JPH0462729A - Multi-step accumulation insulation tube - Google Patents

Multi-step accumulation insulation tube

Info

Publication number
JPH0462729A
JPH0462729A JP17001290A JP17001290A JPH0462729A JP H0462729 A JPH0462729 A JP H0462729A JP 17001290 A JP17001290 A JP 17001290A JP 17001290 A JP17001290 A JP 17001290A JP H0462729 A JPH0462729 A JP H0462729A
Authority
JP
Japan
Prior art keywords
resistor
insulating
voltage dividing
tiered
dividing resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17001290A
Other languages
Japanese (ja)
Inventor
Masanobu Tanaka
政信 田中
Hideki Takahashi
英希 高橋
Kazuo Kobayashi
一夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17001290A priority Critical patent/JPH0462729A/en
Publication of JPH0462729A publication Critical patent/JPH0462729A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulators (AREA)

Abstract

PURPOSE:To improve withstand voltage, by dividing the position angle of the periphery of the center axis of an insulation tube whose reference position is made to be a free one, into spheres whose number is equal to a specific step number (n), on the outer periphery side surface of the multi-step accumulation insulation tube, and providing only one piece of a voltage divider resistor at every sphere. CONSTITUTION:The 20 step accumulation of insulation cylinders 1 and metal flanges 2 is made, and voltage divider resistors R1-R20 are provided at respective steps one by one. On this insulation tube outer periphery side surface, a position angle alpha around the center axis of the insulation tube whose reference position is made to be a free one, is divided into spheres, that is, alpha into a 0 deg.-18 deg. sphere S1, alpha into a 18 deg.-36 deg. sphere S2,..., alpha into a 324 deg.-342 deg. sphere S19, alpha into a 342 deg.-360 deg. sphere S20, and the number of these spheres is 20 which is equal to the number (n) of steps, and only one piece of voltage divider resistors is provided at every sphere, and arrangement is made so that voltage divider resistors may not face each other on a straight line which is parallel with the insulation tube center axis, and also, arrangement is made so that a distance between voltage divider resistances may become as long as possible. As a result, generation of electric discharge is prevented, and insulation withstand voltage can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、イオン注入装置等のイオン源や高電圧電力設
備等の高電圧機器の絶縁碍管に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an insulating tube for an ion source such as an ion implanter or a high voltage equipment such as high voltage power equipment.

〔従来の技術〕[Conventional technology]

高電圧機器では、絶縁碍管の沿面絶縁により絶縁寸法が
決定されるが、沿面耐圧は直線絶縁距離に比例して上昇
しないため、高耐圧化する場合、絶縁寸法が大きくなり
、機器が大型化することが問題であり、これを解決する
ための、従来の沿面絶縁特性を向上する技術としては、
電気学会、放電ハンドブック、改訂新版(昭和62年)
、第229頁に述べられている沿面上にひだを設置して
沿面距離を長くする技術や絶縁碍管を分割し。
In high-voltage equipment, the insulation dimensions are determined by the creepage insulation of the insulator tube, but the creepage withstand voltage does not increase in proportion to the linear insulation distance, so when increasing the withstand voltage, the insulation dimensions become larger and the equipment becomes larger. This is a problem, and the technology to improve the conventional creepage insulation properties to solve this problem is as follows.
Institute of Electrical Engineers of Japan, Discharge Handbook, revised new edition (1986)
, page 229, the technique of increasing the creepage distance by installing pleats on the creepage surface and dividing the insulating pipe.

電極と絶縁物を重ねた多段積み構造とする技術が挙げら
れる。
One example is a technology that creates a multi-tiered structure in which electrodes and insulators are layered.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術のうち、沿面上にひだを設置する方法でも
、沿面耐圧は直線絶縁距に比例する値より低くなり、特
に、イオン注入装置等のコンパクトな高電圧機器を製造
する際には問題であった。
Among the conventional techniques mentioned above, even with the method of installing pleats on the creeping surface, the creepage withstand voltage is lower than the value proportional to the straight insulation distance, which is a problem especially when manufacturing compact high-voltage equipment such as ion implanters. there were.

多段積み構造にした場合は、各段の電圧分担の調整が問
題で、分圧抵抗を設置する必要があるが、設置方法が悪
いと、抵抗の設置により生じた局部電界に起因した絶縁
破壊が起こることが問題であった。本発明の目的は、多
段積み絶縁碍管において2分圧抵抗の設置方法や分圧抵
抗の構造を提案し、絶縁碍管の耐圧を向上させることに
ある。
When building a multi-tiered structure, the problem is adjusting the voltage sharing in each stage, and it is necessary to install voltage dividing resistors, but if the installation method is incorrect, insulation breakdown may occur due to the local electric field generated by installing the resistors. What happened was the problem. An object of the present invention is to propose a method of installing two voltage dividing resistors and a structure of the voltage dividing resistors in multi-tiered insulating pipes, and to improve the withstand voltage of the insulating pipes.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記目的を達成するために、多段積み絶縁碍
管において、多段積み絶縁碍管の外周の測面を、任意の
位置を基準位置とした絶縁碍管の中心軸の周りの位置角
αが0゜〜360゜/nの領域、αが360 ’ / 
n 〜720 ’ / nの領域。
In order to achieve the above object, the present invention provides a multi-tiered insulating tube in which the position angle α around the central axis of the insulating tube with the measured surface of the outer periphery of the multi-tiered insulating tube set at an arbitrary position as a reference position is 0. Range from ° to 360 °/n, α is 360'/
Region of n ~ 720'/n.

