JPH0465560A - Glass fiber nonwoven fabric - Google Patents

Glass fiber nonwoven fabric

Info

Publication number
JPH0465560A
JPH0465560A JP2177062A JP17706290A JPH0465560A JP H0465560 A JPH0465560 A JP H0465560A JP 2177062 A JP2177062 A JP 2177062A JP 17706290 A JP17706290 A JP 17706290A JP H0465560 A JPH0465560 A JP H0465560A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
glass fiber
glass
frp
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2177062A
Other languages
Japanese (ja)
Inventor
Yasuyuki Kimura
康之 木村
Shinichi Tsutsui
筒井 慎一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2177062A priority Critical patent/JPH0465560A/en
Publication of JPH0465560A publication Critical patent/JPH0465560A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To obtain the subject product, composed of monofilamentary glass fiber having a specified average length, having processability of FRP comparable to that of conventional products, excellent in dimensional stability in the plane and thickness direction and useful as a reinforcing material for the FRP. CONSTITUTION:The objective produce is composed of monofilamentary glass fiber with >=25mm, preferably 25-75mm average length. The aforementioned product has >=0.03cm<3>/cm<2> average fiber volume density. The above-mentioned nonwoven fabric is preferably obtained by dispersing glass chopped strands in the form of monofilament with a high-speed rotating roll, forming a web by an air laying method under conditions to afford an isotropic deposition angle of fiber relatively to the machine direction and then striking water streams under 0.5-10kg/cm<2> pressure from the upper part of the aforementioned web thereon.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は繊維強化プラスチック(以下FRP)の補強材
として使用されるガラス繊維不織布に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a glass fiber nonwoven fabric used as a reinforcing material for fiber reinforced plastics (hereinafter referred to as FRP).

〔従来の技術〕[Conventional technology]

ガラス繊維不織布は、主として構造材料、プリント配w
A基板(以下PCB)などの各種のFRP補強材として
使用されている。特に近年、打ち抜き加工性、ドリル加
工性に優れた安価なPCBの補強用繊維基材としての利
用が進んでいる。
Glass fiber non-woven fabrics are mainly used as structural materials and printed layouts.
It is used as a reinforcing material for various FRPs such as A-board (hereinafter referred to as PCB). Particularly in recent years, inexpensive PCBs with excellent punching workability and drilling workability have been increasingly used as reinforcing fiber base materials.

従来、FRP補強用ガラス繊維不織布としては、カット
されたガラス繊維をランダムに堆積して単にバインダー
によって接着固定したものが知られている。またカント
されたガラス繊維を水中に攪拌分散し、抄紙機にて抄造
する湿式法で製造されるものが知られており、PCB補
強用ガラス繊維不織布としてはモノフィラメント状ガラ
ス繊維により構成された王に後者の不織布が用いられて
いる。ここで使用されるガラス繊維は通常、繊維径6μ
I〜9μm、繊維長6〜13■と比較的短いチョンブド
ストランドであり、その特質として、重密度が0.17
g/d、マシン方向と幅方向の引っ張り強度の比率が1
.2以上でマシン方向が高いことなどがあげられている
(祇パルプ技術タイムス:昭和61年6月)。
Conventionally, as a glass fiber nonwoven fabric for reinforcing FRP, one in which cut glass fibers are randomly stacked and simply adhesively fixed with a binder is known. In addition, it is known that canted glass fibers are stirred and dispersed in water and manufactured using a paper machine to make paper. The latter nonwoven fabric is used. The glass fiber used here usually has a fiber diameter of 6 μm.
It is a relatively short chopped strand with I ~ 9 μm and fiber length of 6 ~ 13 μm, and its characteristic is that it has a heavy density of 0.17.
g/d, the ratio of the tensile strength in the machine direction and the width direction is 1
.. 2 or more indicates that the machine direction is high (Gi Pulp Technology Times: June 1986).

