JPH0463004B2 - - Google Patents

Info

Publication number
JPH0463004B2
JPH0463004B2 JP59025768A JP2576884A JPH0463004B2 JP H0463004 B2 JPH0463004 B2 JP H0463004B2 JP 59025768 A JP59025768 A JP 59025768A JP 2576884 A JP2576884 A JP 2576884A JP H0463004 B2 JPH0463004 B2 JP H0463004B2
Authority
JP
Japan
Prior art keywords
powder
atomic
aln
point
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59025768A
Other languages
Japanese (ja)
Other versions
JPS60171271A (en
Inventor
Itsuro Tajima
Fumihiro Ueda
Kaoru Kawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP59025768A priority Critical patent/JPS60171271A/en
Publication of JPS60171271A publication Critical patent/JPS60171271A/en
Publication of JPH0463004B2 publication Critical patent/JPH0463004B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、粉末冶金法にて焼結体を製造する
に際して、原料粉末として用いた場合にすぐれた
焼結性を発揮する2チタンアルミニウム窒化物
(以下、Ti2AlNで示す)粉末を収率よく効率的
に製造する方法に関するものである。 従来、焼結体の原料粉末としてTi2AlN粉末が
用いられている。 このTi2AlN粉末は、通常N/Ti原子比が1の
チタン窒化物(以下TiNで示す)粉末に、所定
量、通常20〜40重量%のAl粉末、あるいはAl粉
末とTi粉末を配合し、混合した後、混合まま、
あるいは型押し成形した状態で、真空中、不活性
ガス中、あるいは窒素ガス中、800〜1300℃の温
度に加熱して反応せしめ、しかる後粉砕すること
によつて製造されている。 しかし、上記の従来方法においては、Ti2AlN
の収率が著しく低く、反応生成物はTiNを主体
とし、さらにかなりの量のTiAl、TiAl3および
AlNを含有し、Ti2AlNの収率は全体割合で30重
量%以下でしかないのが現状である。 そこで、本発明者等は、上述のような観点か
ら、収率の高いTi2AlN粉末の製造法を開発すべ
く研究を行なつた結果、上記の従来Ti2AlN粉末
の製造法において、N/Ti原子比が1のTiN粉
末を0.55〜0.96のN/Ti原子比を有するTiN(以
下TiN0.55〜0.96で示す)粉末にかえると共に、Al
粉末をTiAlやTiAl3、さらにTi2AlやTi3Alなど
のTiとAlの金属間化合物(以下、TixAly化合物
で示す)粉末にかえ、かつ前記両粉末を、これの
構成成分であるTi、Al、およびNの割合が、第
1図に示されるTi−Al−N系組成図のA点
(Ti:60原子%、Al:10原子%、N:30原子%)、
B点(Ti:30原子%、Al:40原子%、N:30原
子%)、C点(Ti:40原子%、Al:45原子%、
N:15原子%)、およびD点(Ti:65原子%、
Al:20原子%、N:15原子%)を結ぶ四辺形範
囲内にある割合に配合すると、形成される
Ti2AlNの割合が飛躍的に向上し、全体割合で90
重量%以上の高い収率を示すようになるという知
見を得たのである。 この発明は上記知見にもとづいてなされたもの
であつて、 TiN0.55〜0.96粉末と、TixAly化合物粉末とを、
これら両粉末の構成成分であるTi,Al、および
Nの割合が、第1図に示されるTi−Al−N系組
成図のA点(Ti:60原子%、Al:10原子%、
N:30原子%)、B点(Ti:30原子%、Al:40原
子%、N:30原子%)、C点(Ti:40原子%、
Al:45原子%、N:15原子%)、およびD点
(Ti:65原子%、Al:20原子%、N:15原子%)
を結ぶ四辺形範囲内にある割合に配合し、混合し
た後、混合まま、あるいは型押し成形した状態
で、真空中、不活性ガス中、あるいは窒素ス中、
800〜1300℃の温度に加熱して反応せしめ、しか
る後粉砕することによつて焼結体の原料粉末用
Ti2AlN粉末を収率よく製造する方法に特徴を有
するものである。 なお、この発明の方法において、原料粉末とし
て用いられているTiN0.55〜0.96粉末は、通常市販
されているN/Ti原子比が1のTiN粉末に、所
定割合のTi粉末を配合し、混合した後、混合ま
ま、あるいは例えば通常採用されている0.5〜
3ton/cm2の範囲内の所定圧力でプレス成形するこ
とからなる型押し成形(これはこの発明の方法に
おける型押し成形でも同じ)した状態で、例えば
10-3torr以上の真空度(この真空度はこの発明の
方法において、真空雰囲気を採用した場合も同
じ)の真空中、あるいは窒素ガス中、約1600℃の
温度で反応せしめ、しかる後粉砕することによつ
て製造されるものであり、この場合製造される
TiN0.55〜0.96粉末におけるNの調整は、主として
配合されるTi粉末の割合を調整することによつ
て行なわれ、さらにTiN0.55〜0.96粉末のN/Ti原
子比が0.55未満ではTi2AlNの合成時にTixAly
合物の形成が多くなり、一方N/Ti原子比が0.96
を越えるとAlNの形成が多くなり、いずれの場
合もTi2AlN粉末の収率低下の原因となることか
ら、N/Ti原子比を0.55〜0.96と定めたのであ
る。 また、同じくTixAly化合物粉末は、原料粉末
としてTi粉末とAl粉末を用い、これを合成せん
とする組成に応じて相互割合を調整しながら配合
し、混合した後、真空中、800〜900℃の温度に加
熱して反応せしめ、以後粉砕することによつて製
造することができるものである。 なお、上記のTiN0.55〜0.96粉末とTixAly化合物
粉末の配合割合は経験的に定めたものであつて、
これら両粉末の構成成分であるTi、Al、および
Nの割合が第1図のA点、B点、C点、およびD
点を結ぶ四辺形範囲から外れると、反応中に余剰
のAlがTiAl3として析出したり、あるいは
Ti2AlNを反応形成するのに充分なAl量がないた
めにTi単体やTiNが形成するようになつて、製
造されるTi2AlNの収率が低下するようになるの
である。 さらに、この発明の方法は、800〜1300℃の温
度で反応を行なうが、これは、800℃未満の温度
では充分な反応が行なわれず、一方1300℃を越え
た高温になると、TiNの安定性が増してくるよ
うになり、この結果Ti2AlNの生成反応が抑制さ
れるようになつて、Ti2AlNの高い収率を確保す
るのが困難になるという理由にもとづくものであ
り、この場合反応時間は反応温度にもよるが、5
〜120分が望ましく、5分未満の反応時間では反
応がほとんど進まず、一方反応自体に必要な時間
は量の多少にかかわらず、90分程度なので、経済
性を考慮して120分を越える反応時間は必要でな
いからである。 実施例 つぎに、この発明の方法を実施例により具体的
に説明する。 原料粉末として、いずれも0.8〜1.2μmの範囲内
の所定の平均粒径を有する、N/Ti原子比がそ
れぞれ0.50、0.60、0.72、0.84、0.96、および1.00
(市販)のチタン窒化物粉末、TiとAlの金属間化
合物粉末としてのTiAl3粉末(Ti:37重量%含
有)、TiAl粉末(Ti:68重量%含有)、および
Ti3Al粉末(Ti:84重量%含有)、さらにAl粉末
およびTi粉末を用意し、これら原料粉末をそれ
ぞれ第1表に示される配合組成に配合し、ボール
ミルにて4時間混合した後、第1表に示される条
件(成形体は1ton/cm2の圧力でプレス成形して20
