JPH0466804A - Absolute length measuring device - Google Patents

Absolute length measuring device

Info

Publication number
JPH0466804A
JPH0466804A JP2179033A JP17903390A JPH0466804A JP H0466804 A JPH0466804 A JP H0466804A JP 2179033 A JP2179033 A JP 2179033A JP 17903390 A JP17903390 A JP 17903390A JP H0466804 A JPH0466804 A JP H0466804A
Authority
JP
Japan
Prior art keywords
length
frequency
measurement
output
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2179033A
Other languages
Japanese (ja)
Inventor
Katsumi Isozaki
磯崎 克己
Katsuya Ikezawa
克哉 池澤
Shinji Komiya
伸二 小宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2179033A priority Critical patent/JPH0466804A/en
Publication of JPH0466804A publication Critical patent/JPH0466804A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve measurement accuracy and enlarge a measurement span by stabilizing reference length by means of feedback control and improving its accuracy. CONSTITUTION:In a frequency stabilizer comprising a gas cell 8, a half mirror 9, etc., light is branched by the mirror 9. One of the light beams is condensed by a lens 10 to be detected by a photo diode (PD) 11. The other light beam, after passing through the cell 8, is condensed by a lens 12 to be detected by a PD 13. An output of the PD 13 and an output of the PD 11 are input to a non-inverting and inverting terminals of a comparator 22, respectively. When a switch is changed over to a terminal B side, a feedback loop is structured wherein an output of the comparator 22 is fed back to an LD (frequency variable laser beam source) 1, and frequency of the LD 1 is stabilized to frequency of an absorption peak of the cell 8. With respect to the frequency of the LD 1, variation by a sweeper 24 and stabilization by the frequency stabilizer are performed by changeover by a switch controller 23. A sample & hold control signal SC is output to sample & hold circuits 18, 20 synchronized with the changeover, thereby performing stabilizing control of reference length.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は物体までの絶対距離を測定するアブソリュート
測長器に関し、特に、FMヘテロダイン測長法を使用し
たアブソリュート測長器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an absolute length measuring device that measures the absolute distance to an object, and particularly relates to an absolute length measuring device using the FM heterodyne length measuring method.

(従来の技術) 近年、サブナノメートルの精度を要求される電子部品や
製造装置の要求か高まり、この産業界の要請に応しるべ
く、距離計測や形状計測に用いられる干渉計の分野で、
高精度な干渉縞計測技術の研究開発が活発化している。
(Prior art) In recent years, the demand for electronic components and manufacturing equipment that requires sub-nanometer precision has increased, and in order to meet this industrial demand, in the field of interferometers used for distance measurement and shape measurement,
Research and development of high-precision interference fringe measurement technology is gaining momentum.

絶対距離を測定する測長法として、FMヘテロダイン計
測法があり、最近、光源として半導体レーザを使用し、
注入電流を変化させることによりレーザ光をFM変調し
く中心波長830r+a+)、ヘテロダイン検波により
得られたビート信号の位相変化を測定することにより、
粗面散乱体に対して約50011fflの絶対距離を約
50μmの精度で測定でき、かつ相対距離を約10nm
の高精度で測定可能な測長器についての報告かなされて
いる(シ0FS4−8「半導体レーザによる距離の高分
解能FMヘテロダイン測定法」、小林、田中、伊藤、大
高、福井大学工学部 January 12伺3.19
87. Japan 5ociety or^ppli
ed physics)。
There is an FM heterodyne measurement method as a length measurement method for measuring absolute distance, and recently, a semiconductor laser is used as a light source.
By changing the injected current, the laser beam is FM modulated with a center wavelength of 830r+a+), and by measuring the phase change of the beat signal obtained by heterodyne detection.
It is possible to measure an absolute distance of about 50011ffl to a rough scatterer with an accuracy of about 50 μm, and a relative distance of about 10 nm.
There has been a report on a length measuring device that can measure with high precision (S0FS4-8 "High-resolution FM heterodyne measurement method of distance using semiconductor laser", Kobayashi, Tanaka, Ito, Otaka, Faculty of Engineering, University of Fukui January 12 Visit 3.19
87. Japan 5ociety or^ppli
ed physics).

