size distribution changed before and after transfer.

第2図および第3図に従来粒径トナーと微粉増量トナー
について、転写電流を変えた時の転写前(ドラム上)お
よび転写後(紙上)の粒径分布を示す。第2図および第
3図より、両トナーとも転写前後で粒径分布が大きく変
化していることがわかる。次に、転写前後のトナーにつ
いて、微粉量と転写電流との関係を第4図に示す。これ
より、従来粒径および微粉増量トナーいずれも転写電流
によらず、転写トナーの微粉量は減少し、その量は各々
12.15%とほぼ等しい。このように、小粒径の方か
転写されにくいのは、小粒径の方がフォトコンドラムと
の付着力(静電気吸引力)が強いためである。
FIGS. 2 and 3 show the particle size distribution before transfer (on the drum) and after transfer (on paper) when the transfer current is changed for the conventional particle size toner and the fine powder increased toner. From FIG. 2 and FIG. 3, it can be seen that the particle size distribution of both toners changes significantly before and after transfer. Next, FIG. 4 shows the relationship between the amount of fine powder and the transfer current for toner before and after transfer. From this, the amount of fine powder of the transferred toner decreases regardless of the transfer current for both the conventional particle size and the fine powder increased toner, and the amounts are approximately equal to 12.15%. As described above, the reason why particles with a small diameter are less likely to be transferred is because the adhesion force (electrostatic attraction force) with the photoconductor drum is stronger with a smaller particle size.

次に、第5図に転写電流と面画の印字濃度の関係を示す
。従来粒径トナーは良好な印字濃度(ODl、0)を得
るのに200μA以上必要なのに対して、微粉増量トナ
ーでは120μAで充分てあり、微粉を増量することに
より、低い転写電流でも良好な印字濃度か得られること
がゎがった。
Next, FIG. 5 shows the relationship between the transfer current and the printing density of a surface image. Conventional particle diameter toner requires 200 μA or more to obtain good print density (ODl, 0), whereas 120 μA is sufficient for toner with increased fine powder, and by increasing the amount of fine powder, good print density can be achieved even at low transfer current. I was looking forward to what I could get.

ここで、微粉トナー量と印字濃度の関係について、転写
プロセスのモデルを用いて考察する。紙に転写された帯
電トナーの付着モデルを第6図に示す。
Here, the relationship between the amount of fine powder toner and print density will be discussed using a transfer process model. FIG. 6 shows an adhesion model of charged toner transferred to paper.

記録紙9上の転写電荷量をσ。とじ、また、従来トナー
および微粉増量トナーの転写トナー層8の電荷量をそれ
ぞれσ、2 σ、とすると、記録紙9上の転写電荷量と
トナー層8の電荷量は等しいので、σ。は次式となる。
The amount of transferred charge on the recording paper 9 is σ. Furthermore, if the charge amounts of the transferred toner layer 8 of the conventional toner and the fine powder increased toner are σ and 2 σ, respectively, the transfer charge amount on the recording paper 9 and the charge amount of the toner layer 8 are equal, so σ. is the following formula.

σC−σ」 =σB また、σ1.σ、はトナー層8全体の電荷量であるので
、次式で現される。
σC−σ”=σB Also, σ1. Since σ is the amount of charge of the entire toner layer 8, it is expressed by the following equation.

σ、=Q、XM。σ,=Q,XM.

ΣB = Q B X M B ここで、QJ、QBはそれぞれ、従来粒径トナー微粉増
量トナーのトナー比電荷を、また、Ml。
ΣB = Q B

M、は転写トナー全体の質量を示している。M indicates the mass of the entire transferred toner.

Q、=17μC/g、Q、=17μC/gであり、Q、
=Q、であるので、(1)式が得られる。
Q, = 17 μC/g, Q, = 17 μC/g, and Q,
=Q, so equation (1) is obtained.