”’”’、aかに一360゜/n〜(k+1)・360
゜/nの領域、・・・・・・、αが(n−2)・360
@/n〜(n−1)・360゜/nの領域、αが(n−
1)・360゜/n〜360°の領域の段数nに等しい
数の領域に分割し、各領域に分圧抵抗を1個だけ設置す
るようにしたものである。又、同目的を達成するために
、分圧抵抗を設置する際に、各段の両端の金属フランジ
と分圧抵抗を接続する2つの点に対応する碍管の中心軸
に垂直な面への正射影が碍管の中心軸のまわりになす角
度θlが90゜/n以上360゜/n未満(n:多段積
み絶縁碍管の段数)となるようにしたるものである。又
、同目的を達成するために、碍管の中心軸に垂直な面と
分圧抵抗の中心軸がなす鋭角の角度θ2が、段数n、金
属フランジの半径r、1段の金属フランジ間の絶縁距離
Qに対して、次式の条件を満たすようにしたものである
``'''', a crab one 360°/n~(k+1)・360
Area of °/n, α is (n-2)・360
In the region of @/n~(n-1)・360°/n, α is (n-
1) It is divided into a number of regions equal to the number of stages n in the 360°/n to 360° region, and only one voltage dividing resistor is installed in each region. In addition, in order to achieve the same purpose, when installing the voltage dividing resistor, it is necessary to set the vertical direction to the plane perpendicular to the central axis of the insulator tube, which corresponds to the two points connecting the metal flanges at both ends of each stage and the voltage dividing resistor. The angle θl formed by the projection around the central axis of the insulating tube is 90°/n or more and less than 360°/n (n: the number of stages of the multi-tiered insulating pipe). In addition, in order to achieve the same purpose, the acute angle θ2 between the plane perpendicular to the central axis of the insulator and the central axis of the partial voltage resistor is determined by the number of stages n, the radius r of the metal flange, and the insulation between the metal flanges of one stage. The distance Q is made to satisfy the following condition.

jan−工CQ /(2rsin(180/ n)))
<θ2≦3o。
jan-engineering CQ /(2rsin(180/n)))
<θ2≦3o.

・・・(1) 分圧抵抗の端部の影響をなくすとともに抵抗の設置を容
易にするためには、1本の抵抗体の中間に金属フランジ
と電気的に接続するための中間端子又は表面導電層を設
けたものを電圧分担調整用分圧抵抗として多段積み絶縁
碍管に設置したものである。又は、上記抵抗体を製作す
るために、棒状又はパイプ状の絶縁物表面にイオン注入
による導電性高分子層を形成し、分圧抵抗として使用し
たものである。更に、上記抵抗体を碍管周囲にらせん状
に配置するために、抵抗体として柔軟性のあるものを使
用したものである。分圧抵抗を碍子及び金属フランジの
形状にフィツトさせ抵抗による電界の乱れを小さくする
とともに設置しやすくするために、碍管や金属フランジ
の形状に合わせて曲がった形状の抵抗を使用するもので
ある。又、同目的のために1分圧抵抗を碍管の軸方向に
対して斜めに傾けて設置しても抵抗の両端の面が金属フ
ランジの面と平行になるように抵抗の両端の面が抵抗の
中心軸に垂直な面から斜めに傾いた抵抗を分圧抵抗とし
て使用したものである。更に、分圧抵抗及び分圧抵抗と
金属フランジの接続部分を絶縁被覆するとともに、抵抗
の設置を容易にしかも確実に行うために、絶縁チューブ
、抵抗と抵抗及び抵抗と金属フランジとの接続金具から
構成される装置 ある。
...(1) In order to eliminate the influence of the ends of the voltage dividing resistor and to facilitate the installation of the resistor, an intermediate terminal or surface for electrical connection with the metal flange should be placed in the middle of one resistor. A conductive layer is installed on a multi-layered insulating porcelain tube as a voltage dividing resistor for voltage sharing adjustment. Alternatively, in order to manufacture the above-mentioned resistor, a conductive polymer layer is formed by ion implantation on the surface of a rod-shaped or pipe-shaped insulator and used as a partial voltage resistor. Furthermore, in order to arrange the resistor in a spiral around the porcelain tube, a flexible resistor is used. In order to fit the voltage dividing resistor to the shape of the insulator and metal flange, thereby reducing disturbances in the electric field caused by the resistor and making it easier to install, a resistor that is curved to match the shape of the insulator or metal flange is used. Also, for the same purpose, even if a 1-part voltage resistor is installed obliquely to the axial direction of the insulator tube, the resistor's both end surfaces will be parallel to the metal flange surface. A resistor that is tilted obliquely from a plane perpendicular to the central axis is used as a voltage dividing resistor. Furthermore, in addition to insulating the voltage dividing resistor and the connecting part between the voltage dividing resistor and the metal flange, insulating tubes, resistors, and connecting fittings between the resistors and the metal flange are coated in order to facilitate and ensure the installation of the resistors. There is a device configured.

