JPH0462997B2 - - Google Patents

Info

Publication number
JPH0462997B2
JPH0462997B2 JP29339689A JP29339689A JPH0462997B2 JP H0462997 B2 JPH0462997 B2 JP H0462997B2 JP 29339689 A JP29339689 A JP 29339689A JP 29339689 A JP29339689 A JP 29339689A JP H0462997 B2 JPH0462997 B2 JP H0462997B2
Authority
JP
Japan
Prior art keywords
reaction force
load
pressure
valve
operation reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP29339689A
Other languages
Japanese (ja)
Other versions
JPH02169495A (en
Inventor
Yukio Hidaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP29339689A priority Critical patent/JPH02169495A/en
Publication of JPH02169495A publication Critical patent/JPH02169495A/en
Publication of JPH0462997B2 publication Critical patent/JPH0462997B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、クレーンのウインチを駆動する油圧
モータ等のアクチユエータの操作レバーに作業状
態に応じた操作反力を付与する操作力制御装置に
関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an operating force control device that applies an operating reaction force according to the working state to an operating lever of an actuator such as a hydraulic motor that drives a winch of a crane. It is.

〔従来の技術〕[Conventional technology]

従来、ウインチの吊り荷重に応じて操作レバー
に操作反力を付与する手段として、たとえば実開
昭55−14199号公報に示されているように、遠隔
操作弁(パイロツト弁)に巻上げと巻下げの各操
作反力用シリンダを一体的に連設し、ウインチ用
油圧モータ管路から取出した負荷圧力を上記各シ
リンダのピストン背面に形成した圧力室に入力さ
せ、その圧力でピストンに連設したロツドを押出
して、レバーに連設した操作部に接触させること
により、レバーに操作反力すなわちレバーを中立
に戻そうとする力を付与するようにしたものが知
られている。
Conventionally, as a means of applying operational reaction force to the operating lever according to the suspended load of the winch, for example, as shown in Japanese Utility Model Application Publication No. 55-14199, a remote control valve (pilot valve) is used for hoisting and lowering. The cylinders for each operation reaction force are integrally connected, and the load pressure taken out from the winch hydraulic motor conduit is inputted into the pressure chamber formed on the back surface of the piston of each cylinder, and the cylinder is connected to the piston using that pressure. It is known that a rod is pushed out and brought into contact with an operating portion connected to the lever, thereby applying an operation reaction force to the lever, that is, a force that attempts to return the lever to the neutral position.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の装置では各操作反力用シリンダの直
径(受圧面積)が一定不変であり、各シリンダの
ピストン背面に形成された圧力室に、モータ管路
から取出した負荷圧力をそのまま入力させて操作
反力を制御するものであるため、巻上げ時の操作
反力F1および巻下げ時の操作反力F2が第5図の
実線イ,ロに示すように負荷圧力に比例して常に
一定の制御勾配で制御されることになる。
In the conventional device described above, the diameter (pressure receiving area) of each cylinder for operation reaction force remains constant, and the load pressure taken from the motor pipe is directly input into the pressure chamber formed on the back surface of the piston of each cylinder. Since it controls the reaction force, the operating reaction force F 1 during hoisting and the operating reaction force F 2 during lowering are always constant in proportion to the load pressure, as shown by solid lines A and B in Figure 5. It will be controlled by a control gradient.

この場合、たとえば巻上げ時において、負荷圧
力が最大値Pmaxのときに操作反力Fがレバー操
作可能な最大値Fmaxを越えないように上記受圧
面積を設定すると、負荷圧力が小さい範囲(軽負
荷時)では操作反力の変化が小さく、オペレータ
が感知しにくく、操作性が悪くなる。また、軽負
荷時の操作性を良くするために、上記シリンダの
受圧面積を大きくして第5図の破線ハに示すよう
に負荷圧力の変化量に比べて操作反力の変化量が
大きくなるように制御すると、負荷圧力が大きく
なつた場合に操作反力が大きくなり過ぎて、レバ
ーの操作可能最大値Fmaxを越えてしまい、操作
できなくなる。
In this case, for example, during hoisting, if the above pressure receiving area is set so that when the load pressure is the maximum value Pmax, the operation reaction force F does not exceed the maximum value Fmax that can be operated by the lever, ), the change in operation reaction force is small, making it difficult for the operator to sense it, resulting in poor operability. In addition, in order to improve operability under light loads, the pressure-receiving area of the cylinder is increased, and as shown by the broken line C in Figure 5, the amount of change in operating reaction force becomes larger than the amount of change in load pressure. If the lever is controlled in this way, when the load pressure increases, the operation reaction force becomes too large, exceeding the lever's maximum operable value Fmax, and the lever cannot be operated.