[発明が解決しようとする課題] 高度な寸法安定性が要求されるFRP分野、特にPCB
分野ではガラス繊維不織布基材の異方性、短い繊維長の
ための低い補強効果により、その使用が制限されている
。ここでPCBに要求される寸法安定性とは、XY力方
向平面方向)とZ方向(厚み方向)に大きく分けられ、
それぞれ部品実装上、スルーホールの安定性上、重要な
性能である。これに対して、後者については樹脂組成物
に充填剤等を配合させることにより改良が試みられてい
るが(特公平2−21667号公報)、ガラス繊維基材
中への充填剤の均−分散等の問題があり、十分な解決法
とはなっていない。また、前者ニついては基材中の繊維
の長さを長くし、さらに不織布中の繊維の異方性をなく
すことにより解決可能と考えられるが、抄造法によるガ
ラス繊維不織布の場合、水分散のために繊維長が短く限
定され、かつ、マシン方向と幅方向の異方性は大きい。
[Problem to be solved by the invention] FRP field, especially PCB, which requires a high degree of dimensional stability
The use of glass fiber nonwoven substrates in the field is limited by their anisotropy, low reinforcing effect due to short fiber length. Here, the dimensional stability required for PCBs is broadly divided into the XY force direction (plane direction) and the Z direction (thickness direction).
Each performance is important in terms of component mounting and through-hole stability. On the other hand, attempts have been made to improve the latter by incorporating fillers etc. into the resin composition (Japanese Patent Publication No. 2-21667); There are problems such as this, and it is not a sufficient solution. In addition, the former problem can be solved by increasing the length of the fibers in the base material and eliminating the anisotropy of the fibers in the nonwoven fabric, but in the case of glass fiber nonwoven fabrics made by papermaking, water dispersion The fiber length is limited to short, and the anisotropy in the machine direction and width direction is large.

また従来の乾式法によるガラス繊維不織布の場合、繊維
長は長くすることは可能であるが、ガラス繊維のモノフ
ィラメント化が不十分なために、また製造される不織布
が抄造法に比して更にカサ高いことによるFRP中のガ
ラス繊維充填密度の低下のために、このガラス繊維不織
布を使用したFRPの寸法安定性は低下する。一方、従
来の抄造法によるガラス繊維不織布は不織布製造法の中
では比較的密度の高い不織布を製造できるが、その密度
は積層板製造上満足なものではない。
In addition, in the case of glass fiber nonwoven fabrics produced using the conventional dry method, although it is possible to increase the fiber length, the monofilamentization of the glass fibers is insufficient, and the nonwoven fabrics produced are even bulkier than those produced using the papermaking method. The dimensional stability of FRP using this glass fiber nonwoven fabric decreases due to the decrease in the glass fiber packing density in FRP due to the high temperature. On the other hand, glass fiber nonwoven fabrics produced by conventional papermaking methods can produce relatively high-density nonwoven fabrics among nonwoven fabric production methods, but the density is not satisfactory for the production of laminates.

本発明の目的は、FRPの加工性を従来のガラス繊維不
織布と同等にし、平面方向、厚み方向の寸法安定性に優
れたFRPの補強材として使用されるガラス繊維不織布
を提供することにある。
An object of the present invention is to provide a glass fiber nonwoven fabric that can be used as a reinforcing material for FRP and has the processability of FRP equivalent to that of conventional glass fiber nonwoven fabrics and has excellent dimensional stability in the plane direction and thickness direction.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の上記目的は、平均長さが25mm以上であるモ
ノフィラメント状ガラス繊維で構成され、平均繊維体積
密度が0.03cd/ cT1以上であることを特徴と
するガラス繊維不織布によって達成される。
The above object of the present invention is achieved by a glass fiber nonwoven fabric which is composed of monofilament glass fibers having an average length of 25 mm or more and has an average fiber volume density of 0.03 cd/cT1 or more.

ここで、モノフィラメント状ガラス繊維とは、構成して
いるガラス繊維が実質的に個別のフィラメント単位に分
散されている状態を示す。また、繊維体積密度はJIS
 R3420に基づいて測定された布重量、以下に示さ
れる方法で測定された厚さ及びそのガラスの密度から次
式により計算される。
Here, the term "monofilamentary glass fiber" refers to a state in which the constituent glass fibers are substantially dispersed into individual filament units. In addition, the fiber volume density is JIS
It is calculated by the following formula from the fabric weight measured based on R3420, the thickness measured by the method shown below, and the density of the glass.