FMヘテロダイン法を用いたアブソリュート測長器にお
いて、測定距離りは原理的に以下の式で求められる。
In an absolute length measuring device using the FM heterodyne method, the measurement distance can be calculated in principle using the following formula.

L−(θ/4 π)   fco / (Δf−n) 
1ここで、θは測定した干渉位相、coは真空中での光
の速度、Δfは周波数可変幅、nは測定雰囲気中の空気
屈折率を表す。
L-(θ/4 π) fco/(Δf-n)
1 Here, θ is the measured interference phase, co is the speed of light in vacuum, Δf is the frequency variable width, and n is the air refractive index in the measurement atmosphere.

ここで、問題となるのはΔfの決定法であり、高精度に
測定または制御するのかむずかしい。そこで、上記の福
井大の小林能は、基準光路を設け、基準光路との比較測
定を行うことで測定距離りを求めている。この場合、 L −(Nm/N r)  ・L r となる。ここで、Lrは基準光路長、Nmはθ/2π、
Nrはθr / 2π(θr二二基先光路得られた干渉
位相)を表す。この方法は、Δfを測定しなくてもよく
測定方法が簡易であるという利点がある。
Here, the problem is how to determine Δf, and it is difficult to measure or control it with high precision. Therefore, the above-mentioned Noh Kobayashi of Fukui University establishes a reference optical path and performs comparative measurements with the reference optical path to determine the measurement distance. In this case, L − (Nm/N r) ·L r . Here, Lr is the reference optical path length, Nm is θ/2π,
Nr represents θr/2π (interference phase obtained from θr22 optical path). This method has the advantage that it is not necessary to measure Δf and the measurement method is simple.

(発明か解決しようとする課題) 上述した従来の技術は、θとθrの位相測定精度か等し
いとすると、測定精度は基準光路長の精度で決まってし
まう。従って、長い距離の測定をする場合、精度をおと
すか、測定スパン距離と等しい長さが必要となる。高精
度の長い基準長さを提供するのは容易ではなく、このた
めに、長い距離の高精度測定か困難であるという問題点
かある。
(Problems to be Solved by the Invention) In the above-described conventional technology, assuming that the phase measurement accuracy of θ and θr is equal, the measurement accuracy is determined by the accuracy of the reference optical path length. Therefore, when measuring a long distance, it is necessary to reduce the accuracy or to have a length equal to the measurement span distance. It is not easy to provide a long reference length with high accuracy, which makes it difficult to measure long distances with high accuracy.

また、アブソリュート測長器の絶対精度は、基準光路長
Lrの絶対精度で決まるが、ippm以下の安定度を確
保するのはむすかしい。また、温度や振動による絶対値
のずれを補正する必要かあり、測定か複雑化するという
問題がある。
Further, the absolute accuracy of the absolute length measuring device is determined by the absolute accuracy of the reference optical path length Lr, but it is difficult to ensure stability of less than ippm. Additionally, it is necessary to correct deviations in absolute values due to temperature and vibration, which complicates measurement.

本発明はこのような問題点に鑑みてなされたものであり
、その目的は、アブソリュート測長の精度を向上させ、
測定スパン(測定対象までの距離)を拡大することにあ
る。
The present invention was made in view of these problems, and its purpose is to improve the accuracy of absolute length measurement,
The goal is to expand the measurement span (distance to the measurement target).

(課題を解決するための手段) 本発明のアブソリュート測長器は、光の周波数を変化さ
せることができる光源と、特定の周波数域において光吸
収のピークを有する光吸収用セルと、負帰還制御により
、前記光源の出力光の周波数を前記光吸収用セルの吸収
ピークの周波数に安定化する周波数安定化手段と、長さ
基準と、前記光吸収用セルにより安定化された周波数を
利用し負帰還制御によって前記長さ基準の長さを所定値
に安定化する基準長さ安定化手段と、測長用干渉計と、
前記長さ基準から得られる干渉次数信号と前記測長用干
渉計とから得られる干渉信号とから絶対距離を求める手
段とを有することを特徴とする。
(Means for Solving the Problems) The absolute length measuring device of the present invention includes a light source capable of changing the frequency of light, a light absorption cell having a light absorption peak in a specific frequency range, and a negative feedback control. A frequency stabilizing means for stabilizing the frequency of the output light of the light source to the frequency of the absorption peak of the light absorption cell, a length reference, and a frequency stabilized by the light absorption cell are used to stabilize the frequency of the light output from the light source. a reference length stabilizing means for stabilizing the length reference length to a predetermined value by feedback control; a length measurement interferometer;
It is characterized by comprising means for determining an absolute distance from an interference order signal obtained from the length reference and an interference signal obtained from the length measurement interferometer.