mm×20mm×20mmの寸法としたもの)で反応せし
め、反応後ボールミルで粉砕することにより本発
明法1〜9、比較法1〜4、および従来法1、2
をそれぞれ実施し、Ti2AlN粉末を製造した。 なお、比較法1〜4は、いずれも製造条件のう
ちのいずれかの条件(第1表に*印を付す)がこ
This invention aims to improve the yield of 2 titanium aluminum nitride (hereinafter referred to as Ti 2 AlN) powder, which exhibits excellent sinterability when used as a raw material powder when producing a sintered body using a powder metallurgy method. It concerns a method of manufacturing well and efficiently. Conventionally, Ti 2 AlN powder has been used as a raw material powder for sintered bodies. This Ti 2 AlN powder is made by blending titanium nitride (hereinafter referred to as TiN) powder with a N/Ti atomic ratio of 1 with a predetermined amount, usually 20 to 40% by weight, of Al powder, or Al powder and Ti powder. , after mixing, leave mixed,
Alternatively, it is manufactured by heating the molded product to a temperature of 800 to 1300° C. in a vacuum, inert gas, or nitrogen gas to cause a reaction, and then pulverizing it. However, in the above conventional method, Ti 2 AlN
The yield of
Currently, the yield of Ti 2 AlN is less than 30% by weight as a whole. Therefore, from the above-mentioned viewpoint, the present inventors conducted research to develop a method for producing Ti 2 AlN powder with high yield, and found that in the conventional method for producing Ti 2 AlN powder, /Ti atomic ratio of 1 is changed to TiN powder having an N/Ti atomic ratio of 0.55 to 0.96 (hereinafter referred to as TiN 0.55 to 0.96 ), and Al
The powder is changed to powder of TiAl, TiAl 3 , or an intermetallic compound of Ti and Al such as Ti 2 Al or Ti 3 Al (hereinafter referred to as Ti x Al y compound), and both of the powders are mixed with the constituent components of this powder. A certain proportion of Ti, Al, and N is at point A of the Ti-Al-N system composition diagram shown in Figure 1 (Ti: 60 atomic %, Al: 10 atomic %, N: 30 atomic %),
Point B (Ti: 30 atomic%, Al: 40 atomic%, N: 30 atomic%), C point (Ti: 40 atomic%, Al: 45 atomic%,
N: 15 at%), and point D (Ti: 65 at%,
Al: 20 atomic %, N: 15 atomic %) are mixed in a certain proportion within the rectangular range connecting them.
The proportion of Ti 2 AlN has improved dramatically, with the overall proportion reaching 90
They obtained the knowledge that the yield was as high as 1% by weight or higher. This invention was made based on the above knowledge, and includes TiN 0.55 to 0.96 powder and Ti x Al y compound powder,
The proportions of Ti, Al, and N, which are the constituent components of these two powders, are determined at point A of the Ti-Al-N system composition diagram shown in Figure 1 (Ti: 60 atomic %, Al: 10 atomic %,
N: 30 atomic%), B point (Ti: 30 atomic%, Al: 40 atomic%, N: 30 atomic%), C point (Ti: 40 atomic%,
Al: 45 at%, N: 15 at%), and point D (Ti: 65 at%, Al: 20 at%, N: 15 at%)
After mixing, the mixture is mixed in a proportion within a rectangular range that connects the
By heating to a temperature of 800 to 1300℃ to cause a reaction, and then crushing, it is used as a raw material powder for sintered bodies.
This method is characterized by a method for producing Ti 2 AlN powder with good yield. In addition, in the method of this invention, the TiN 0.55 to 0.96 powder used as the raw material powder is obtained by blending and mixing a predetermined proportion of Ti powder with a commercially available TiN powder with an N/Ti atomic ratio of 1. After that, leave the mixture as is, or e.g. 0.5~
In a state of press molding (this is the same for the press molding in the method of this invention) by press molding at a predetermined pressure within the range of 3 ton/cm 2 , for example,