〔作用〕[Effect]

碍管の周囲をn個の領域に分は各領域に1個ずつ分圧抵
抗を設置する分圧抵抗配置では、分圧抵抗及びその接続
部分による電界集中部が、碍管の中心軸方向すなわち電
界方向に平行な直線上において互いに向かい合うことが
なく、又、分圧抵抗間の距離も最大限の長さとするこど
ができるので抵抗や抵抗接続部間の絶縁破壊が発生しに
くくなる。多段積み絶縁碍管の各段の両端の金属フラン
ジと分圧抵抗を接続する2つの点に対応する碍管の中心
軸に垂直な面への正射影が碍管の中心軸のまわりになす
角e1を90゜/n以上n / 3 6 0。
In a voltage divider resistor arrangement in which the periphery of the insulator tube is divided into n areas and one voltage divider resistor is installed in each area, the electric field concentration area due to the voltage divider resistors and their connection parts is directed in the direction of the central axis of the insulator tube, that is, in the direction of the electric field. Since they do not face each other on a straight line parallel to , and the distance between the voltage dividing resistors can be maximized, dielectric breakdown between the resistors and the resistor connections becomes less likely to occur. The angle e1 formed around the central axis of the insulating tube by the orthogonal projection onto the plane perpendicular to the central axis of the insulating tube corresponding to the two points connecting the metal flanges at both ends of each stage of the multi-tiered insulating tube and the voltage dividing resistor is 90 °/n or more n/360.

未満の範囲とすれば、上記のように分圧抵抗及びその接
続部分が碍管の中心軸に平行な直線上で互いに向かい合
わないように分圧抵抗を配置することが可能となるとと
もに、分圧抵抗の中心軸方向が電界方向と平行にならな
い。又、碍管の中心軸に垂直な面と分圧抵抗の中心軸が
なす鋭角の角度θ2が前に述べた(1)式を満たすよう
にすると。
If the range is less than The direction of the central axis of is not parallel to the direction of the electric field. Also, if the acute angle θ2 formed between the plane perpendicular to the central axis of the insulator and the central axis of the voltage dividing resistor satisfies the equation (1) described above.

上記θ1の条件を満たす場合の効果が得られるとともに
、1段の分圧抵抗の絶縁距離が1段の電極間の直線絶縁
距離の2倍以上となり1分圧抵抗自体の絶縁破壊を防止
することができる。1本の抵抗体の中間に金属フランジ
と電気的に接続するための中間端子又は表面導電層を設
けたものを分圧抵抗として使用すると、多段積み絶縁碍
子の段数nに等しい本数の分圧抵抗を使用する必要がな
く1本の抵抗体だけを設置するだけで良いので、各段の
抵抗端部やリード線部分の電界集中に起因した放電の発
生を防止できるとともに、抵抗の設置を容易に行うこと
ができる。又、棒状2はパイプ状の絶縁物の表面にイオ
ン注入による導電性高分子層を形成すると、単位長さ当
りの抵抗率が全長に渡って−様な抵抗体を容易に得るこ
とができる。
The effect obtained when the above condition θ1 is satisfied is obtained, and the insulation distance of one stage of voltage dividing resistors is more than twice the linear insulation distance between the electrodes of one stage, thereby preventing dielectric breakdown of the one stage of voltage dividing resistors themselves. I can do it. When a single resistor with an intermediate terminal or a surface conductive layer for electrical connection with a metal flange is used as a voltage dividing resistor, the number of voltage dividing resistors equal to the number of stages n of the multi-layered insulators is used. Because there is no need to use a resistor and only one resistor needs to be installed, it is possible to prevent discharges caused by electric field concentration at the resistor ends and lead wires of each stage, and to easily install the resistor. It can be carried out. Furthermore, by forming a conductive polymer layer on the surface of the pipe-shaped insulator for the rod 2 by ion implantation, it is possible to easily obtain a resistor having a resistivity per unit length of - over the entire length.

又、抵抗体として柔軟性のあめものを使用すると、抵抗
体を碍子周囲にらせん状に設置することができ、抵抗体
と金属フランジの接続部分が電界方向に互いに向かい合
うことがなく、接続部分間の絶縁破壊を防止できる。碍
子や金属フランジの形状に合わせて曲がった形状の分圧
抵抗を使用すると、分圧抵抗やその接続部分による電界
の乱れに起因する局部電界を低くすることができ、それ
らに起因した放電の発生も防止することができる。又、
抵抗の両端の面が抵抗の中心軸に垂直な面から斜めに傾
いた分圧抵抗を使用する場合も同様に局部電界を低くし
放電の発生を数子できる。絶縁チューブ、抵抗と抵抗及
び抵抗と金属フランジとの接続金具から構成される装置 と、抵抗及び抵抗接続部分が絶縁被覆され局部電界によ
る絶縁破壊を防止できるとともに、抵抗の設置も容易と
なる。
In addition, if a flexible candy is used as the resistor, the resistor can be installed in a spiral around the insulator, and the connecting parts of the resistor and metal flange will not face each other in the direction of the electric field, and there will be no interference between the connected parts. dielectric breakdown can be prevented. By using a voltage dividing resistor that is curved to match the shape of the insulator or metal flange, it is possible to lower the local electric field caused by disturbances in the electric field due to the voltage dividing resistor and its connections, and to prevent the occurrence of discharge due to these. can also be prevented. or,
When using a voltage dividing resistor in which the surfaces at both ends of the resistor are inclined obliquely from the plane perpendicular to the central axis of the resistor, the local electric field can be similarly lowered to minimize the occurrence of discharge. The device consists of an insulating tube, a resistor, and a connecting fitting between the resistors and the metal flange, and the resistors and the resistor connection parts are insulated, which prevents dielectric breakdown due to local electric fields and facilitates the installation of the resistors.