(作用) 負帰還制御を用いて基準長さの安定化を行い、その精度
を向上させることにより、測定精度の向上および測定ス
パンを拡大させる。
(Function) By stabilizing the reference length using negative feedback control and improving its accuracy, measurement accuracy is improved and the measurement span is expanded.

(実施例) 次に、本発明の実施例について図面を参照して説明する
(Example) Next, an example of the present invention will be described with reference to the drawings.

実施例1 第1図は本発明のアブソリュート測長器の一実施例の構
成を示す図である。
Embodiment 1 FIG. 1 is a diagram showing the configuration of an embodiment of an absolute length measuring device of the present invention.

本実施例のアブソリュ−1・測長器において、周波数可
変レーサー光源(以下、LDという)1から出射された
光は、コリメータレンズ2て平行光となり、アイソレー
タ3を経て取り出される。その後、ハーフミラ−4およ
び5て分岐された光はそれぞれ、周波数安定化部ならび
に測長用干渉部7、長さ基準部に入力される。
In the Absolute 1 length measuring device of this embodiment, light emitted from a variable frequency laser light source (hereinafter referred to as LD) 1 is turned into parallel light by a collimator lens 2, and is extracted via an isolator 3. Thereafter, the lights branched by the half mirrors 4 and 5 are input to a frequency stabilizing section, a length measuring interference section 7, and a length reference section, respectively.

周波数安定化部では、ハーフミラ−ってさらに光か分岐
される。一方の光はレンズlOで集光され、フォトダイ
オード(以下、PDという)11て検出される。この検
出結果は、パワーモニターとして使用される。他方の光
はガスセル(所定周波数域において光の吸収ピークを有
する)8を通過後、レンズ12で集光され、PD13で
検出される。これは透過光検出用である。PDl3の出
力とPDIIとの出力はそれぞれ、比較器22の非反転
および反転端子に入力される。スイッチがスイッチコン
トローラ23によって端子B側に切換えられると、帰還
ループが構成され、比較器22の出力がLDIに帰還さ
れ、LDIの周波数はガスセル8の吸収ピークの周波数
に安定化される。
In the frequency stabilization section, the light is further branched by a half mirror. One of the lights is focused by a lens lO and detected by a photodiode (hereinafter referred to as PD) 11. This detection result is used as a power monitor. The other light passes through a gas cell (having a light absorption peak in a predetermined frequency range) 8, is focused by a lens 12, and is detected by a PD 13. This is for transmitted light detection. The output of PDl3 and the output of PDII are input to the non-inverting and inverting terminals of the comparator 22, respectively. When the switch is switched to the terminal B side by the switch controller 23, a feedback loop is formed, the output of the comparator 22 is fed back to the LDI, and the frequency of the LDI is stabilized at the absorption peak frequency of the gas cell 8.

長さ基準部6は、真空部6aと、エアー(空気)ギャッ
プ部6bとからなり、真空部6aの干渉信号はレンズ1
6を経てPDl4に入力され、検出される。エアーギャ
ップ部6bの信号はレンズI7て集光され、PDl5て
検出される。
The length reference part 6 consists of a vacuum part 6a and an air gap part 6b, and the interference signal of the vacuum part 6a is transmitted to the lens 1.
6 and is input to PD14 and detected. The signal from the air gap portion 6b is focused by the lens I7 and detected by the PD15.