繊維体積密度=布重量/厚さ/ガラス密度ここでガラス
繊維不織布の厚さは水平な面上に一辺が10cmの正方
形に切り出されたガラス繊維不織布を10枚重ね、その
上に同形の重さ100gの金属板を載せ、水平な面上が
ら金属板の下面までの高さを測定することにより得た。
Fiber volume density = Fabric weight / Thickness / Glass density Here, the thickness of the glass fiber non-woven fabric is calculated by stacking 10 pieces of glass fiber non-woven fabric cut into a square with a side of 10 cm on a horizontal surface, and placing the same weight on top of it. The height was obtained by placing a 100 g metal plate on it and measuring the height from the top of the horizontal surface to the bottom surface of the metal plate.

表−1に同法によって測定された各種ガラス繊維不織布
の厚さ、繊維体積密度を示す。
Table 1 shows the thickness and fiber volume density of various glass fiber nonwoven fabrics measured by the same method.

モノフィラメント状ガラス繊維により構成されるガラス
繊維不織布を使用したFRPにおいて、ガラス繊維の平
均長さが25[1以上になると平面方向の寸法安定性は
比べて著しく改善される。ここでいう寸法安定性とはF
RPの加熱による寸法変化の大きさが小さいことを示す
。しかしながら、平均長さが長くなると、単位不織布体
積中の繊維本数が減少し、特に布重量の軽いガラス不織
布では不織布中の繊維の分布が悪化し、FRPの寸法安
定性に対する改善の効果は小さくなる。そのため、平均
繊維長としては25m以上75m以下が望ましい。
In FRP using a glass fiber nonwoven fabric composed of monofilament glass fibers, when the average length of the glass fibers is 25 [1 or more], the dimensional stability in the planar direction is significantly improved. What does dimensional stability mean here?
This shows that the size of the dimensional change due to heating of RP is small. However, as the average length increases, the number of fibers in a unit volume of nonwoven fabric decreases, and the distribution of fibers in the nonwoven fabric worsens, especially in the case of light glass nonwoven fabrics, and the effect of improvement on the dimensional stability of FRP becomes smaller. . Therefore, the average fiber length is preferably 25 m or more and 75 m or less.

また、ここでガラス繊維不織布のマシン方向と幅方向の
引っ張り強度比率をその差が20%以下になるように繊
維の配向を調整することにより、ガラス繊維不織布の異
方性は軽減され、そのFRPの寸法安゛定性は著しく改
善された。具体的には、ガラスチョツプドストランドを
高速回転ロールによりモノフィラメント状に分散し、エ
アレイ方式によりウェブを形成し、その際、繊維のマシ
ン方向に対する堆積角度をエアの流れ角度及び量を調整
することにより等方向にし、ガラス不織布の異方性を軽
減した。
In addition, by adjusting the orientation of the fibers so that the difference in the tensile strength ratio between the machine direction and the width direction of the glass fiber nonwoven fabric is 20% or less, the anisotropy of the glass fiber nonwoven fabric can be reduced, and the FRP The dimensional stability of was significantly improved. Specifically, chopped glass strands are dispersed into monofilaments using high-speed rotating rolls, and a web is formed using an air-lay method. At this time, the deposition angle of the fibers relative to the machine direction is adjusted by adjusting the flow angle and amount of air. This made the glass nonwoven fabric isotropic and reduced the anisotropy of the glass nonwoven fabric.

また、ガラス繊維の平均長さが25ffIITlを越え
ることの効果として、ガラス繊維不織布の引っ張り強度
が上がり、樹脂組成物を含浸塗布する際の基材切れ、及
び成形時の樹脂流れによる不織布切れがなく、FRPの
生産性を向上させることができる。また、平均繊維長が
25m以上のガラス繊維不織布を使用したFRPの加工
性は従来のFRPと同等であることはいうまでもない。
In addition, as an effect of the average length of the glass fibers exceeding 25ffIITl, the tensile strength of the glass fiber nonwoven fabric increases, and there is no breakage of the base material when impregnating the resin composition and no breakage of the nonwoven fabric due to resin flow during molding. , the productivity of FRP can be improved. Furthermore, it goes without saying that the workability of FRP using a glass fiber nonwoven fabric having an average fiber length of 25 m or more is equivalent to that of conventional FRP.