M、=M、            ・・・(1)また
、M、、M、はトナー層8中のトナー個々の質量の和で
あるので、M、、M、はそれぞれ次式%式% ρ 、トナーの密度 V、  ・従来トナー個々の体積 ■8 :微粉増量トナー個々の体積 m :従来トナーの転写トナー個数 n :微粉増量トナーの転写トナー個数(1)、  (
2)、  (3)式より(4)式が得られる。
M, = M, (1) Also, since M,, M, is the sum of the mass of each toner in the toner layer 8, M,, M, are respectively expressed by the following formula % formula % ρ, of the toner Density V, ・Volume of each conventional toner ■8: Volume of each fine powder increased toner m: Number of transferred toners of conventional toner n: Number of transferred toners of fine powder increased toner (1), (
2), Equation (4) is obtained from Equation (3).

ここで、トナー全体を5μm以下と以上のもの2つに分
けて単純化し、また、5μm以下の平均粒径をrl (
3μm)、また、5μm以上の平均をr2 (9μm)
とすると(5)、  (6)式が得られる。
Here, we simplify the whole toner by dividing it into two types: 5 μm or less and 5 μm or more, and the average particle size of 5 μm or less is rl (
3μm), and the average of 5μm or more is r2 (9μm)
Then, equations (5) and (6) are obtained.

・・・ (6) ここて、r+=r2/3 また、第4図により、微粉量はそれぞれ10%。... (6) Here, r+=r2/3 Also, according to Figure 4, the amount of fine powder is 10%.

30%であるので、a=0.1.b=0.3となる。Since it is 30%, a=0.1. b=0.3.

(4)、  (5)、  (6)の式より、1.27m
nとなり、微粉増量トナーは従来トナーに比べ、転写ト
ナーの全個数が1.27倍、また、微粉量はamとbn
の関係から3.8倍多いと予想される。このため、従来
粒径トナーと微粉増量トナーでは転移トナー層8の質量
が同しでも、後者の方が転写トナーの微粉量が多い(ト
ータルの個数が多い)ため、充填密度の高い転写像かで
き、良好な印字濃度が得られるものと思われる。
From equations (4), (5), and (6), 1.27m
n, and the total number of transferred toners of the fine powder increased toner is 1.27 times that of the conventional toner, and the amount of fine powder is am and bn.
It is expected that the number will be 3.8 times higher. For this reason, even if the mass of the transferred toner layer 8 is the same between the conventional particle size toner and the fine powder increased toner, the latter has a larger amount of fine powder (total number of particles), so the transfer image with a higher packing density is It seems that good print density can be obtained.

[実施例] 以下、実施例により本発明をさらに具体的に説明するが
、本発明はこれによって限定されるものではない。
[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

実施例1 ポリエステル樹脂          95重量部(F
N−1,花王) ニグロシン染料           5重量部(オイ
ルブラックBY、オリエント化学)を用意し、これらの
組成物を混合し、100℃に加熱したエクストルーダで
溶融混練し、冷却固化したのち、粉砕機て粗粉砕し、さ
らに、ジェットミルで細粉砕した。
Example 1 Polyester resin 95 parts by weight (F
N-1, Kao) 5 parts by weight of nigrosine dye (Oil Black BY, Orient Chemical) were prepared, these compositions were mixed, melted and kneaded in an extruder heated to 100°C, cooled and solidified, and then crushed in a pulverizer. It was coarsely ground and then finely ground using a jet mill.

そして、得られた微粉末を風力分級機で分級して体積平
均粒径10μm、  5μm以下が8%、個数割合が5
0%の黒トナーを得た。
Then, the obtained fine powder was classified using a wind classifier to obtain a volume average particle size of 10 μm, 8% of particles of 5 μm or less, and a number ratio of 5.
A 0% black toner was obtained.

このトナーを5重量%にキャリアとして樹脂コートフェ
ライト粉(平均粒径40μm、l0KOeの磁場におけ
る飽和磁化σs =50emu/g)を95重量%にし
て現像剤を調整し、2色同時印刷を行うことができ、フ
ラッシュ定着を採用しているレーザプリンタを用いて印
刷試験を行った。
Using this toner as a carrier at 5% by weight and resin-coated ferrite powder (average particle size 40 μm, saturation magnetization σs = 50emu/g in a magnetic field of 10KOe) at 95% by weight, prepare a developer and perform two-color simultaneous printing. A printing test was conducted using a laser printer that uses flash fixing.