LDIの周波数に関しては、スィーパ−24による可変
と、周波数安定化部による安定化とが交互に行なわれて
おり、その切換えはスイッチコントローラ23によって
行われる。この切換えに同期してサンプルホールド回路
18および2oにサンプルホールド制御信号S。が出力
され、基準長さの安定化制御が行われる。
Regarding the frequency of the LDI, variation by the sweeper 24 and stabilization by the frequency stabilizing section are performed alternately, and switching is performed by the switch controller 23. In synchronization with this switching, a sample and hold control signal S is supplied to the sample and hold circuits 18 and 2o. is output, and stabilization control of the reference length is performed.

長さ基準6は、LDIの周波数がガスセル8の吸収ピー
クの周波数に安定化されている時に、これに同期して負
帰還制御によって所定値になるように安定化される。す
なわち、PDl4で検出した真空部6aの干渉位相が一
定となるように、アンプI9と圧電アクチュエータ30
(第3図に示されるように円筒形となっており、制御電
極2Iによって制御され、横方向に伸縮する)を用いて
制御される。
When the frequency of the LDI is stabilized to the absorption peak frequency of the gas cell 8, the length reference 6 is stabilized to a predetermined value by negative feedback control in synchronization with this. That is, the amplifier I9 and the piezoelectric actuator 30 are adjusted so that the interference phase of the vacuum section 6a detected by the PDl4 is constant.
(As shown in FIG. 3, it has a cylindrical shape and is controlled by the control electrode 2I and expands and contracts in the lateral direction).

測長用干渉部7は、ハーフミラ−25と2つのコーナー
キューブ2G、27で構成され、信号はPD29で検出
される。測長スパンはLmである。なお、レンズ28は
集光用である。
The length measurement interference section 7 is composed of a half mirror 25 and two corner cubes 2G and 27, and a signal is detected by the PD 29. The length measurement span is Lm. Note that the lens 28 is for condensing light.

次に、第2図を用いて本実施例の動作合説明する。Next, the operation of this embodiment will be explained using FIG.

安定化時の動作 (a)スイッチコントローラ23はスイッチをB端子側
(アンプ22側)に切換え、サンプルホールド信号S。
Operation during stabilization (a) The switch controller 23 switches the switch to the B terminal side (amplifier 22 side) to output the sample hold signal S.

はオン状態となってサンプルホールド回路18.20か
導通し、長さ基準の安定化ループが構成される。
is turned on and the sample and hold circuits 18 and 20 are conductive, forming a length-based stabilizing loop.

(b)LDIの周波数は安定化ループによりガスの吸収
線に高精度にロックされる。
(b) The frequency of the LDI is locked to the absorption line of the gas with high precision by a stabilizing loop.

(c)安定化された周波数は真空部の長さ基準6aに入
射され、長さに対応した干渉位相がPDl4て検出され
る。このときの干渉位相θVACは、θVAC−(2π
/λ1.、)・2LVACと表される。このθVACを
基準位相θ1.と比較し、サンプルホールド回路20を
介して制alllF112+に制御電圧を供給し、θV
ACが一定となるように負帰還制御を行う。すなわち、
長さ基準部6(空気ギャップ6b)は第3図のような構
成となっており、制御電極21に制御電圧を与え、圧電
アクチュエータ30の伸縮を制御して側板31の面間距
離りを調整する。真空部6aと空気ギャップ6bのフラ
ンジは一体で作られており、空気ギャップ部の面間距離
りと連動して真空部の面間距離も制御される。
(c) The stabilized frequency is input to the length reference 6a of the vacuum section, and the interference phase corresponding to the length is detected by PD14. The interference phase θVAC at this time is θVAC−(2π
/λ1. , )・2LVAC. This θVAC is the reference phase θ1. , a control voltage is supplied to the control allF112+ via the sample and hold circuit 20, and θV
Negative feedback control is performed to keep AC constant. That is,
The length reference part 6 (air gap 6b) has a configuration as shown in FIG. 3, and applies a control voltage to the control electrode 21 to control the expansion and contraction of the piezoelectric actuator 30 to adjust the distance between the surfaces of the side plates 31. do. The flanges of the vacuum section 6a and the air gap 6b are made integrally, and the distance between the surfaces of the vacuum section is also controlled in conjunction with the distance between the surfaces of the air gap section.

これにより、LVAC(真空の長さ基準)がλ5.。As a result, the LVAC (vacuum length standard) is λ5. .

の安定度と同等のレベルまで安定化される。stabilized to a level equivalent to that of .