FRPの補強材として使用するガラス繊維不織布はその
繊維体積密度(以下密度)が高いことがFRPの厚み方
向の寸法安定性、FRP中の補強材充填密度を上げるた
めに効果的である。不織布の密度は堆積させたウェブを
押し付けることにより高くすることが可能であるが、単
に押し付けた場合、その負荷を取り除くとウェブの反発
で厚みはほとんど回復する。本発明の方法としてはたと
えば、エアレイ方式で堆積させたウェブに上方より水流
をぶつけることにより達成される。この際、水流の圧力
、水量、形状、ぶつける角度等により、任意の絡み合い
性状、密度の不織布が得られる。
The glass fiber nonwoven fabric used as a reinforcing material for FRP has a high fiber volume density (hereinafter referred to as density), which is effective for increasing the dimensional stability in the thickness direction of FRP and the reinforcing material filling density in FRP. The density of a nonwoven fabric can be increased by pressing the deposited web, but if the web is simply pressed, the thickness will almost recover due to the repulsion of the web when the load is removed. The method of the present invention is achieved, for example, by bombarding a web deposited by an air-lay method with a water stream from above. At this time, a nonwoven fabric with arbitrary intertwining properties and density can be obtained depending on the pressure of the water flow, the amount of water, the shape, the angle of impact, etc.

好ましくは水流の圧力は0.5kg/cni〜10kg
/calの範囲が望ましい。水流の圧力が10kg/c
fflを越えると堆積したウェブの水流の引き起こす風
による舞い上がりが顕著となる。また、水流の形状は幅
方向で同一な作用をもたらす形状が幅方向の均一性のた
めに必要である。さらに、堆積したウェブを押しつぶし
、絡ませて密度を高くした不織布の場合、同じ密度でも
厚み方向への繊維の配向が顕著であり、このようにして
得られたガラス繊維不織布を使用したFRPは従来のガ
ラス繊維不織布を用いたFRPに比べ、厚み方向の寸法
安定性は著しく改善された。また、FRP中の補強材充
填密度は従来の抄造法によるガラス不織布と同等な密度
、表−1より(0,03cffl/c++り以上にする
ことにより、同等もしくはそれ以上に改良される。
Preferably the pressure of the water stream is 0.5kg/cni~10kg
A range of /cal is desirable. Water flow pressure is 10kg/c
When ffl is exceeded, the airflow of the deposited web by the wind caused by the water flow becomes noticeable. Further, the shape of the water stream must have a shape that provides the same effect in the width direction for uniformity in the width direction. Furthermore, in the case of a nonwoven fabric made by crushing and entangling the accumulated web to increase its density, the orientation of the fibers in the thickness direction is remarkable even at the same density, and FRP using the glass fiber nonwoven fabric obtained in this way is different from the conventional one. Compared to FRP using glass fiber nonwoven fabric, the dimensional stability in the thickness direction was significantly improved. In addition, the packing density of the reinforcing material in FRP is equivalent to that of the glass nonwoven fabric produced by the conventional papermaking method, and as shown in Table 1, it can be improved to the same level or even higher by increasing the density to 0.03 cffl/c++ or more.

本発明のガラス繊維不織布のガラス繊維は特に限定され
るものではなく、電気特性の優れたEガラス、低誘電率
のDガラス、鉛ガラス、シリカガラスなどを表面処理し
たものを使用するが、表面処理のないガラス繊維でも使
用できる。ガラス繊維の製造方法はいずれの方法によっ
ても差しつかえない。また、その繊維径は通常使用され
る2〜15μmの範囲のものが用いられるが、目的に応
じて、数種類の径の繊維が混合されて用いられる。
The glass fibers of the glass fiber nonwoven fabric of the present invention are not particularly limited, and surface-treated E glass with excellent electrical properties, D glass with a low dielectric constant, lead glass, silica glass, etc. can be used. Untreated glass fiber can also be used. Any method can be used to produce the glass fiber. Further, the fiber diameter is usually in the range of 2 to 15 μm, but depending on the purpose, fibers of several different diameters may be mixed and used.

また、ガラス繊維不織布を結合させるためには従来のガ
ラス繊維不織布を結合させるために用いられるバインダ
ーをそのまま使用してもよいが、好ましくはFRPO際
に使用される樹脂組成物と反応性のある官能基を有する
組成物であることが望ましい。さらにエアレイ方式で堆
積させる際に同時にPEEK等の熱可塑性樹脂粉末もし
くは繊維を堆積させ、結合剤として用いることも可能で
ある。
Furthermore, in order to bind glass fiber nonwoven fabrics, binders used for conventional glass fiber nonwoven fabrics may be used as they are, but preferably they are functional binders that are reactive with the resin composition used in FRPO. A composition having a group is desirable. Furthermore, it is also possible to deposit thermoplastic resin powder or fibers such as PEEK at the same time as the air-lay method, and use this as a binder.