本発明の目的は、油圧式制御によつて、負荷圧
力の大きさ等、負荷の作動状態に応じた適正な反
力制御を可能にし、オペレータが負荷の変化、と
くに動き始めを容易に手で感知できるようにし、
かつ、負荷圧力が大きくなつた場合であつても、
操作反力が大きくなり過ぎることを防止し、容易
に操作できる操作反力制御装置を提供することを
目的としている。
An object of the present invention is to enable appropriate reaction force control according to the operating state of the load, such as the magnitude of load pressure, using hydraulic control, and to enable the operator to easily control changes in the load, especially the start of movement, by hand. make it perceivable,
And even if the load pressure increases,
It is an object of the present invention to provide an operation reaction force control device that prevents operation reaction force from becoming too large and that can be easily operated.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的達成のために、本発明に係る操作反力
制御装置は、固定部材に回動自在に支持された操
作レバーと、レバーの負荷上げ操作方向および負
荷下げ操作方向に対向して配置されてレバーに操
作反力を付与する一対の反力シリンダとを有し、
両シリンダは、負荷の作動状態に応じた反力制御
用油圧信号を入力する圧力室を備え、両シリンダ
のうち、少なくとも負荷上げ操作反力用シリンダ
の圧力室が、受圧面積の異なる複数の室に分けら
れ、それらの室に対して上記油圧信号を選択的に
入力させる選択弁が設けられた構成としている。
In order to achieve the above object, the operation reaction force control device according to the present invention includes an operation lever rotatably supported by a fixed member, and the lever is disposed opposite to each other in a load increasing operation direction and a load lowering operation direction of the lever. It has a pair of reaction force cylinders that apply operation reaction force to the lever,
Both cylinders are equipped with a pressure chamber into which a hydraulic pressure signal for reaction force control is input in accordance with the operating state of the load, and among both cylinders, at least the pressure chamber of the cylinder for load increase operation reaction force has a plurality of chambers with different pressure receiving areas. The hydraulic pressure signal is divided into two chambers, and a selection valve is provided for selectively inputting the oil pressure signal to these chambers.

また、本発明は、負荷の上げ操作用減圧弁と下
げ操作用減圧弁とを有するパイロツト弁と、パイ
ロツト弁に回動自在に支持され上記各減圧弁を選
択的に操作する操作部を備えた操作レバーと、上
記各減圧弁に隣接し上記操作部に対向して配置さ
れた上げ操作反力用シリンダおよび下げ操作反力
用シリンダとを有し、両シリンダは、負荷の作動
状態に応じた反力制御用油圧信号を入力する圧力
室を備え、両シリンダのうち、少なくとも負荷上
げ操作反力用シリンダの圧力室が受圧面積の異な
る複数の室に分けられ、それらの室に対して上記
油圧信号を選択的に入力させる選択弁が設けられ
ている。
The present invention also provides a pilot valve having a pressure reducing valve for increasing the load and a pressure reducing valve for decreasing the load, and an operating section rotatably supported by the pilot valve for selectively operating each of the pressure reducing valves. It has an operation lever, and a cylinder for raising operation reaction force and a cylinder for lowering operation reaction force, which are arranged adjacent to each of the pressure reducing valves and facing the operation part, and both cylinders are arranged according to the operating state of the load. It is equipped with a pressure chamber into which a hydraulic pressure signal for reaction force control is input, and among both cylinders, at least the pressure chamber of the cylinder for load increase operation reaction force is divided into a plurality of chambers with different pressure receiving areas, and the above hydraulic pressure is applied to these chambers. A selection valve is provided for selectively inputting signals.

この構成において、パイロツト弁が、吊荷の巻
上げ、巻下げを制御する方向制御弁を切換えるた
めのものである。
In this configuration, the pilot valve is for switching the directional control valve that controls hoisting and lowering of the suspended load.

上記反力制御用油圧信号として上記レバーによ
り操作されるアクチユエータの負荷圧力を反力室
に入力させるように構成される。
The load pressure of the actuator operated by the lever is inputted into the reaction force chamber as the reaction force control hydraulic signal.

負荷上げ操作反力用シリンダの圧力室に、上記
反力制御用油圧信号の上限を規制するリリーフ弁
が接続される。
A relief valve that regulates the upper limit of the reaction force control hydraulic pressure signal is connected to the pressure chamber of the load increase operation reaction force cylinder.

上記リリーフ弁には設定値調節可能な可変リリ
ーフ弁が用いられる。
A variable relief valve whose set value can be adjusted is used as the relief valve.

〔作用〕[Effect]

上記の構成により、油圧方式で操作反力が適正
に制御される。とくに、軽負荷作業時には選択弁
を介して操作反力用シリンダの受圧面積の大きい
圧力室に油圧信号を入力させることにより、シリ
ンダの感度が高められ、負荷の変化量に比べて操
作反力の変化量が大きくなり、負荷の変化がオペ
レータに敏感に感知される。一方、重負荷作業時
には選択弁を介して上記シリンダの受圧面積の小
さい圧力室にも上記油圧信号を入力させることに
より、操作反力の変化量が小さくなり、操作反力
が必要以上に大きくなることが防止され、操作可
能な範囲で負荷の変化がオペレータに比較的容易
に感知される。
With the above configuration, the operation reaction force is appropriately controlled using a hydraulic system. In particular, during light load work, by inputting a hydraulic signal to the pressure chamber with a large pressure-receiving area of the operation reaction force cylinder via the selection valve, the sensitivity of the cylinder is increased, and the operation reaction force is smaller than the amount of change in load. The amount of change becomes large, and changes in load are more sensitively sensed by the operator. On the other hand, during heavy load work, by inputting the above hydraulic signal to the pressure chamber with a small pressure receiving area of the above cylinder via the selection valve, the amount of change in the operation reaction force becomes small, and the operation reaction force becomes larger than necessary. This allows the operator to relatively easily sense changes in load within the operable range.