周波数可変時 サンプルホールド信号SCを最終値にホールドし、基準
長さのリアルタイム負帰還制御を中断し、この状態で干
渉位相(PD29の出力)Nmを測定する。
The sample-and-hold signal SC at the time of frequency variation is held at the final value, the real-time negative feedback control of the reference length is interrupted, and the interference phase (output of the PD 29) Nm is measured in this state.

すなわち、PD29から得られる干渉次数NmとPDl
、5から得られる干渉次数Nrより次式を用いて距離L
mを求める。
That is, the interference order Nm obtained from PD29 and PDl
From the interference order Nr obtained from , 5, the distance L is calculated using the following formula:
Find m.

Lm−(Nm/Nr) ・Lter  (L、、tは安
定化した基準長さ) 測定精度の検討 ここで測定精度について検討する。NmとNrの測定精
度が等しいとすると、 dL/L−(dL、l+ /Ll?+ )+2 (dN
r/ N r ) となる。つまり、L−L、。、とすると測定精度はL 
v e lの絶対精度で決まる。長さの絶対値の測定精
度はせいぜい1 ppmであり、1mの長さを測定する
場合の精度は1μm程度までである。また、温度による
長さ基準の長さ変化が、測定結果に顕著に反映される誤
差となフてしまう(例えば、熱膨張係数α−1ppm/
”Cで5℃変化すると5 ppm)。
Lm-(Nm/Nr) ・Lter (L,, t is the stabilized reference length) Examination of measurement accuracy Here, we will examine measurement accuracy. Assuming that the measurement accuracy of Nm and Nr is equal, dL/L-(dL, l+ /Ll?+)+2 (dN
r/N r ). In other words, L-L. , then the measurement accuracy is L
It is determined by the absolute precision of v e l. The measurement accuracy of the absolute value of length is at most 1 ppm, and the accuracy when measuring a length of 1 m is up to about 1 μm. In addition, changes in the length of the length standard due to temperature become an error that is significantly reflected in the measurement results (for example, thermal expansion coefficient α - 1 ppm /
5 ppm for a 5°C change).

また、測定距離が基準長さL r e lより長い時は
、その比たけ精度が低下する。従って、通常の長さ基準
では、10″6以上の測定精度は実現できない。
Furthermore, when the measurement distance is longer than the reference length L r e l , the relative accuracy is reduced. Therefore, with normal length standards, measurement accuracy of 10''6 or higher cannot be achieved.

一方、本実施例によれば、 dL、、l /L、、I =d2.../λ□1 =I
O−8オーダとなり、測定精度が2桁はと向上できる。
On the other hand, according to this embodiment, dL,,l/L,,I =d2. .. .. /λ□1 =I
It is on the order of O-8, and the measurement accuracy can be improved by two orders of magnitude.

また、ガスセルの吸収線を基準にフィードバックしてい
るため、温度変化による誤差は本質的に除去されるため
、高い安定度が得られる。
Furthermore, since feedback is based on the absorption line of the gas cell, errors due to temperature changes are essentially eliminated, resulting in high stability.

(発明の効果) 以上説明したように本発明は、ガスセルを用いた波長の
安定化と、周波数を変化させての測定とそれに続く周波
数を固定しての相対モードでの測定システムの採用、な
らびに長さ基準の安定化制御により、下記の効果が得ら
れる。
(Effects of the Invention) As explained above, the present invention employs a measurement system in which wavelength is stabilized using a gas cell, measurement is performed by changing the frequency, and then the frequency is fixed in a relative mode; Length-based stabilization control provides the following effects.

(1)通常の長さ基準(スーパーインバー等の線膨張係
数が約1 ppmの材料からなる)と比較し、2桁はと
測定精度が向上する。これにより、長さ基準が短くとも
、それ以上の測定スパンを高精度に測定でき、装置の小
型化が可能である。
(1) Compared to a normal length standard (made of a material with a coefficient of linear expansion of approximately 1 ppm, such as Super Invar), measurement accuracy is improved by two orders of magnitude. As a result, even if the length reference is short, a measurement span longer than that can be measured with high precision, and the device can be downsized.