本発明のガラス繊維不織布を使用してFRPを作成する
際、使用される樹脂は例えば、エポキシ樹脂、ポリイミ
ド樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポ
リブタジェン樹脂、ポリウレタン樹脂及びその混合物等
の熱で硬化しうる熱硬化樹脂が使用できるが、もとより
加熱成形法による熱可塑性樹脂が使用できることはいう
までもなく、特に限定しない。また本発明のガラス繊維
不織布は通常の方法によって使用され、特に製造方法に
限定されるものではない。
When creating FRP using the glass fiber nonwoven fabric of the present invention, the resins used are, for example, epoxy resins, polyimide resins, phenol resins, unsaturated polyester resins, polybutadiene resins, polyurethane resins, and mixtures thereof, which are cured by heat. It goes without saying that thermoplastic resins formed by thermoforming can also be used, but there is no particular limitation. Further, the glass fiber nonwoven fabric of the present invention can be used by a conventional method, and the manufacturing method is not particularly limited.

〔実施例〕〔Example〕

以下、本発明を実施例及び比較例について具体的に説明
する。
Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples.

実施例1 繊維径13μm、平均繊維長50mmのEガラスチョツ
プドストランドを高速回転ロールによりモノフィラメン
ト状に分散し、エアレイ方式でウェブを形成した。さら
にスリットノズルより圧力4kg/dの水流をウェブに
あて、エポキシ樹脂バインダーで結合させ、ガラス繊維
不織布を作成した。
Example 1 E-glass chopped strands having a fiber diameter of 13 μm and an average fiber length of 50 mm were dispersed into monofilaments using high-speed rotating rolls to form a web using an air-lay method. Furthermore, a water stream with a pressure of 4 kg/d was applied to the web from a slit nozzle, and the web was bonded with an epoxy resin binder to produce a glass fiber nonwoven fabric.

作成した不織布の特性を表−2に示す。次に下記配合例
のエポキシ樹脂ワニスを含?i2布し125°Cで乾燥
してプリプレグAを得た。このプリプレグAを4枚積層
し、その上下面に厚さ18μmの銅箔をそれぞれ1枚重
ね合わせ、175°C11,8kg/cdで圧縮成形し
て板厚0.8++IIOの積層板を得た。この積層板の
銅箔をエンチング除去した後↓こ、積層板についての特
性の試験を行った。得られた積層板の特性を表−3に示
す。
Table 2 shows the properties of the produced nonwoven fabric. Next, do you include epoxy resin varnish with the following formulation example? i2 cloth and dried at 125°C to obtain prepreg A. Four sheets of this prepreg A were laminated, one sheet of copper foil with a thickness of 18 μm was placed on each of the top and bottom surfaces, and compression molding was performed at 175° C. at 11,8 kg/cd to obtain a laminate with a thickness of 0.8++IIO. After the copper foil of this laminate was removed by etching, the characteristics of the laminate were tested. Table 3 shows the properties of the obtained laminate.

エポキシ樹脂フェス配合組成 AER−711100部 (脂化成製エポキシ樹脂) ジシアンジアミド      2.5部ヘンシルジメチ
ルアミン   0.2部ジメチルホルムアミド    
12部 メチルセルソルブ      12部 メチルエチルケトン     25部 水酸化アルミニウム     50部 (無機充填剤) 実施例2 繊維径13μm、平均繊維長251m1のEガラスチョ
ツプドストランドを高速回転ロールによりモノフィラメ
ント状に分散し、エアレイ方式でウェブを形成した。さ
らにスリットノズルより圧力4kg/cIINの水流を
ウェブにあて、エポキシ樹脂バインダーで結合させ、ガ
ラス繊維不織布を作成した。
Epoxy resin face composition AER-711 100 parts (Fushikasei epoxy resin) Dicyandiamide 2.5 parts Hensyldimethylamine 0.2 parts Dimethylformamide
12 parts Methyl cellosolve 12 parts Methyl ethyl ketone 25 parts Aluminum hydroxide 50 parts (inorganic filler) Example 2 E-glass chopped strands with a fiber diameter of 13 μm and an average fiber length of 251 m1 were dispersed into monofilaments using high-speed rotating rolls and air laid. A web was formed using this method. Furthermore, a water stream with a pressure of 4 kg/cIIN was applied to the web from a slit nozzle, and the web was bonded with an epoxy resin binder to produce a glass fiber nonwoven fabric.