React at a temperature of about 1600°C in a vacuum with a degree of vacuum of 10 -3 torr or more (this degree of vacuum is the same even when a vacuum atmosphere is adopted in the method of this invention) or nitrogen gas, and then crush it. manufactured by, in this case manufactured by
Adjustment of N in TiN 0.55-0.96 powder is mainly done by adjusting the ratio of Ti powder to be blended, and if the N/Ti atomic ratio of TiN 0.55-0.96 powder is less than 0.55, synthesis of Ti 2 AlN is performed. At times, the formation of Ti x Al y compounds increases, while when the N/Ti atomic ratio is 0.96
If the ratio exceeds 0.25%, the formation of AlN increases, which in any case causes a decrease in the yield of Ti 2 AlN powder. Therefore, the N/Ti atomic ratio was set at 0.55 to 0.96. Similarly, the Ti x Al y compound powder uses Ti powder and Al powder as raw material powders, and mixes them while adjusting the mutual ratio depending on the composition to be synthesized. After mixing, it is heated in a vacuum at It can be produced by heating it to a temperature of 900°C to cause a reaction, and then pulverizing it. The above blending ratio of TiN 0.55 to 0.96 powder and Ti x Al y compound powder was determined empirically.
The proportions of Ti, Al, and N, which are the constituent components of both powders, are at points A, B, C, and D in Figure 1.
Outside the rectangular range connecting the points, excess Al may precipitate as TiAl 3 during the reaction, or
Since there is not enough Al to react and form Ti 2 AlN, elemental Ti and TiN are formed, resulting in a decrease in the yield of Ti 2 AlN produced. Furthermore, the method of the present invention performs the reaction at a temperature of 800 to 1300°C, which is because the reaction does not occur sufficiently at temperatures below 800°C, while at high temperatures exceeding 1300°C, the stability of TiN decreases. This is based on the reason that the Ti 2 AlN production reaction is suppressed and it becomes difficult to secure a high yield of Ti 2 AlN. The reaction time depends on the reaction temperature, but
A reaction time of ~120 minutes is desirable; if the reaction time is less than 5 minutes, the reaction will hardly proceed; on the other hand, the time required for the reaction itself is about 90 minutes, regardless of the amount, so in consideration of economic efficiency, a reaction time of more than 120 minutes is recommended. This is because time is not necessary. EXAMPLES Next, the method of the present invention will be specifically explained using examples. As raw material powders, each has a predetermined average particle size within the range of 0.8 to 1.2 μm, and the N/Ti atomic ratio is 0.50, 0.60, 0.72, 0.84, 0.96, and 1.00, respectively.
(commercially available) titanium nitride powder, TiAl 3 powder (containing 37% by weight of Ti) as intermetallic compound powder of Ti and Al, TiAl powder (containing 68% by weight of Ti), and
Ti 3 Al powder (Ti: 84% by weight content), Al powder and Ti powder were prepared, and these raw material powders were blended into the composition shown in Table 1, mixed in a ball mill for 4 hours, and then Conditions shown in Table 1 (the molded body was press-formed at a pressure of 1 ton/cm 2 and
mm x 20 mm x 20 mm), and after the reaction, by pulverizing with a ball mill, methods 1 to 9 of the present invention, comparative methods 1 to 4, and conventional methods 1 and 2.
were conducted to produce Ti 2 AlN powder. In addition, for Comparative Methods 1 to 4, any of the manufacturing conditions (marked with an asterisk in Table 1) is as follows.