〔実施例〕〔Example〕

本発明の一実施例の側面図を第1図に上面図を第2図に
示した。1は、絶縁円筒、2は、金属フランジ、R1〜
Rxoは、分圧抵抗である。絶縁円筒1及び金属フラン
ジ2を20段積み重ね、20段積み絶縁碍管を構成し、
各段には、分圧抵抗R1〜R20 を1つずつ設置して
いる。多段積み絶縁碍管の外周の側面を、任意の位置を
基準位置とした絶縁碍管の中心軸の周りの位置角αが0
゜〜18゜の領域St, θが18゜〜36゜の領域S
2,・・・・・・、αがに傘18°〜(k+1)傘18
A side view of one embodiment of the present invention is shown in FIG. 1, and a top view is shown in FIG. 2. 1 is an insulating cylinder, 2 is a metal flange, R1~
Rxo is a voltage dividing resistor. Stacking 20 layers of insulating cylinders 1 and metal flanges 2 to form a 20 layer stacked insulating pipe,
One voltage dividing resistor R1 to R20 is installed in each stage. The position angle α around the central axis of the insulating tube is 0, with the side surface of the outer periphery of the multi-tiered insulating tube set at an arbitrary position as the reference position.
Area St where θ is between 18° and 18°, area S where θ is between 18° and 36°
2,..., α crab umbrella 18° ~ (k+1) umbrella 18
.

の領域Sh+i,・・・・・・、αが324°〜342
°の領域S19, aが342゜〜360゜の領域S2
0の段数nに等しい2oの領域に分割し、各領域に分圧
抵抗を1個だけ設置し、分圧抵抗が碍管の中心軸に平行
な直線上で向かい合わないようにした。又、上からに個
めの段の分圧抵抗R,を設置する領域S−は以下のよう
に決め分圧抵抗間の距離ができるだけ長くなるようにし
た。
The area Sh+i,..., α is 324° to 342
area S19 where a is 342° to 360°, area S2 where a is 342° to 360°
It was divided into 2o regions equal to the number of stages n of 0, and only one voltage dividing resistor was installed in each region, so that the voltage dividing resistors did not face each other on a straight line parallel to the central axis of the insulator tube. Further, the area S- in which the voltage dividing resistors R and each stage are installed from the top is determined as follows, so that the distance between the voltage dividing resistors is as long as possible.

k=2m+1,m=o−6 : j=3m+1m=7〜
9 : j=3m+1−n k=2m,m=1〜4 : j=3m−2+n/2m,
=5〜1 0 : j =3mー2ーn/2ここで、k
は分圧抵抗を配置する段を、jは配置する領域SJ を
、nは絶縁碍管の段数=20を示す。このように分圧抵
抗を配置すると、分圧抵抗間の数台を防止し,絶縁碍管
の耐圧を向上する効果が有る。
k=2m+1, m=o-6: j=3m+1m=7~
9: j=3m+1-nk k=2m, m=1~4: j=3m-2+n/2m,
=5~10: j =3m-2-n/2 where, k
represents the stage where the voltage dividing resistor is arranged, j represents the region SJ where the voltage dividing resistor is arranged, and n represents the number of stages of insulating porcelain tubes=20. Arranging the voltage dividing resistors in this manner has the effect of preventing multiple resistors from being placed between the voltage dividing resistors and improving the withstand voltage of the insulating tube.

第3図には、分圧抵抗を碍管の周囲に螺旋状に配置した
9段積み絶縁碍管の実施例を示す。同実施例では、各段
の両端の金属フランジと分圧抵抗を接続する2つの点に
対応する碍管の中心軸に垂直な面への正射影が碍管の中
心軸の周りになす角度θ1が、段数nに対して次式の条
件を満たすように、分圧抵抗を設置している。
FIG. 3 shows an embodiment of a nine-tier stack of insulating porcelain tubes in which voltage dividing resistors are spirally arranged around the porcelain tubes. In the same embodiment, the angle θ1 formed around the central axis of the insulator tube by the orthogonal projection onto the plane perpendicular to the central axis of the insulator tube corresponding to the two points connecting the metal flanges at both ends of each stage and the voltage dividing resistor is: The voltage dividing resistors are installed so that the following equation is satisfied for the number of stages n.