また、上記各操作反力シリンダをパイロツト弁
に連設することによつて、操作反力の制御時の力
の伝達ロスが少なく、制御精度が高められ、操作
性が向上される。
Furthermore, by connecting each of the operation reaction force cylinders to the pilot valve, force transmission loss during control of operation reaction force is reduced, control accuracy is increased, and operability is improved.

また、リリーフ弁の使用により操作反力が過大
になることが防止され、常に適正に操作され、さ
らに、可変リリーフ弁の使用により操作反力の最
大値を任意に設定できてオペレータの好みに応じ
た反力制御が可能となる。
In addition, the use of a relief valve prevents the operational reaction force from becoming excessive and ensures proper operation at all times.Furthermore, the use of a variable relief valve allows the maximum value of the operational reaction force to be set arbitrarily to suit the operator's preference. This makes it possible to control the reaction force.

〔実施例〕〔Example〕

第1図は本発明の実施例を示すものであり、こ
の図において、1は油圧ポンプ、2は方向切換
弁、3はウインチ用油圧モータ、11はメインリ
リーフ弁、12はタンク、32はカウンタバラン
ス弁を示す。
FIG. 1 shows an embodiment of the present invention. In this figure, 1 is a hydraulic pump, 2 is a directional control valve, 3 is a winch hydraulic motor, 11 is a main relief valve, 12 is a tank, and 32 is a counter. Balance valve shown.

方向切換弁2はパイロツト式切換弁であり、こ
の方向切換弁2を切換えるためにパイロツト弁4
が設けられている。パイロツト弁4は巻上げ操作
用と巻下げ操作用の左右一対の減圧弁5,5′と、
操作レバー6とを備えている。レバー6はパイロ
ツト弁4の弁ケースに枢軸61を介して左右に回
動自在に支持され、レバ6の左右に両減圧弁5,
5′に対応する操作部62,62′が設けられてい
る。両減圧弁5,5′の一次側はパイロツト油圧
源51に接続され、二次側はパイロツト油路2
1,21′を介して上記方向切換弁2の切換え用
パイロツト部にそれぞれ接続されている。
The directional switching valve 2 is a pilot type switching valve, and the pilot valve 4 is used to switch the directional switching valve 2.
is provided. The pilot valve 4 includes a pair of left and right pressure reducing valves 5, 5' for hoisting operation and lowering operation,
It is equipped with an operating lever 6. The lever 6 is supported by the valve case of the pilot valve 4 via a pivot 61 so as to be rotatable left and right.Both pressure reducing valves 5,
Operating portions 62, 62' corresponding to 5' are provided. The primary sides of both pressure reducing valves 5, 5' are connected to the pilot oil pressure source 51, and the secondary sides are connected to the pilot oil line 2.
1 and 21', respectively, to the switching pilot section of the directional switching valve 2.

巻上げおよび巻下げの各操作反力用シリンダ
7,7′は通常、パイロツト弁4の弁ケースに一
体的に連設されるが、パイロツト弁4と別個に形
成してもよい。巻上げ側の操作反力用シリンダ7
のヘツド側圧力室71にはモータ3の巻上げ供給
側の油路31から分岐した反力制御用油路8が接
続されるとともに、ヘツド側圧力室71とロツド
側圧力室72との間に選択弁81が設けられ、か
つ、油路8の途中に絞り82を介して可変リリー
フ弁83が接続されている。リリーフ弁83は固
定リリーフ弁でもよい。巻下げ側の操作反力用シ
リンダ7′のヘツド側圧力室71′にはモータ3の
巻下げ供給側油路31′から分岐した反力制御用
油路81′が接続され、そのロツド側圧力室7
2′はタンク12に連通されている。
The cylinders 7, 7' for reaction forces for hoisting and hoisting are usually integrally connected to the valve case of the pilot valve 4, but they may be formed separately from the pilot valve 4. Cylinder 7 for operation reaction force on the winding side
A reaction force control oil passage 8 branched from the oil passage 31 on the hoisting and supply side of the motor 3 is connected to the head side pressure chamber 71, and a selected oil passage is connected between the head side pressure chamber 71 and the rod side pressure chamber 72. A valve 81 is provided, and a variable relief valve 83 is connected in the middle of the oil passage 8 via a throttle 82 . The relief valve 83 may be a fixed relief valve. A reaction force control oil passage 81' branched from the lowering supply side oil passage 31' of the motor 3 is connected to the head side pressure chamber 71' of the operation reaction force cylinder 7' on the lowering side, and the rod side pressure is Room 7
2' is connected to the tank 12.