【表】 の発明の範囲から外れたものである。 ついで、この結果得られた反応生成物中の
Ti2AlNの収率をX線回析のピーク強度により測
定し、第1表に示した。 第1表に示される結果から、本発明法1〜9で
は、従来法1、2に比して、いずれの場合も著し
く高いTi2AlN粉末の収率を示すのに対して、比
較法1〜4に見られるように、製造条件のうちの
いずれかの条件でもこの発明の範囲から外れると
Ti2AlN粉末は低い収率でしか得られないことが
明らかである。 上述のように、この発明の方法によれば、きわ
めて高い収率でTi2AlN粉末を製造することがで
き、しかも製造されたTi2AlN粉末は焼結性にす
ぐれているので。Ti2AlN焼結体の製造に用いた
場合に低温焼結で、マイクロビツカース硬さで
1500以上の高硬度焼結体を製造することができる
ほか、立方晶窒化硼素基セラミツクスや窒化チタ
ン基セラミツクスなどの粉末冶金法による製造に
焼結助剤として用いると、巣やミクロポアのない
均質な焼結体が得られるなど有用な効果をもたら
すものである。
[Table] is outside the scope of the invention. Then, in the reaction product obtained as a result,
The yield of Ti 2 AlN was measured by the peak intensity of X-ray diffraction and is shown in Table 1. From the results shown in Table 1, methods 1 to 9 of the present invention all show significantly higher yields of Ti 2 AlN powder than conventional methods 1 and 2, whereas comparative method 1 ~4, if any of the manufacturing conditions fall outside the scope of this invention.
It is clear that Ti 2 AlN powder can only be obtained in low yield. As described above, according to the method of the present invention, Ti 2 AlN powder can be produced in an extremely high yield, and the produced Ti 2 AlN powder has excellent sinterability. When used in the production of Ti 2 AlN sintered bodies, it can be sintered at low temperatures and has micro-Vickers hardness.
In addition to producing high-hardness sintered bodies with a hardness of 1500 or more, when used as a sintering aid in the production of cubic boron nitride-based ceramics and titanium nitride-based ceramics by powder metallurgy, it can produce homogeneous sintered bodies without cavities or micropores. This brings about useful effects such as obtaining a sintered body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は原料粉末のTiN0.55〜0.96粉末とTixAly
化合物粉末の配合割合を示すTi−Al−N系組成
図である。
Figure 1 shows the raw material TiN 0.55-0.96 powder and Ti x Al y.
It is a Ti-Al-N system composition diagram showing the blending ratio of compound powder.