作成した不織布の特性を表−2に示す。また、実施例と
同様な積層板を作成した。得られた積層板の特性を表−
3に示す。
Table 2 shows the properties of the produced nonwoven fabric. In addition, a laminate similar to that of the example was created. The properties of the obtained laminate are shown below.
Shown in 3.

比較例1 オリベスト製: 5ASO51のガラス繊維不織布の特
性を表−2に示す。
Comparative Example 1 Properties of glass fiber nonwoven fabric manufactured by Olivest: 5ASO51 are shown in Table 2.

次に実施例1と同様な積層板を作成した。得られた積層
板の特性を表−3に示す。
Next, a laminate similar to that in Example 1 was created. Table 3 shows the properties of the obtained laminate.

比較例2 繊維径13μm、平均繊維長15閣のEガラスチョツプ
ドストランドを高速回転ロールによりモノフィラメント
状に分散し、エアレイ方式でウェブを形成した。さらに
スリットノズルより圧力4kg / cfflの水流を
ウェブにあて、エポキシ樹脂バインダーで結合させ、ガ
ラス繊維不織布を作成した。
Comparative Example 2 E-glass chopped strands having a fiber diameter of 13 μm and an average fiber length of 15 μm were dispersed into monofilament shapes using high-speed rotating rolls, and a web was formed using an air-lay method. Furthermore, a water stream with a pressure of 4 kg/cffl was applied to the web from a slit nozzle, and the web was bonded with an epoxy resin binder to create a glass fiber nonwoven fabric.

作成した不織布の特性を表−2に示す。The properties of the created nonwoven fabric are shown in Table 2.

また、実施例と同様な積層板を作成した。得られた積層
板の特性を表−3に示す。
In addition, a laminate similar to that of the example was created. Table 3 shows the properties of the obtained laminate.

比較例3 繊維径13μm、平均繊維長50mmのEガラスチョツ
プドストランドを高速回転ロールによりモノフィラメン
ト状に分散し、エアレイ方式でウェブを形成した。さら
に、エポキシ樹脂バインダで結合させ、ガラス繊維不織
布を作成した。作成した不織布の特性を表−2に示す。
Comparative Example 3 E-glass chopped strands having a fiber diameter of 13 μm and an average fiber length of 50 mm were dispersed into monofilaments using high-speed rotating rolls to form a web using an air-lay method. Furthermore, they were bonded with an epoxy resin binder to create a glass fiber nonwoven fabric. Table 2 shows the properties of the produced nonwoven fabric.

また、実施例と同様な積層板を作成した。得られた積層
板の特性を表−3に示す。
In addition, a laminate similar to that of the example was created. Table 3 shows the properties of the obtained laminate.

(発明の効果〕 本発明のガラス繊維不織布は、前述のように構成されて
いるので、ガラス繊維不織布として高い密度及び、等方
向な優れた補強効果を有し、その結果本発明のガラス繊
維不織布を使用したFRPの寸法安定性改善向上に役立
つ。
(Effects of the Invention) Since the glass fiber nonwoven fabric of the present invention is configured as described above, it has a high density as a glass fiber nonwoven fabric and an excellent isodirectional reinforcing effect, and as a result, the glass fiber nonwoven fabric of the present invention It is useful for improving the dimensional stability of FRP using.

表 表−3 表−2 Eガラス甜度:  2.5 g/cd l)1寸法変化率−(初期寸法−加熱後寸法)/初期寸
法×100170“C230分間加熱後の寸法変化2)
・寸法変化率−(初期寸法−加熱後寸法)/初期寸法×
100昇温速度10’C/分で加熱、+70゛c4こお
ける寸法変化3) : J Is−に−6911により
測定した。
Table 3 Table 2 E glass strength: 2.5 g/cd l) 1 Dimensional change rate - (Initial dimension - Dimension after heating) / Initial dimension x 100170"C Dimensional change after heating for 30 minutes 2)
・Dimension change rate - (Initial dimension - Dimension after heating) / Initial dimension x
Heating at a temperature increase rate of 10'C/min, dimensional change at +70°C 3): Measured by -6911 on J Is-.