上記の構成において、レバー6が中立のとき
は、パイロツト弁4の両減圧弁5,5′が中立で、
方向切換弁2も中立に保持され、モータ3はカウ
ンタバランス弁32により停止状態に保持されて
いる。このとき各反力シリンダ7,7′の各圧力
室71,71′の圧力がタンク圧であり、レバー
6に操作反力は作用しない。
In the above configuration, when the lever 6 is neutral, both pressure reducing valves 5, 5' of the pilot valve 4 are neutral,
The directional control valve 2 is also held neutral, and the motor 3 is held stopped by a counterbalance valve 32. At this time, the pressure in each pressure chamber 71, 71' of each reaction force cylinder 7, 7' is the tank pressure, and no operational reaction force acts on the lever 6.

次に、レバー6を巻上げ方向に操作すると、レ
バー6の操作部62により巻上げ操作用減圧弁5
のプツシユロツド52が押し下げられ、この減圧
弁5の二次側のパイロツト油路21にレバー操作
量に応じたパイロツト圧が出力され、方向切換弁
2が巻上げ位置に切換えられる。これによりポン
プ1の吐出油が実線矢印方向に導かれ、カウンタ
バランス弁32を経てモータ3に流入され、モー
タ3が正転される。そして、モータ3の連結され
たウインチドラム(図示省略)が巻上げ方向に回
転され、吊荷が巻上げられる。
Next, when the lever 6 is operated in the winding direction, the operating part 62 of the lever 6 operates the winding operation pressure reducing valve 5.
The push rod 52 is pushed down, a pilot pressure corresponding to the amount of lever operation is output to the pilot oil passage 21 on the secondary side of the pressure reducing valve 5, and the directional control valve 2 is switched to the hoisting position. As a result, the oil discharged from the pump 1 is guided in the direction of the solid line arrow, flows into the motor 3 via the counterbalance valve 32, and the motor 3 is rotated in the normal direction. Then, a winch drum (not shown) connected to the motor 3 is rotated in the hoisting direction, and the suspended load is hoisted.

この巻上げ操作時において、選択弁81を図示
の位置に保持しておくと、モータ3の巻上げ側の
油路31の圧力すなわち巻上げ負荷圧力Paが油
路8を経てシリンダ7のヘツド側圧力室71に入
力され、その圧力Paでピストン73に連結され
たロツド74が突出するように付勢され、その突
出力が操作反力Faとしてレバー6の巻上げ側の
操作部62に作用する。このとき選択弁81が図
示の位置にあるので、ロツド側圧力室72内の油
はそのままタンク12に流出される。このため、
ピストン73のヘツド側の受圧面積をA1とする
と、レバー6に作用する操作反力Faは、Fa=Pa
×A1となり、モータ3の負荷圧力Paに応じてた
とえば第2図の実線に示すように制御される。
During this hoisting operation, if the selection valve 81 is held at the position shown in the figure, the pressure in the oil passage 31 on the hoisting side of the motor 3, that is, the hoisting load pressure Pa, is transferred to the head side pressure chamber 71 of the cylinder 7 via the oil passage 8. The rod 74 connected to the piston 73 is urged to protrude by the pressure Pa, and the protrusion force acts on the winding side operating portion 62 of the lever 6 as an operation reaction force Fa. At this time, since the selection valve 81 is in the position shown, the oil in the rod side pressure chamber 72 is directly discharged into the tank 12. For this reason,
Assuming that the pressure receiving area on the head side of the piston 73 is A1 , the operation reaction force Fa acting on the lever 6 is Fa=Pa
×A 1 , and is controlled in accordance with the load pressure Pa of the motor 3, for example, as shown by the solid line in FIG.

上記の制御はとくに負荷圧力Paが低い(軽負
荷)作業が多い場合に有効であり、負荷圧力Pa
に応じて変化する操作反力Faの制御勾配が急勾
配となり、僅かな負荷圧力Paの変化を大きな操
作反力Faの変化に変換でき、負荷圧力Paの変化
すなわち負荷の動きをレバー6を通してオペレー
タが敏感に手で感知でき、負荷の動き始めを確実
に感知でき、オペレータから負荷が見えない位置
での作業でも安全に作業できる。
The above control is particularly effective when there is a lot of work with low load pressure Pa (light load), and the load pressure Pa
The control gradient of the operation reaction force Fa, which changes according to It can be sensitively sensed by hand, and the beginning of load movement can be reliably sensed, allowing the operator to work safely even in a position where the load cannot be seen.

また、上記軽負荷作業時において、負荷圧力
Paが高くなり、可変リリーフ弁83の設定圧以
上になるとその圧力がリリーフ弁83によりリリ
ーフされることになり、反力シリンダ7に入力さ
れる負荷圧力Paの上限がリリーフ弁83の設定
圧により規制され、これに伴つて操作反力Faの
上限がたとえば第2図の実線1に示すように制
御され、操作反力Faがレバー6による操作可能
最大値Fmaxを越えることが防止される。
In addition, during the light load work mentioned above, the load pressure
When Pa increases and exceeds the set pressure of the variable relief valve 83, the pressure is relieved by the relief valve 83, and the upper limit of the load pressure Pa input to the reaction cylinder 7 is determined by the set pressure of the relief valve 83. Accordingly, the upper limit of the operation reaction force Fa is controlled, for example, as shown by the solid line 1 in FIG. 2, and the operation reaction force Fa is prevented from exceeding the maximum value Fmax that can be operated by the lever 6.