Claims (1)

【特許請求の範囲】[Claims] 1 0.55〜0.96のN/Ti原子比を有するチタン窒
化物粉末と、TiとAlの金属間化合物粉末とを、
これら両粉末の構成成分であるTi、Al、および
Nの割合が、第1図に示されるTi−Al−N系組
成図のA点(Ti:60原子%、Al:10原子%、
N:30原子%)、B点(Ti:30原子%、Al:40原
子%、N:30原子%)、C点(Ti:40原子%、
Al:45原子%、N:15原子%)、およびD点
(Ti:65原子%、Al:20原子%、N:15原子%)
を結ぶ四辺形範囲内にある割合に配合し、混合し
た後、混合まま、あるいは型押し成形した状態
で、真空中、不活性ガス中、あるいは窒素ガス
中、800〜1300℃の温度に加熱して反応せしめ、
しかる後粉砕することを特徴とする焼結体の原料
粉末用2チタンアルミニウム窒化物粉末の製造
法。
1 Titanium nitride powder having an N/Ti atomic ratio of 0.55 to 0.96 and intermetallic compound powder of Ti and Al,
The proportions of Ti, Al, and N, which are the constituent components of these two powders, are determined at point A of the Ti-Al-N composition diagram shown in Figure 1 (Ti: 60 atomic %, Al: 10 atomic %,
N: 30 atomic%), B point (Ti: 30 atomic%, Al: 40 atomic%, N: 30 atomic%), C point (Ti: 40 atomic%,
Al: 45 at%, N: 15 at%), and point D (Ti: 65 at%, Al: 20 at%, N: 15 at%)
After mixing, the mixture is heated to a temperature of 800 to 1300℃ in a vacuum, inert gas, or nitrogen gas, either as mixed or in a molded state. and react,
A method for producing di-titanium aluminum nitride powder for use as a raw material powder for a sintered body, which is then pulverized.
JP59025768A 1984-02-14 1984-02-14 Manufacture of ti2aln Granted JPS60171271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59025768A JPS60171271A (en) 1984-02-14 1984-02-14 Manufacture of ti2aln

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59025768A JPS60171271A (en) 1984-02-14 1984-02-14 Manufacture of ti2aln

Publications (2)

Publication Number Publication Date
JPS60171271A JPS60171271A (en) 1985-09-04
JPH0463004B2 true JPH0463004B2 (en) 1992-10-08

Family

ID=12175016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59025768A Granted JPS60171271A (en) 1984-02-14 1984-02-14 Manufacture of ti2aln

Country Status (1)

Country Link
JP (1) JPS60171271A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4788167A (en) * 1986-11-20 1988-11-29 Minnesota Mining And Manufacturing Company Aluminum nitride/aluminum oxynitride/group IVB metal nitride abrasive particles derived from a sol-gel process
US6022823A (en) * 1995-11-07 2000-02-08 Millennium Petrochemicals, Inc. Process for the production of supported palladium-gold catalysts
CN109734452B (en) * 2019-03-15 2021-08-31 济南大学 Pressureless sintering preparation of high-density Ti2Method for preparing AlN ceramic

Also Published As

Publication number Publication date
JPS60171271A (en) 1985-09-04

Similar Documents

Publication Publication Date Title
EP0166073B1 (en) Aluminum nitride sintered body
US4440707A (en) Process for producing silicon nitride sintered products having high toughness
US5773733A (en) Alumina-aluminum nitride-nickel composites
US4376652A (en) High density high strength Si3 N4 ceramics prepared by pressureless sintering of amorphous Si3 N4 powder and Ti
JPH0463004B2 (en)
JPH0625039B2 (en) Silicon nitride sintered body and method for manufacturing the same
GB2172882A (en) Process for preparation of high a-type silicon nitride powder
US4704372A (en) High-strength molybdenum silicide-based ceramic material and process for producing the same
JPS6317210A (en) Production of aluminum nitride powder
JP2872528B2 (en) Silicon nitride powder
JPH01264914A (en) Production of aluminum nitride powder and powder composition
JPH08225311A (en) Silicon nitride/silicon carbide complex powder, complex molding, their production and production of sintered compact of silicon nitride/silicon carbide complex
JPH06279124A (en) Production of silicon nitride sintered compact
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JPS60131865A (en) Manufacture of silicon nitride ceramics
JP2004292176A (en) Combined ceramic and and method of manufacturing the same
JP2792095B2 (en) Method for producing high-strength silicon nitride sintered body
JPS6355165A (en) Tib2 base sintering material and manufacture
JPS61227908A (en) Preparation of raw material powder for sintered silicon nitride
JPH06120568A (en) Manufacture of thermoelectric converting material
JPH05147909A (en) Production of aluminum nitride powder
JP2510705B2 (en) Method for producing transparent aluminum oxynitride composite sintered body
JP3492648B2 (en) TiN-Al2O3-based sintered body
JPH0681076A (en) Production of betafesi2
JPS6227004B2 (en)