この結果、初期の面画印刷性と定着性が良好であり、し
かも、ランニング実験においても初期のトナー帯電量が
15μC/gに対し、5万枚後では10μC/gと帯電
量変化が小さく、また、印字画像の劣化も見られなかっ
た。
As a result, the initial surface printing and fixing properties are good, and in running experiments, the initial toner charge amount was 15 μC/g, but after 50,000 sheets, the change in charge amount was small, being 10 μC/g. Further, no deterioration of the printed image was observed.

実施例2 スチレン−アクリル樹脂       75重量部(S
BN−600,工注化成) ニグロシン染料            5重量部(オ
イルブラックBY、オリエント化学)磁性粉(EPT−
1000戸田工業)20重量部を用意し、これらの組成
物を実施例1と全く同様にしてトナーを得、実施例1と
同様に初期印刷特性と連続印刷試験を行った。
Example 2 Styrene-acrylic resin 75 parts by weight (S
BN-600, Kochu Kasei) Nigrosine dye 5 parts by weight (Oil Black BY, Orient Chemical) Magnetic powder (EPT-
1000 Toda Kogyo) were prepared, and these compositions were prepared in exactly the same manner as in Example 1 to obtain a toner, and the initial printing characteristics and continuous printing test were conducted in the same manner as in Example 1.

その結果、面画印刷性と定着性が良好であり、しかも、
ランニング実験においても初期のトナー帯電量が18μ
C/gに対し、5万枚後では15μC/gと帯電量変化
が小さく、また、印字画像の劣化も見られなかった。
As a result, surface image printing and fixing properties are good, and
In the running experiment, the initial toner charge amount was 18μ.
Compared to C/g, after 50,000 sheets, the change in the amount of charge was as small as 15 μC/g, and no deterioration of the printed image was observed.

実施例3 着色剤として銅フタロシアニン(リオノールブルーES
、東洋インキ)を用いた以外は実施例1と全く同様にし
て青トナーを得、実施例1と同様に初期印刷特性と連続
印刷試験を行った。
Example 3 Copper phthalocyanine (Lionol Blue ES) as a coloring agent
A blue toner was obtained in exactly the same manner as in Example 1, except for using Toyo Ink, and initial printing characteristics and continuous printing tests were conducted in the same manner as in Example 1.

その結果、面画印刷性と定着性が良好であり、しかも、
ランニング実験においても初期のトナー帯電量が15μ
C/gに対し、5万枚後では12μC/ gと帯電量変
化が小さく、また、印字画像の劣化も見られなかった。
As a result, surface image printing and fixing properties are good, and
In the running experiment, the initial toner charge amount was 15μ.
Compared to C/g, after 50,000 sheets, the charge amount change was small at 12 μC/g, and no deterioration of the printed image was observed.

比較例1 粒径5μm以下の体積粒径の割合が1%にした以外は実
施例1と全く同様にしてトナーを得、実施例1と同様に
試験を行った。
Comparative Example 1 A toner was obtained in exactly the same manner as in Example 1, except that the proportion of volume particles having a particle size of 5 μm or less was 1%, and a test was conducted in the same manner as in Example 1.

その結果、ラインニング試験において、トナー帯電量の
変化は小さいが、初期の面画印刷性と定着性はトナー中
の微粉量が少なく充填密度が低いため、不良となった。
As a result, in the lining test, although the change in the toner charge amount was small, the initial surface printability and fixing performance were poor because the amount of fine powder in the toner was small and the packing density was low.

比較例2 トナーの平均粒径が7μm1かつ、5μm以下が18%
であること以外は実施例1と全く同様にしてトナーを得
、実施例1と同様に試験を行った。
Comparative Example 2 Toner average particle size is 7 μm1 and 18% is 5 μm or less
A toner was obtained in exactly the same manner as in Example 1 except for the following, and the test was conducted in the same manner as in Example 1.