さらにこの場合、リリーフ弁83を可変リリー
フ弁とし、その設定圧を変更することにより、反
力シリンダ7に入力される負荷圧力Paの上限す
なわち操作反力Faの上限をたとえば第2図鎖線
123のように変更することができ、作
業内容およびオペレータの好み等に応じて操作反
力Faの上限を小さくしてレバー操作を軽くでき
る。
Furthermore, in this case, by making the relief valve 83 a variable relief valve and changing its set pressure, the upper limit of the load pressure Pa input to the reaction force cylinder 7, that is, the upper limit of the operation reaction force Fa, can be adjusted, for example, by the chain line in FIG.
1 , 2 , and 3 , and the upper limit of the operation reaction force Fa can be reduced depending on the work content and the operator's preference, so that the lever operation can be made lighter.

次に、負荷圧力Paが高い(重負荷)作業が多
い場合には、選択弁81を図面左位置に切換え
る。この選択弁81は手動切換弁でもよいが、た
とえば運転室に設けたスイツチ操作により切換え
る電磁切換弁を用いるのが好都合である。この選
択弁81の切換えにより、反力シリンダ7のヘツ
ド側とロツド側の両圧力室71,72が互いに連
通される。この状態で上記と同様の巻上げ操作を
行うと、負荷圧力Paが反力シリンダ7のヘツド
側圧力室71とロツド側圧力室72の双方に入力
される。これにより反力のシリンダ7を介してレ
バー6に作用する操作反力Faは、ヘツド側の受
圧面積A1とロツド側の受圧面積A2との差と、負
荷圧力Paとの積によつて決り、Fa=Pa×(A1
A2)となり、たとえば第2図の実線のように
負荷圧力Paに応じて操作反力Faが緩い勾配で制
御される。
Next, if there are many operations where the load pressure Pa is high (heavy load), the selection valve 81 is switched to the left position in the drawing. This selection valve 81 may be a manual switching valve, but it is convenient to use an electromagnetic switching valve that is switched by operating a switch provided in the driver's cab, for example. By switching the selection valve 81, both the pressure chambers 71 and 72 on the head side and the rod side of the reaction cylinder 7 are communicated with each other. When the same hoisting operation as above is performed in this state, the load pressure Pa is input to both the head side pressure chamber 71 and the rod side pressure chamber 72 of the reaction force cylinder 7. As a result, the operation reaction force Fa acting on the lever 6 via the reaction force cylinder 7 is determined by the product of the difference between the pressure receiving area A1 on the head side and the pressure receiving area A2 on the rod side and the load pressure Pa. As a rule, Fa=Pa×(A 1
A 2 ), and the operation reaction force Fa is controlled with a gentle gradient according to the load pressure Pa, for example as shown by the solid line in FIG.

この制御により負荷圧力Paの高圧域での操作
反力Faの制御性を向上でき、負荷圧力Paの変化
を操作反力Faの変化としてオペレータが手で容
易に感知できる。なお、この重負荷作業時におい
ても、可変リリーフ弁83の設定圧を調節するこ
とにより、負荷圧力Paの最大値すなわち操作反
力Faの最大値を任意に変更でき、負荷圧力Paが
高い場合でも操作反力Faが必要以上に高くなる
ことを防止できる。
This control improves the controllability of the operation reaction force Fa in the high pressure range of the load pressure Pa, and allows the operator to easily sense a change in the load pressure Pa as a change in the operation reaction force Fa. In addition, even during this heavy load work, by adjusting the set pressure of the variable relief valve 83, the maximum value of the load pressure Pa, that is, the maximum value of the operation reaction force Fa, can be changed arbitrarily, even when the load pressure Pa is high. It is possible to prevent the operation reaction force Fa from becoming higher than necessary.

一方、レバー6を巻上げ方向に操作すれば、巻
下げ側減圧弁5′の二次側からパイロツト油路2
1′にパイロツト圧が出力され、方向切換弁2が
巻下げ位置に切換えられ、ポンプ1の吐出油が破
線矢印方向に流入され、その圧力でカウンタバラ
ンス弁32が開かれるとともに、モータ3が巻下
げ方向に回転される。このときモータ3の巻下げ
負荷圧力Pbが油路31′から油路8′を経てシリ
ンダ7′のヘツド側圧力室71′に入力され、以
下、上記と同様の作用によりレバー6に操作反力
Fbが付与される。この操作反力Fbは、反力シリ
ンダ7′のヘツド側の受圧面積をA0とすれば、Fb
=Pb×A0となる。
On the other hand, if the lever 6 is operated in the hoisting direction, the pilot oil passage 2 is opened from the secondary side of the hoisting side pressure reducing valve 5'.
Pilot pressure is output to 1', the directional control valve 2 is switched to the lowering position, the oil discharged from the pump 1 flows in the direction of the dashed arrow, the counterbalance valve 32 is opened by this pressure, and the motor 3 is lowered. rotated in the downward direction. At this time, the lowering load pressure Pb of the motor 3 is input from the oil path 31' to the oil path 8' to the head side pressure chamber 71' of the cylinder 7', and from then on, the operation reaction force is applied to the lever 6 by the same action as described above.
Fb will be given. This operation reaction force Fb is calculated by Fb
=Pb×A 0 .