90゜/n<θ1<360゜/n この場合、螺旋状に配置された分圧抵抗が碍管の周囲を
1周以上回転せず、碍管の中心軸に平行な直線上で分圧
抵抗及びその接続部が向かいあうことがないとともに、
接続部も少なくなり、分圧抵抗間の放電を防止し、絶縁
碍管の耐圧を向上する効果が有る。
90°/n<θ1<360°/n In this case, the partial pressure resistor arranged in a spiral does not rotate more than once around the insulator tube, and the partial pressure resistor and its The connecting parts do not face each other, and
The number of connection parts is also reduced, which has the effect of preventing discharge between the voltage dividing resistors and improving the withstand voltage of the insulating tube.

第4図は、本発明の一実施例の多段積み絶縁碍管の1段
分を示したものである。同図では、絶縁碍管の中心軸に
垂直な平面と分圧抵抗の中心軸がなす鋭角の角度θ2が
、次式を満たすように分圧抵抗を設置している。
FIG. 4 shows one stage of a multi-stage insulating pipe according to an embodiment of the present invention. In the figure, the voltage dividing resistors are installed so that an acute angle θ2 between a plane perpendicular to the central axis of the insulating tube and the central axis of the voltage dividing resistor satisfies the following equation.

tan−’(Q/ (2 rsin( 1 8 0 /
 n )))<θ2≦30。
tan-'(Q/ (2 rsin( 1 8 0 /
n)))<θ2≦30.

ここで、Qは1段の金属フランジ間の絶縁距離を、rは
金属フランジ2の半径を、nは多段積み絶縁碍管の段数
を示した。この場合、第3図の実施例の様に、θ1<3
60゜/n の条件を満たすと共に、分圧抵抗の絶縁距
離が金属フランジ間の絶縁距離の2倍以上となり、分圧
抵抗の絶縁裕度が大きくなる効果が有る。
Here, Q is the insulation distance between metal flanges in one stage, r is the radius of the metal flange 2, and n is the number of stages of the multi-stage insulating pipe. In this case, as in the embodiment of FIG. 3, θ1<3
In addition to satisfying the condition of 60°/n, the insulation distance of the voltage dividing resistor is more than twice the insulation distance between the metal flanges, which has the effect of increasing the insulation margin of the voltage dividing resistor.

第5図には、別の実施例の多段積み絶縁碍管の1段分を
示した。同実施例では、曲がった形状の分圧抵抗Rwを
使用した。この場合、碍管の形状にフィツトするように
分圧抵抗を設置することができ、電界の乱れによる局部
電界が低くなり、多段積み絶縁碍管の耐圧を向上する効
果が有る。
FIG. 5 shows one stage of a multi-stage insulating pipe according to another embodiment. In this embodiment, a curved voltage dividing resistor Rw was used. In this case, the voltage dividing resistor can be installed to fit the shape of the porcelain tube, and the local electric field due to disturbance of the electric field is reduced, which has the effect of improving the withstand voltage of the multi-tiered porcelain tube.

第6図には、分圧抵抗の設置ガイドの一実施例を示した
。同図で、Rは分圧抵抗、3Aは分圧抵抗間及び分圧抵
抗と金属フランジの接続金具、4は分圧抵抗挿入穴、5
は金属フランジと金具を接続するリード線、6は熱収縮
性絶縁チューブである。各部品を、同図のように組立る
際には、まず、接続金具3Aに分圧抵抗Rとリード線5
を接続し、それらを熱収縮前のチューブ6で覆い、リー
ド線5だけが外部に出るようにする。このようにして段
数分の分圧抵抗R,リード線5.金具3A、チューブ6
を組み立てた後、全体を加熱して、チューブ6と各部品
を密着させる。その後、リード線5と各段の金属フラン
ジを接続すると、段数分の分圧抵抗を一体化して碍管に
接続できる。この実施例では、熱収縮チューブを使って
いるため、組み立てが容易であると共に、抵抗と接続部
が絶縁被覆され、抵抗及び接続部での絶縁破壊を防止で
きる効果が有る。
FIG. 6 shows an embodiment of the installation guide for the voltage dividing resistor. In the same figure, R is a voltage dividing resistor, 3A is a connection fitting between the voltage dividing resistors and between the voltage dividing resistor and the metal flange, 4 is a voltage dividing resistor insertion hole, and 5
6 is a lead wire connecting the metal flange and the fitting, and 6 is a heat-shrinkable insulating tube. When assembling each component as shown in the figure, first connect the connecting fitting 3A with the voltage dividing resistor R and the lead wire 5.
and cover them with a tube 6 before heat shrinking so that only the lead wire 5 comes out. In this way, voltage dividing resistors R, lead wires 5. Metal fittings 3A, tube 6
After assembling, the whole is heated to bring the tube 6 and each part into close contact. Thereafter, by connecting the lead wires 5 to the metal flanges of each stage, the voltage dividing resistors corresponding to the number of stages can be integrated and connected to the insulator pipe. In this embodiment, since a heat-shrinkable tube is used, assembly is easy, and the resistor and the connecting portion are coated with insulation, which has the effect of preventing dielectric breakdown at the resistor and the connecting portion.