(2)温度が変化しても測定精度が維持され、振動にも
強い高性能なアブソリュートδPj長器を提供できる。
(2) It is possible to provide a high-performance absolute δPj length instrument that maintains measurement accuracy even when the temperature changes and is resistant to vibrations.

(3)これにより、例えば、極めて高精度な形状測定器
の提俄か可能となり、今後、サブナノメートルの精度を
要求される電子部品や製造装置分野の産業界の要請に応
え、各種の機器への適用、応用か期待される。
(3) This will, for example, make it possible to provide extremely high-precision shape measuring instruments, which will be used in various types of equipment in response to the demands of industries such as electronic components and manufacturing equipment that require sub-nanometer precision. expected to be applied or applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のアブソリュート測長器の一実施例の構
成を示す図、 第2図は本実施例の長さ基準安定化の動作を説明するた
めの図、 第3図は長さ基準部6の構造を示す断面図である。 1・・・半導体レーザ 2・・・コリメータレンズ 3・・・アイソレーション 4.5・・・ハーフミラ 5・・・反射ミラー(CC) 6・・・長さ基準部(6b=空気ギヤツプ、 6a・真
空部) 7 渭j走用モ渉計 8・・カスセル 9・・・ハーフミラ−10・・ハーフミラlトフォトダ
イオード 12・・レンズ13 1.4.15・・・フ
ォトダイオード1.6.17・・レンズ 18、20・サンプルホールド回路 19、22・・・比較器 21・制御電極 23・・スイッチコントローラ 24・・・スィーパ− 25・・・ハーフミラ− 26、27・・反射ミラー(CC) 28・・・レンズ      29フオトダイオード4
0・処理部 第2図 6b(空気キ゛ヤップ) 21ル膿電場
Fig. 1 is a diagram showing the configuration of an embodiment of the absolute length measuring device of the present invention, Fig. 2 is a diagram for explaining the length reference stabilization operation of this embodiment, and Fig. 3 is a diagram showing the length reference. 6 is a cross-sectional view showing the structure of part 6. FIG. 1... Semiconductor laser 2... Collimator lens 3... Isolation 4.5... Half mirror 5... Reflection mirror (CC) 6... Length reference part (6b = air gap, 6a) Vacuum part) 7 Bicycle travel meter 8... Cassel 9... Half mirror 10... Half mirror photodiode 12... Lens 13 1.4.15... Photodiode 1.6.17. - Lenses 18, 20 - Sample and hold circuits 19, 22 - Comparator 21 - Control electrode 23 - Switch controller 24 - Sweeper 25 - Half mirror 26, 27 - Reflection mirror (CC) 28 -・・Lens 29 Photodiodes 4
0. Processing section Fig. 2 6b (air cap) 21 Lupus electric field

Claims (1)

【特許請求の範囲】 光の周波数を変化させることができる光源(1)と、 特定の周波数域において光吸収のピークを有する光吸収
用セル(8)と、 負帰還制御により、前記光源(1)の出力光の周波数を
前記光吸収用セル(8)の吸収ピークの周波数に安定化
する周波数安定化手段(8、9、10、11、12、1
3、22、23)と、長さ基準(6)と、 前記光吸収用セル(8)により安定化された周波数を利
用し、負帰還制御によって前記長さ基準(6)の長さを
所定値に安定化する基準長さ安定化手段(6a、14、
18、19、20、21)と、測長用干渉計(7)と、 前記長さ基準(6)から得られる干渉次数信号と前記測
長用干渉計(7)とから得られる干渉信号とから絶対距
離を求める手段(40)とを有することを特徴とするア
ブソリュート測長器。
[Claims] A light source (1) capable of changing the frequency of light; a light absorption cell (8) having a light absorption peak in a specific frequency range; frequency stabilizing means (8, 9, 10, 11, 12, 1
3, 22, 23), the length reference (6), and the frequency stabilized by the light absorption cell (8), the length of the length reference (6) is determined by negative feedback control. Reference length stabilizing means (6a, 14,
18, 19, 20, 21), a length measurement interferometer (7), an interference order signal obtained from the length reference (6), and an interference signal obtained from the length measurement interferometer (7). An absolute length measuring device comprising means (40) for determining an absolute distance from.
JP2179033A 1990-07-06 1990-07-06 Absolute length measuring device Pending JPH0466804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2179033A JPH0466804A (en) 1990-07-06 1990-07-06 Absolute length measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2179033A JPH0466804A (en) 1990-07-06 1990-07-06 Absolute length measuring device