その結果、初期の面画印刷性と定着性は良好であるが、
ランニング試験において初期のトナー帯電量が20μC
/gに対し、1万枚後ではキャリア表面のトナーフィル
ミングにより5μC/ gまで低下し、印字画像の劣化
が見られた。
As a result, the initial surface printing and fixing properties are good, but
In the running test, the initial toner charge amount was 20 μC.
/g, but after 10,000 copies, it decreased to 5 μC/g due to toner filming on the carrier surface, and deterioration of the printed image was observed.

比較例3 トナーの平均粒径が15μmであること以外は実施例1
と全く同様にしてトナーを得、実施例1と同様に試験を
行った。
Comparative Example 3 Example 1 except that the average particle size of the toner was 15 μm
A toner was obtained in exactly the same manner as in Example 1, and the test was conducted in the same manner as in Example 1.

その結果、ランニング試験において、トナー帯電量の変
化は小さいが、初期の面画印刷性と定着性はトナーの粒
径が大きいため、不良となった。
As a result, in the running test, although the change in the toner charge amount was small, the initial surface printing performance and fixing performance were poor due to the large particle size of the toner.

比較例4 粒径5μm以下の体積粒径が25%にした以外は実施例
1と全く同様にしてトナーを得、実施例1と同様に試験
を行った。
Comparative Example 4 A toner was obtained in exactly the same manner as in Example 1, except that the volume particle size of particles with a particle size of 5 μm or less was 25%, and a test was conducted in the same manner as in Example 1.

その結果、初期の面画印刷性と定着性は良好であるが、
ランニング試験において初期のトナー帯電量が18μC
/gに対し、1万枚後ではキャリア表面のトナーフィル
ミングにより6μC/gまで低下し、印字画像の劣化が
見られた。
As a result, the initial surface printing and fixing properties are good, but
In the running test, the initial toner charge amount was 18 μC.
/g, but after 10,000 copies, it decreased to 6 μC/g due to toner filming on the carrier surface, and deterioration of the printed image was observed.

比較例5 粒径5μm以下の個数割合が25%にした以外は実施例
1と全く同様にしてトナーを得、実施例1と同様に試験
を行った。
Comparative Example 5 A toner was obtained in exactly the same manner as in Example 1, except that the proportion of particles with a particle diameter of 5 μm or less was 25%, and a test was conducted in the same manner as in Example 1.

その結果、ランニング試験において、トナー帯電量の変
化は小さい。しかし、初期の面画印刷性と定着性はトナ
ー中の微粉量が少なく充填密度が低いため、不良となっ
た。
As a result, in the running test, the change in toner charge amount was small. However, the initial surface printability and fixing performance were poor because the amount of fine powder in the toner was small and the packing density was low.

比較例6 粒径5μm以上の個数割合が85%にした以外は実施例
1と全く同様にしてトナーを得、実施例1と同様に試験
を行った。
Comparative Example 6 A toner was obtained in exactly the same manner as in Example 1, except that the proportion of particles with a particle size of 5 μm or more was 85%, and a test was conducted in the same manner as in Example 1.

その結果、初期の面画印刷性と定着性は良好であるが、
ランニング試験において初期のトナー帯電量が22μC
/ gに対し、1万枚後ではキャリア表面のトナーフィ
ルミングにより6μC/gまで低下し、印字画像の劣化
が見られた。
As a result, the initial surface printing and fixing properties are good, but
In the running test, the initial toner charge amount was 22 μC.
/g, after 10,000 copies, it decreased to 6 μC/g due to toner filming on the carrier surface, and deterioration of the printed image was observed.

比較例7 平均粒径が18μmのフェライトキャリアを用いた以外
は実施例1と全く同様にして現像剤を得、実施例1と同
様に試験を行った。
Comparative Example 7 A developer was obtained in exactly the same manner as in Example 1, except that a ferrite carrier having an average particle size of 18 μm was used, and a test was conducted in the same manner as in Example 1.

その結果、初期からキャリア付着が著しく画像不良が見
られた。
As a result, carrier adhesion was significant from the initial stage, and image defects were observed.

比較例8 平均粒径70μnのフェライトキャリアを用いた以外は
実施例1と全く同様にして現像剤を得、実施例1と同様
に試験を行った。
Comparative Example 8 A developer was obtained in exactly the same manner as in Example 1, except that a ferrite carrier having an average particle size of 70 μn was used, and a test was conducted in the same manner as in Example 1.