第7図には、分圧抵抗の設置ガイドの別の実施例を示し
た。同図で、2は多段積み絶縁碍管の金属フランジを、
3Bは、接続金具を、4は抵抗挿入穴を、7は接続金具
と金属フランジのジヨイントを、8は絶縁チューブを、
9は接続金具のジヨイント受けを、10は絶縁チューブ
のジヨイント挿入穴を示す。組み立ての際には、まず、
段数分の分圧抵抗を接続金具で接続し一体化し、それを
絶縁チューブ8に通す。次に、ジヨイント7を挿入穴1
0を通してジヨイント受け9に接続して、その後に碍管
の各段の金属フランジ2と接続する。
FIG. 7 shows another embodiment of the installation guide for the voltage dividing resistor. In the same figure, 2 is the metal flange of the multi-tiered insulating pipe,
3B is the connection fitting, 4 is the resistance insertion hole, 7 is the joint between the connection fitting and metal flange, 8 is the insulation tube,
Reference numeral 9 indicates a joint receiver for the connection fitting, and reference numeral 10 indicates a joint insertion hole for the insulating tube. When assembling, first,
The voltage dividing resistors corresponding to the number of stages are connected and integrated using connecting fittings, and then passed through the insulating tube 8. Next, insert joint 7 into hole 1.
0 to the joint receiver 9, and then to the metal flanges 2 of each stage of the insulator pipe.

この実施例では、1本の絶縁チューブに、一体止した抵
抗を挿入するため組み立てが容易である。
This embodiment is easy to assemble because the integral resistor is inserted into one insulating tube.

第8図は、端面11が中心軸に垂直な面から傾いた分圧
抵抗Rbを使用した多段積み絶縁碍管の実施例である。
FIG. 8 shows an embodiment of a multi-tiered insulating pipe using a voltage dividing resistor Rb whose end face 11 is inclined from a plane perpendicular to the central axis.

本実施例では、端面11と金属フランジ2の面が平行と
なる様に、分圧抵抗を設置している。このため、電界の
乱れが小さく、絶縁碍管の絶縁耐圧を向上する効果が有
る。
In this embodiment, the voltage dividing resistor is installed so that the end surface 11 and the surface of the metal flange 2 are parallel to each other. Therefore, the disturbance of the electric field is small, and there is an effect of improving the dielectric strength voltage of the insulating porcelain tube.

第9図は、中間に金属フランジと接続する中間端子を持
つ一本の抵抗体12を分圧抵抗として使用した多段積み
絶縁碍管の実施例である。同図で、13は、各段の金属
フランジ2と抵抗体12の中間端子との接続金具である
。抵抗体12は柔軟性をもち、碍管の周囲に螺旋状に設
置されている。
FIG. 9 shows an embodiment of a multi-tiered insulating pipe in which a single resistor 12 having an intermediate terminal connected to a metal flange is used as a voltage dividing resistor. In the figure, reference numeral 13 denotes a connecting fitting between the metal flange 2 of each stage and the intermediate terminal of the resistor 12. The resistor 12 is flexible and is spirally arranged around the insulator tube.

この実施例では、段数分の本数の分圧抵抗を設置する手
間が省けると共に、抵抗の端部への電界集中に起因した
放電がなくなり耐圧を向上する効果が有る。
In this embodiment, it is possible to save the effort of installing voltage dividing resistors as many as the number of stages, and there is an effect of improving the withstand voltage by eliminating discharge caused by electric field concentration at the ends of the resistors.