なお、この巻下げ時において、負荷圧力Pbは
カウンタバランス弁32が完全に開くまで変化
し、その後は負荷圧力Pbはほぼ一定となるのが
通例であり、負荷圧力Paの変化域は巻上げ時に
比べて小さいものである。したがつて受圧面積
A0をある程度大きくし、操作反力Fbをたとえば
第2図の実線に示すように急勾配で制御するこ
とにより、負荷圧力Pbの変化域の小さい巻下げ
時であつても、その負荷圧力Pbの僅かな変化を
大きな操作反力Fbの変化として、オペレータが
敏感に感知できることになり、巻下げの操作性な
らびに安全性を向上できることになる。
In addition, during this lowering, the load pressure Pb changes until the counterbalance valve 32 is completely opened, and after that, the load pressure Pb usually remains almost constant, and the range of change in the load pressure Pa is wider than that during hoisting. It's small. Therefore, the pressure receiving area
By increasing A 0 to a certain extent and controlling the operation reaction force Fb at a steep slope as shown by the solid line in Fig. 2, the load pressure Pb can be controlled even during lowering, where the change range of the load pressure Pb is small. The operator can sensitively sense a slight change in the operation reaction force Fb as a large change in the operation reaction force Fb, thereby improving the operability and safety of lowering.

第3図は巻上げ側の操作反力用シリンダ7を段
付きシリンダとし、そのヘツド側、中間、先端側
の各圧力室71a,71b,72を選択弁81
a,81bを介して油路8に切換自在に接続した
ものである。他の構成は第1図の実施例と実質的
に同一である。
In FIG. 3, the operation reaction force cylinder 7 on the hoisting side is a stepped cylinder, and each pressure chamber 71a, 71b, 72 on the head side, middle, and tip side is a selection valve 81.
It is switchably connected to the oil passage 8 via a and 81b. The rest of the structure is substantially the same as the embodiment of FIG.

第3図の実施例において、圧力室71aの受圧
面積をAa、圧力室71bの受圧面積をAb、圧力
室72の受圧面積をAcとすると、巻上げ操作時
に、両選択弁81a,81bが図示の位置で、操
作反力Faが、Fa=Pa×Aa[第4図実線a参
照]となり、 選択弁81aのみを図面左位置に切換えると、
操作反力Faが、Fa=Pa×(Aa−Ab)[同図実線
b参照]となり、 両選択弁81a,81bを切換えると、操作反
力Faが、Fa=Pa×(Aa−Ab−Ac)[同図実線
c参照]となり、操作反力Faを負荷圧力Paに応
じて三通りに制御でき、機械の汎用性をさらに向
上できることになる。
In the embodiment shown in FIG. 3, if the pressure receiving area of the pressure chamber 71a is Aa, the pressure receiving area of the pressure chamber 71b is Ab, and the pressure receiving area of the pressure chamber 72 is Ac, then during the hoisting operation, both selection valves 81a and 81b are operated as shown in the figure. At the position, the operation reaction force Fa becomes Fa=Pa×Aa [see solid line a in Figure 4], and when only the selection valve 81a is switched to the left position in the diagram,
The operation reaction force Fa becomes Fa=Pa×(Aa-Ab) [see solid line b in the same figure], and when both selection valves 81a and 81b are switched, the operation reaction force Fa becomes Fa=Pa×(Aa-Ab-Ac). ) [see solid line c in the same figure], the operation reaction force Fa can be controlled in three ways according to the load pressure Pa, and the versatility of the machine can be further improved.

なお、巻下げ側にも巻上げ側と同様に段付きシ
リンダおよび可変リリーフ弁を用いてもよい。
Note that a stepped cylinder and a variable relief valve may be used on the lowering side as well as on the lifting side.