Publications (1)

Publication Number Publication Date
JPH0466804A true JPH0466804A (en) 1992-03-03

Family

ID=16058942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2179033A Pending JPH0466804A (en) 1990-07-06 1990-07-06 Absolute length measuring device

Country Status (1)

Country Link
JP (1) JPH0466804A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127885A (en) * 2008-12-01 2010-06-10 Mitsutoyo Corp Laser interferometer
JP2010164328A (en) * 2009-01-13 2010-07-29 Mitsutoyo Corp Laser interferometer
JP2011099756A (en) * 2009-11-05 2011-05-19 Canon Inc Measuring apparatus
DE102021113200A1 (en) 2021-05-20 2022-11-24 Endress+Hauser SE+Co. KG Detection of paramagnetic substances in fluids
WO2023280748A1 (en) 2021-07-09 2023-01-12 Endress+Hauser Flowtec Ag Conductivity sensor
WO2023117258A1 (en) 2021-12-22 2023-06-29 Endress+Hauser Flowtec Ag Microwave measuring device
US11906452B2 (en) 2021-05-21 2024-02-20 Endress+Hauser Conducta Gmbh+Co. Kg PH-sensor for determining and/or measuring a pH-value of a medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127885A (en) * 2008-12-01 2010-06-10 Mitsutoyo Corp Laser interferometer
JP2010164328A (en) * 2009-01-13 2010-07-29 Mitsutoyo Corp Laser interferometer
JP2011099756A (en) * 2009-11-05 2011-05-19 Canon Inc Measuring apparatus
DE102021113200A1 (en) 2021-05-20 2022-11-24 Endress+Hauser SE+Co. KG Detection of paramagnetic substances in fluids
US11906452B2 (en) 2021-05-21 2024-02-20 Endress+Hauser Conducta Gmbh+Co. Kg PH-sensor for determining and/or measuring a pH-value of a medium
WO2023280748A1 (en) 2021-07-09 2023-01-12 Endress+Hauser Flowtec Ag Conductivity sensor
WO2023117258A1 (en) 2021-12-22 2023-06-29 Endress+Hauser Flowtec Ag Microwave measuring device

Similar Documents

Publication Publication Date Title
Teimel Technology and applications of grating interferometers in high-precision measurement
Bobroff Recent advances in displacement measuring interferometry
US5106191A (en) Two-frequency distance and displacement measuring interferometer
EP0194941A2 (en) Heterodyne interferometer system
US4193693A (en) Velocity servo for continuous scan Fourier interference spectrometer
CN1172532A (en) Electro-optical measuring device for absolute distances
KR20190031550A (en) Lattice measuring device
US5493395A (en) Wavelength variation measuring apparatus
JPH0466804A (en) Absolute length measuring device
JPS60256079A (en) Minute displacement measuring apparatus using semiconductor laser
Downs et al. A proposed design for a polarization-insensitive optical interferometer system with subnanometric capability
JPS61221614A (en) Measuring instrument for fine displacement
JP2725434B2 (en) Absolute length measuring method and absolute length measuring device using FM heterodyne method
CN108627084B (en) Laser instrument wavelength calibration system based on static michelson interferometer
US5189489A (en) Interferometric measurement device with non stabilized light source
Du et al. Principles and realization of a novel instrument for high performance displacement measurement—nanometer laser ruler
Fujimoto et al. Noise reduction in an optical interferometer for picometer measurements
JPH03269302A (en) Absolute length measuring device
JP3516875B2 (en) Interferometer
JP2687631B2 (en) Interference signal processing method of absolute length measuring device
JPS61274205A (en) Optical displacement measuring device
JPS58158506A (en) Optical measuring method of displacement
Wang et al. Measurement and control of subangstrom mirror displacement by acousto‐optical technique
Gill Laser interferometry for precision engineering metrology
JPH05312523A (en) Length measuring apparatus for semiconductor laser