第10図は、第9図の抵抗体12の実施例の断面図であ
る。12aは絶縁物の本体、12bは抵抗層、12cは
表面絶縁層である。この抵抗体の製造法の1例としては
、棒状の絶縁物にイオン注入し、表面から一定の深さに
抵抗層を形成する方法が挙げられる。又、中間端子は、
表面絶縁層12cを削り、抵抗層12bを露出するだけ
で容易に作ることが出来る。
FIG. 10 is a cross-sectional view of an embodiment of the resistor 12 of FIG. 12a is a main body of an insulator, 12b is a resistance layer, and 12c is a surface insulating layer. One example of a method for manufacturing this resistor is a method in which ions are implanted into a rod-shaped insulator and a resistive layer is formed at a certain depth from the surface. Also, the intermediate terminal is
It can be easily made by simply scraping the surface insulating layer 12c and exposing the resistance layer 12b.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、多段積み絶縁碍管の両端に電圧を印加
する際に、分圧抵抗やその接続部分(こ起因した放電の
発生を防止することができ、多段積み絶縁碍管の絶縁耐
圧を向上する効果があり、高電圧機器においてコンパク
トで高耐圧の絶縁碍管を使用することができ、高電圧機
器の小形化、高信頼性を実現できる。
According to the present invention, when voltage is applied to both ends of multi-tiered insulating tubes, it is possible to prevent the occurrence of electric discharge caused by the voltage dividing resistor and its connection parts, thereby improving the dielectric strength of the multi-tiered insulating tubes. This has the effect of making it possible to use compact, high-voltage insulating tubes in high-voltage equipment, making it possible to make high-voltage equipment more compact and highly reliable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の分圧抵抗配置の一実施例の側面図、第
2図はその上面図、第3図及び第4図はその変形例を示
す図、第5図は曲がった形状の分圧抵抗を使用した例を
示す図、第6図は分圧抵抗設置ガイドを使用した例を示
す図、第7図はその変形例を示す図、第8図は抵抗の端
面が抵抗の中心軸に垂直な面から傾いた分圧抵抗を使用
した例を示す図、第9図は中間に電極と接続する中間端
子を持つ1本の抵抗体を使用した例を示す図、第10図
は第9図の抵抗体の例を示す図である。 1・・・絶縁円筒、2・・・金属フランジ、Ri〜R2
0゜Rs・・・分圧抵抗、Rw・・曲がった形状の分圧
抵抗、3A、3B・・・分圧抵抗間及び分圧抵抗と電極
の接続金具、4・・・分圧抵抗挿入穴、5・・・リード
線、6・・・熱収縮性絶縁チューブ、7・・・ジヨイン
ト、8・絶縁チューブ、9・・・ジヨイント受け、10
・・・挿入穴、11・・・抵抗端面、12・・・抵抗体
、13・・・抵抗体の中間端子と電極の接続金具、12
a・・・抵抗体の絶縁物本体、12b・・・抵抗体の抵
抗層、12c纂手 凶 竿 呂 w 草 ゴ 色 革 乙 圀 第 菌 早 区 諷 圀
Fig. 1 is a side view of one embodiment of the voltage dividing resistor arrangement of the present invention, Fig. 2 is a top view thereof, Figs. 3 and 4 are views showing modifications thereof, and Fig. 5 is a curved shape. Figure 6 shows an example using a voltage dividing resistor installation guide, Figure 7 shows a modified example, Figure 8 shows an example where the end face of the resistor is the center of the resistor. Figure 9 shows an example of using a partial voltage resistor tilted from a plane perpendicular to the axis, Figure 9 shows an example of using a single resistor with an intermediate terminal connected to an electrode in the middle, and Figure 10 10 is a diagram showing an example of the resistor shown in FIG. 9. FIG. 1... Insulating cylinder, 2... Metal flange, Ri~R2
0゜Rs...Voltage dividing resistor, Rw...Curved shaped voltage dividing resistor, 3A, 3B...Connection fitting between voltage dividing resistors and between voltage dividing resistor and electrode, 4...Voltage dividing resistor insertion hole , 5...Lead wire, 6...Heat-shrinkable insulating tube, 7...Joint, 8-Insulating tube, 9...Joint receiver, 10
...insertion hole, 11...resistance end face, 12...resistance element, 13...connection fitting for intermediate terminal of resistor and electrode, 12
a...Insulator main body of the resistor, 12b...Resistance layer of the resistor, 12c 纂手灿竿郎w Grass green leather

Claims (1)