本発明において、操作の対象とするアクチユエ
ータは、上記実施例のウインチ用油圧モータに限
定されず、クレーンのブームホイスト用の油圧モ
ータまたは油圧シリンダ、油圧シヨベルのブー
ム、アーム、バケツト等を駆動するための油圧シ
リンダとする場合もある。これらのアクチユエー
タを操作する場合も、上記本発明の装置を適用す
ることにより、ブーム等の負荷の下げ操作時に操
作反力の変化率を大きくして、負荷の動きの感知
を容易にすることができる。
In the present invention, the actuator to be operated is not limited to the winch hydraulic motor of the above embodiment, but is used to drive the hydraulic motor or hydraulic cylinder for the boom hoist of a crane, the boom, arm, bucket, etc. of a hydraulic excavator. Sometimes it is a hydraulic cylinder. When operating these actuators, by applying the device of the present invention described above, it is possible to increase the rate of change of the operation reaction force when lowering the load of a boom, etc., making it easier to detect the movement of the load. can.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、次のような作用
効果がある。選択弁の切換えにより、操作反力用
シリンダの受圧面積を随意に変更できる。この受
圧面積の変更により、負荷圧力に応じた操作反力
の制御勾配を任意に設定でき、軽負荷、重負荷等
の作業内容に応じた反力制御を行うことができ
る。そして、オペレータが最適な状態で操作反力
を感知でき、操作性ならびに作業性を向上でき、
安全に作業できる。
As described above, the present invention has the following effects. By switching the selection valve, the pressure receiving area of the operation reaction force cylinder can be changed at will. By changing the pressure receiving area, the control gradient of the operation reaction force according to the load pressure can be arbitrarily set, and the reaction force can be controlled according to the work content such as light load or heavy load. This allows the operator to sense operational reaction forces in the optimal condition, improving operability and work efficiency.
Can work safely.

また、上記各操作反力用シリンダをパイロツト
弁に連設することによつて、操作反力の制御時の
力の伝達ロスを少なくでき、制御精度を高めるこ
とができる。
Further, by connecting each of the operation reaction force cylinders to the pilot valve, it is possible to reduce force transmission loss when controlling the operation reaction force, and improve control accuracy.

また、リリーフ弁の使用により操作反力の上限
を規制でき、レバー操作が必要以上に重くならな
いように調節でき、操作性を一層向上できる。
Furthermore, by using a relief valve, the upper limit of the operation reaction force can be regulated, and the lever operation can be adjusted so as not to become heavier than necessary, further improving operability.

さらに、可変リリーフ弁を使用してその設定圧
を変更することにより、操作反力の上限を任意に
変更でき、操作性を大幅に向上できる。
Furthermore, by using a variable relief valve and changing its set pressure, the upper limit of the operation reaction force can be arbitrarily changed, and operability can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す油圧回路図、第
2図はその制御特性図、第3図は別の実施例を示
す油圧回路図、第4図は第3図の実施例における
制御特性図、第5図は従来装置の制御特性図であ
る。 1……油圧ポンプ、2……方向切換弁、3……
ウインチ用油圧モータ(アクチユエータ)、4…
…パイロツト弁、5……巻上げ操作用減圧弁、
5′……巻下げ操作用減圧弁、6……操作レバー、
7……巻上げ側操作反力用シリンダ、7′……巻
下げ側操作反力用シリンダ、8,8′……反力制
御用油圧信号のための油路、71,71′,71
a,71b,72……圧力室、81,81a,8
1b……選択弁、83……可変リリーフ弁。
Fig. 1 is a hydraulic circuit diagram showing an embodiment of the present invention, Fig. 2 is a control characteristic diagram thereof, Fig. 3 is a hydraulic circuit diagram showing another embodiment, and Fig. 4 is a control in the embodiment of Fig. 3. FIG. 5 is a control characteristic diagram of a conventional device. 1... Hydraulic pump, 2... Directional switching valve, 3...
Hydraulic motor (actuator) for winch, 4...
... Pilot valve, 5 ... Pressure reducing valve for hoisting operation,
5'...Reducing valve for lowering operation, 6...Operation lever,
7... Cylinder for operation reaction force on the hoisting side, 7'... Cylinder for operation reaction force on the lowering side, 8, 8'... Oil passage for hydraulic signal for reaction force control, 71, 71', 71
a, 71b, 72...pressure chamber, 81, 81a, 8
1b...Selection valve, 83...Variable relief valve.

Claims (1)