4):金型で打ち抜いた穴の壁粗さを顕@鏡で観察した
4): The wall roughness of the hole punched with the mold was observed using a microscope.

出願人 、旭ンユエーヘル株式会社 代理人  弁理士 川 北 武 長 手続補正書 平成 3年 6月24日Applicant: Asahi Nyuehel Co., Ltd. Agent: Patent attorney Takecho Kawakita Procedural amendment June 24, 1991

Claims (1)

【特許請求の範囲】[Claims] (1)平均長さが25mm以上であるモノフイラメント
状ガラス繊維で構成され、平均繊維体積密度が0.03
cm^3/cm^3以上であることを特徴とするガラス
繊維不織布。
(1) Consisting of monofilament glass fibers with an average length of 25 mm or more, and an average fiber volume density of 0.03
A glass fiber nonwoven fabric characterized by having a diameter of cm^3/cm^3 or more.
JP2177062A 1990-07-04 1990-07-04 Glass fiber nonwoven fabric Pending JPH0465560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2177062A JPH0465560A (en) 1990-07-04 1990-07-04 Glass fiber nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2177062A JPH0465560A (en) 1990-07-04 1990-07-04 Glass fiber nonwoven fabric

Publications (1)

Publication Number Publication Date
JPH0465560A true JPH0465560A (en) 1992-03-02

Family

ID=16024457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2177062A Pending JPH0465560A (en) 1990-07-04 1990-07-04 Glass fiber nonwoven fabric

Country Status (1)

Country Link
JP (1) JPH0465560A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148748A (en) * 1991-11-29 1993-06-15 Asahi Fiber Glass Co Ltd Glass fiber mat
WO2000029671A1 (en) * 1998-11-12 2000-05-25 Kimberly-Clark Worldwide, Inc. Method of using water-borne epoxies and urethanes in print bonding fluid and products made therefrom

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148748A (en) * 1991-11-29 1993-06-15 Asahi Fiber Glass Co Ltd Glass fiber mat
WO2000029671A1 (en) * 1998-11-12 2000-05-25 Kimberly-Clark Worldwide, Inc. Method of using water-borne epoxies and urethanes in print bonding fluid and products made therefrom
US6500289B2 (en) 1998-11-12 2002-12-31 Kimberly-Clark Worldwide, Inc. Method of using water-borne epoxies and urethanes in print bonding fluid and products made therefrom

Similar Documents

Publication Publication Date Title
WO2015108021A1 (en) Stampable sheet
TW200413604A (en) Heat-resistant synthetic fiber sheet
EP1354095B1 (en) Non-woven sheet of aramid floc
CA2455078C (en) Solid sheet material especially useful for circuit boards
KR100601061B1 (en) Wholly aromatic polyamide fiber synthetic paper sheet
JPH0465560A (en) Glass fiber nonwoven fabric
JPH08267664A (en) Manufacture of laminate
JP6641918B2 (en) Housing using fiber-reinforced plastic molded body and method of manufacturing the same
JP4276830B2 (en) Prepreg base material and multilayer printed wiring board using the same
JP2005307371A (en) Wet method nonwoven fabric, prepreg and composite material
JP6724757B2 (en) Glass fiber nonwoven fabric, composite, fiber reinforced thermoplastic resin sheet, metal-clad laminated sheet, glass fiber nonwoven fabric manufacturing method and fiber reinforced thermoplastic resin sheet manufacturing method
KR20170107483A (en) Reinforced fiber composite material
JPH038857A (en) Inorganic fiber nonwoven fabric
JP3327366B2 (en) Manufacturing method of laminated board
JP2021059811A (en) Glass cloth, prepreg, and printed wiring board
JPH0448096B2 (en)
JP2003324257A (en) Fluororesin printed wiring board and manufacturing method therefor
JP3484455B2 (en) Aromatic polyamide fiber paper
JP2001294686A (en) Prepreg, method for producing the same, and glass fiber nonwoven fabric
JP3475234B2 (en) Aromatic polyamide fiber paper
JPS59213730A (en) Conductive film and its manufacture
JPS6336943B2 (en)
JPH08174736A (en) Laminated sheet
JP2819360B2 (en) Non-woven fabric for printed circuit boards
JPH0414875B2 (en)