その結果、初期の面画印刷性にムラか見られた。As a result, some unevenness was observed in the initial surface printability.

比較例9 キャリアのコア剤として平均粒径40μmの鉄粉を用い
た以外は実施例1と全く同様にして現像剤を得、実施例
1と同様に試験を行った。
Comparative Example 9 A developer was obtained in exactly the same manner as in Example 1, except that iron powder with an average particle size of 40 μm was used as the carrier core agent, and the test was conducted in the same manner as in Example 1.

その結果、本現像剤は磁気ブラシの穂立ちが硬くなり、
初期の面画印刷性にムラが発生し、また、フォトコンド
ラム上の第1現像トナーを掻き取り、第1現像にも悪影
響を及ぼすことがわかった。
As a result, the magnetic brush of this developer becomes hard to stand up.
It was found that unevenness occurred in the initial surface image printing performance, and that the first development toner on the photocon drum was scraped off, which adversely affected the first development.

比較例10 10KOeの磁場における飽和磁化σが200e m 
u / gの磁性キャリアを用いた以外は実施例1(!
:全く同様にして現像剤を得、実施例1と同様に試験を
行った。
Comparative Example 10 Saturation magnetization σ in a magnetic field of 10 KOe is 200 e m
Example 1 (!) except that a magnetic carrier of u/g was used.
: A developer was obtained in exactly the same manner and tested in the same manner as in Example 1.

その結果、本現像剤は磁気ブラシの穂立ちが硬くなり、
初期の面画印刷性にムラが発生し、またフォトコンドラ
ム上の第1現像トナーを掻き取り、第1現像にも悪影響
を及ぼすことがわかった。
As a result, the magnetic brush of this developer becomes hard to stand up.
It was found that unevenness occurred in the initial surface image printing performance, and that the first development toner on the photocon drum was scraped off, which adversely affected the first development.

比較例11 10KOeの磁場における飽和磁化σが30em u 
/ gの磁性キャリアを用いた以外は実施例1と全く同
様にして現像剤を得、実施例1と同様に試験を行った。
Comparative Example 11 Saturation magnetization σ in a magnetic field of 10 KOe is 30 em u
A developer was obtained in exactly the same manner as in Example 1, except that a magnetic carrier of /g was used, and the developer was tested in the same manner as in Example 1.

その結果、初期からキャリア付着が著しく画像不良が見
られた。
As a result, carrier adhesion was significant from the initial stage, and image defects were observed.