【特許請求の範囲】 1 固定部材に回動自在に支持された操作レバー
と、レバーの負荷上げ操作方向および負荷下げ操
作方向に対向して配置されてレバーに操作反力を
付与する一対の反力シリンダとを有し、両シリン
ダは、負荷の作動状態に応じた反力制御用油圧信
号を入力する圧力室を備え、両シリンダのうち、
少なくとも負荷上げ操作反力用シリンダの圧力室
が、受圧面積の異なる複数の室に分けられ、それ
らの室に対して上記油圧信号を選択的に入力させ
る選択弁が設けられていることを特徴とする操作
反力制御装置。 2 負荷の上げ操作用減圧弁と下げ操作用減圧弁
とを有するパイロツト弁と、パイロツト弁に回動
自在に支持され上記各減圧弁を選択的に操作する
操作部を備えた操作レバーと、上記各減圧弁に隣
接し上記操作部に対向して配置された上げ操作反
力用シリンダおよび下げ操作反力用シリンダとを
有し、両シリンダは、負荷の作動状態に応じた反
力制御用油圧信号を入力する圧力室を備え、両シ
リンダのうち、少なくとも負荷上げ操作反力用シ
リンダの圧力室が受圧面積の異なる複数の室に分
けられ、それらの室に対して上記油圧信号を選択
的に入力させる選択弁が設けられていることを特
徴とする操作反力制御装置、 3 上記パイロツト弁が、吊荷の巻上げ、巻下げ
を制御する方向制御弁を切換えるためのものであ
ることを特徴とする請求項2記載の操作反力制御
装置。 4 上記反力制御用油圧信号として上記レバーに
よる操作されるアクチユエータの負荷圧力を反力
室に入力させるように構成したことを特徴とする
請求項1乃至3のいずれかに記載の操作反力制御
装置。 5 負荷上げ操作反力用シリンダの圧力室に、上
記反力制御用油圧信号の上限を規制するリリーフ
弁が接続されていることを特徴とする請求項1乃
至4記載の操作反力制御装置。 6 上記リリーフ弁が設定値調節可能な可変リリ
ーフ弁であることを特徴とする請求項5記載の操
作反力制御装置。
[Scope of Claims] 1. An operating lever rotatably supported by a fixed member, and a pair of counters arranged opposite to each other in the load-increasing operating direction and load-reducing operating direction of the lever and applying an operating reaction force to the lever. Both cylinders are equipped with a pressure chamber into which a hydraulic pressure signal for reaction force control is input according to the operating state of the load;
At least the pressure chamber of the load-raising operation reaction force cylinder is divided into a plurality of chambers having different pressure receiving areas, and a selection valve is provided for selectively inputting the hydraulic signal to these chambers. Operation reaction force control device. 2. A pilot valve having a pressure reducing valve for increasing the load and a pressure reducing valve for decreasing the load, an operating lever rotatably supported by the pilot valve and equipped with an operating section for selectively operating each of the pressure reducing valves, and It has a cylinder for raising operation reaction force and a cylinder for lowering operation reaction force, which are arranged adjacent to each pressure reducing valve and facing the above-mentioned operation part, and both cylinders have hydraulic pressure for reaction force control according to the operating state of the load. It is equipped with a pressure chamber into which a signal is input, and among both cylinders, at least the pressure chamber of the cylinder for load increase operation reaction force is divided into a plurality of chambers having different pressure receiving areas, and the above-mentioned hydraulic signal is selectively applied to these chambers. An operation reaction force control device, characterized in that it is provided with a selection valve for input, 3. The pilot valve is for switching a directional control valve that controls hoisting and lowering of a suspended load. The operation reaction force control device according to claim 2. 4. Operation reaction force control according to any one of claims 1 to 3, characterized in that the load pressure of an actuator operated by the lever is inputted into the reaction force chamber as the reaction force control hydraulic signal. Device. 5. The operation reaction force control device according to claim 1, further comprising a relief valve that regulates an upper limit of the reaction force control oil pressure signal connected to the pressure chamber of the load increase operation reaction force cylinder. 6. The operation reaction force control device according to claim 5, wherein the relief valve is a variable relief valve whose set value can be adjusted.
JP29339689A 1989-11-10 1989-11-10 Operating reaction force controller Granted JPH02169495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29339689A JPH02169495A (en) 1989-11-10 1989-11-10 Operating reaction force controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29339689A JPH02169495A (en) 1989-11-10 1989-11-10 Operating reaction force controller

Publications (2)

Publication Number Publication Date
JPH02169495A JPH02169495A (en) 1990-06-29
JPH0462997B2 true JPH0462997B2 (en) 1992-10-08

Family

ID=17794224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29339689A Granted JPH02169495A (en) 1989-11-10 1989-11-10 Operating reaction force controller

Country Status (1)

Country Link
JP (1) JPH02169495A (en)

Also Published As

Publication number Publication date
JPH02169495A (en) 1990-06-29

Similar Documents

Publication Publication Date Title
KR100807923B1 (en) Speed controller for work vehicle and its control method
JP3013225B2 (en) Hanging work control device
KR930005027B1 (en) Apparatus for controlling operating reaction of winch
JP7324655B2 (en) Hydraulic system for construction machinery
US6006521A (en) Control circuit for heavy machinery
US5081838A (en) Hydraulic circuit with variable relief valves
US20020011013A1 (en) Hydraulic excavating mobile machine
JPH0462997B2 (en)
JPH0672437B2 (en) Hydraulic circuit of hydraulic shovel
JP4166604B2 (en) Winch speed control device and crane
KR0169880B1 (en) Boom ascending and revolution velocity control devices of dredger
JPH06280814A (en) Drive control device for fluid pressure actuator
JPH07248004A (en) Hydraulic circuit for working machine
JPH0517961B2 (en)
JPH0723588Y2 (en) Variable pump flow control valve device
JPS61294031A (en) Oil-pressure circuit for excavator
JP3073151B2 (en) Hydraulic control device for construction machinery
JP2020139573A (en) Hydraulic shovel drive system
JP4828055B2 (en) Remote control device for hydraulic actuator
JP2018184299A (en) Revolving drive device and work machine with the same
KR100884870B1 (en) Variable Priority System of Control Valve on Excavator
JP2003194012A (en) Switching control valve for hydraulic actuator
JPH02117596A (en) Control force control device for winch
KR0166126B1 (en) System for variably increasing operating hydraulic pressure in heavy equipment
JPH0417283B2 (en)