[発明の効果] 以上説明してきたように、本発明によれば、面画印刷性
に優れた現像剤を得ることができ、該現像剤を用いる画
像形成方法により良好な画質の可視画像を形成すること
ができる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to obtain a developer with excellent surface printing properties, and it is possible to form a visible image of good quality by an image forming method using the developer. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は画像形成方法の説明図、 第2図は転写電流が転写トナーの粒径分布に与える影響
を示すグラフ(従来粒径トナー)、第3図は転写電流が
転写トナーの粒径分布に与える影響を示すグラフ(微粉
増量トナー)、第4図は転写電流か転写トナーの微粉濃
度に与える影響を示すグラフ、 第5図は転写電流と印字濃度の関係を示すグラフ、 第6図は帯電トナーの付着モデルを示す図である。 図中、 1・・・ドラム、 2.5・・・帯電機構、 3.6・・・露光機構、 4・・・第1現像器、 7・・・第2現像器、 8・・・トナー層、 9・・・コロナ帯電器。 画像形成方法の説明図 第1図 トナー粒径()1m) 卑ξ耳膚し乳ηく転与ドアーの■切呵」(賢に与λも鼻
a智ε斤・すTラフ第4図 トナー粒径(pm) 転与V>庇とE1力罠償の閥う単と1・す7ウフ第5図
Figure 1 is an explanatory diagram of the image forming method. Figure 2 is a graph showing the effect of transfer current on the particle size distribution of transferred toner (conventional particle size toner). Figure 3 is a graph showing the effect of transfer current on the particle size distribution of transferred toner. Figure 4 is a graph showing the influence of transfer current on the fine powder density of transferred toner (fine powder increased toner), Figure 5 is a graph showing the relationship between transfer current and print density, Figure 6 is a graph showing the relationship between transfer current and print density. FIG. 3 is a diagram showing an adhesion model of charged toner. In the figure, 1...Drum, 2.5...Charging mechanism, 3.6...Exposure mechanism, 4...First developer, 7...Second developer, 8...Toner Layer 9...Corona charger. Explanatory diagram of the image forming method Figure 1 Toner particle size (1 m) Figure 4 Toner particle size (pm) Transfer V > Eaves and E1 Force trap redemption intersection Unit and 1・S7 Ufu Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)磁性キャリアとトナーから成る現像剤において、 前記磁性キャリアとして平均粒径が40±20μmであ
るものを用い、前記トナーとして体積粒径の平均が10
±2μmであり、かつ、5μm以下のものを2%〜20
%含有するものを用いることを特徴とする現像剤。
(1) In a developer consisting of a magnetic carrier and a toner, the magnetic carrier has an average particle size of 40±20 μm, and the toner has an average volume particle size of 10 μm.
±2μm and 5μm or less 2% to 20%
A developer characterized by using a developer containing %.
(2)静電荷像を第1現像器により現像して第1現像の
トナー像とし、次に形成される静電荷像を第2現像器に
より現像して第2現像のトナー像として2色記録を行う
画像形成方法において、前記現像剤を前記第2現像に用
いることを特徴とする画像形成方法。
(2) The electrostatic charge image is developed by a first developing device to form a first developed toner image, and the electrostatic charge image formed next is developed by a second developing device and recorded in two colors as a second developed toner image. An image forming method characterized in that the developer is used for the second development.
JP2176775A 1990-07-04 1990-07-04 Developer and image forming method Pending JPH0466958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2176775A JPH0466958A (en) 1990-07-04 1990-07-04 Developer and image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2176775A JPH0466958A (en) 1990-07-04 1990-07-04 Developer and image forming method

Publications (1)

Publication Number Publication Date
JPH0466958A true JPH0466958A (en) 1992-03-03

Family

ID=16019616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2176775A Pending JPH0466958A (en) 1990-07-04 1990-07-04 Developer and image forming method

Country Status (1)

Country Link
JP (1) JPH0466958A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6764798B2 (en) * 2001-09-27 2004-07-20 Kao Corporation Two-component developer
US7236728B2 (en) * 2004-09-21 2007-06-26 Fuji Xerox Co., Ltd. Developing device and image formation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6764798B2 (en) * 2001-09-27 2004-07-20 Kao Corporation Two-component developer
US7236728B2 (en) * 2004-09-21 2007-06-26 Fuji Xerox Co., Ltd. Developing device and image formation device

Similar Documents

Publication Publication Date Title
JP3120460B2 (en) Electrophotographic developer
US4284702A (en) Electrographic developing method
JPS61118761A (en) Toner for two-color electronic printer
JPH0466958A (en) Developer and image forming method
JP2568244B2 (en) Image forming method
JPH081521B2 (en) Toner for electrostatic charge development
JPH06506782A (en) Electrophotographic developer composition
JPS58105166A (en) Dry developer
JPH07248638A (en) Electrophotographic toner
JPS5895748A (en) Transfer type magnetic toner particle
JPS59176752A (en) Magnetic toner
JP3385112B2 (en) Image forming method
JP3475733B2 (en) Image forming method using two-component developer for electrophotography
JP3427190B2 (en) Developer for developing electrostatic images
JPH04281463A (en) Electrostatic charge image developing toner
JPH01126670A (en) Electrophotographic image producing method
JPS6198361A (en) Developer
JPH04288554A (en) Electrophotographic image forming method
JPH11149215A (en) Image formation device
JPH04177260A (en) Nonmagnetic one-component toner
JPH0222669A (en) Magnetic color toner
JPH06332233A (en) Electrophotographic toner
JPH0444055A (en) Image forming method
JPH07248642A (en) Two-constituent developer for developing electrostatic charge image and image forming method
JPH02181757A (en) Magnetic toner