【特許請求の範囲】 1、円筒形の又は円筒の側面にひだや凹凸のある形状の
絶縁碍管及び金属フランジをn段積み重ね、各段に分圧
抵抗を設置して各段の電圧分担を調整するようにした高
電圧絶縁用の多段積み絶縁碍管において、多段積み絶縁
碍管の外周の側面を、任意の位置を基準位置とした絶縁
碍管の中心軸の周りの位置角αが0゜〜360゜/nの
領域、αが360゜/n〜720゜/nの領域、・・・
・・・、αがk*360゜/n〜(k+1)*360゜
/nの領域、・・・・・・、αが(n−2)*360゜
/n〜(n−1)*360゜/nの領域、αが(n−1
)*360゜/n〜360゜の領域の段数nに等しい数
の領域に分割し、各領域に分圧抵抗を1個だけ設置する
ことを特徴とする多段積み絶縁碍管。 2、多段積み絶縁碍管において、各段の両端の金属フラ
ンジと分圧抵抗を接続する2つの点に対応する碍管の中
心軸に垂直な面への正射影が碍管の中心軸の周りになす
角度θ_1が段数nに対し次式の条件を満たすことを特
徴とする多段積み絶縁碍管 90゜/n≦θ_1<360゜/n 3、多段積み絶縁碍管において、絶縁碍管の中心軸に垂
直な平面と分圧抵抗の中心軸がなす鋭角の角度θ_2が
、1段の金属フランジ間の絶縁距離l、電極の半径に、
段数nに対して次の条件を満たすことを特徴とする多段
積み絶縁碍管。 tan^−^1(Q/(2rsin(180/n)))
<θ_2≦30゜4、請求項第2項において示した多段
積み絶縁碍管において、多段積み絶縁碍管の外周の側面
を、任意の位置を基準位置とした絶縁碍管の中心軸の周
りの位置角αが0〜360゜/nの領域、αが360゜
/n〜720゜/nの領域、・・・・・・、αがk*3
60゜/n〜(k+1)*360゜/nの領域、・・・
・・・、αが(n−2)*360゜/n〜(n−1)*
360゜/nの領域、αが(n−1)*360゜/n〜
360゜の領域の段数nに等しい数の領域に分割し、各
領域に分圧抵抗を1個だけ設置することを特徴とする多
段積み絶縁碍管。 5、請求項第3項において示した多段積み絶縁碍管にお
いて、多段積み絶縁碍管の外周の側面を、任意の位置を
基準位置とした絶縁碍管の中心軸の周りの位置角αが0
〜360゜/nの領域、αが360゜/n〜720゜/
nの領域、・・・・・・、αがk*360゜/n〜(k
+1)*360゜/nの領域、・・・・・・、αが(n
−2)*360゜/n〜(n−1)*360゜/nの領
域、αが(n−1)*360゜/n〜360゜の領域の
段数nに等しい数の領域に分割し、各領域に分圧抵抗を
1個だけ設置することを特徴とする多段積み絶縁碍管。 6、請求項第1項において示した多段積み絶縁碍管にお
いて、分圧抵抗を碍管の周囲に螺旋状に配置することを
特徴とする多段積み絶縁碍管。 7、請求項第2項において示した多段積み絶縁碍管にお
いて、分圧抵抗を碍管の周囲に螺旋状に配置することを
特徴とする多段積み絶縁碍管。 8、請求項第3項において示した多段積み絶縁碍管にお
いて、分圧抵抗を碍管の周囲に螺旋状に配置することを
特徴とする多段積み絶縁碍管。 9、多段積み絶縁碍管において、各段の電圧分担を調整
するための分圧抵抗を設置する際に、曲がつた形状の分
圧抵抗を使用したことを特徴とする多段積み絶縁碍管。 10、多段積み絶縁碍管において、各段の電圧分担を調
整するための分圧抵抗を設置する際に、絶縁チューブ及
び分圧抵抗間及び分圧抵抗と電極の接続金具から構成さ
れた分圧抵抗設置ガイドを使用することを特徴とする多
段積み絶縁碍管。 11、多段積み絶縁碍管において、各段の電圧分担を調
整するための分圧抵抗を設置する際に、抵抗の両端の面
が抵抗の中心軸に垂直な面から斜めに傾いた抵抗を分圧
抵抗として使用したことを特徴とする多段積み絶縁碍管
。 12、多段積み絶縁碍管において、各段の電圧分担を調
整するための分圧抵抗を設置する際に、中間に金属フラ
ンジと接続する中間端子又は表面導電層を持つ一本の抵
抗体を分圧抵抗として使用したことを特徴とする多段積
み絶縁碍管。 13、請求項第12項において、棒状又はパイプ状の絶
縁物にイオン注入により抵抗層を形成したものを抵抗体
として使用したことを特徴とする多段積み絶縁碍管。 14、請求項第12項において、抵抗体として柔軟性の
有るものを使用し、抵抗体を碍管周囲に螺旋状に設置し
たことを特徴とする多段積み絶縁碍管。 15、円柱状の絶縁物と金属フランジを積み重ねて構成
した多段積み絶縁物において、請求項第1項〜第14項
のうちの一つ以上の項の分圧抵抗又は分圧抵抗設置方法
又は分圧抵抗設置ガイドを適用したことを特徴とする多
段積み絶縁物。 16、円柱形、円筒形、角柱形又はそれらを変形した形
状の抵抗において、両端の面が抵抗の中心軸に垂直な面
から斜めに傾いたことを特徴とする抵抗。
[Claims] 1. N stages of insulating tubes and metal flanges each having a cylindrical shape or having folds or irregularities on the side surface of the cylinder are stacked, and a voltage dividing resistor is installed at each stage to adjust the voltage sharing at each stage. In the multi-tiered insulating tubes for high voltage insulation, the position angle α around the central axis of the insulating tubes is from 0° to 360°, with the side surface of the outer periphery of the multi-tiered insulating tubes set at an arbitrary position as a reference position. /n area, α is 360°/n to 720°/n,...
..., a region where α is k*360°/n~(k+1)*360°/n,..., α is (n-2)*360°/n~(n-1)* In the area of 360°/n, α is (n-1
)*360°/n to 360° A multi-layered insulating pipe characterized in that it is divided into a number of regions equal to the number of stages n in the region, and that only one voltage dividing resistor is installed in each region. 2. In multi-tiered insulating pipes, the angle formed around the central axis of the insulating pipe by the orthogonal projection onto a plane perpendicular to the central axis of the insulating pipe corresponding to the two points connecting the metal flanges at both ends of each stage and the voltage dividing resistor. A multi-tiered insulating tube 90°/n≦θ_1<360°/n characterized in that θ_1 satisfies the following formula for the number of stages n. 3. In a multi-tiered insulating tube, a plane perpendicular to the central axis of the insulating tube and The acute angle θ_2 formed by the central axis of the voltage dividing resistor is the insulation distance l between the metal flanges of the first stage, the radius of the electrode,
A multi-tiered insulating pipe characterized by satisfying the following conditions for the number of stages n. tan^-^1 (Q/(2rsin(180/n)))
<θ_2≦30°4, in the multi-tiered insulating tubes shown in claim 2, the position angle α around the central axis of the insulating tubes with the side surface of the outer periphery of the multi-tiered insulating tubes set at an arbitrary position as a reference position range from 0 to 360°/n, α range from 360°/n to 720°/n, etc., α is k*3
Area from 60°/n to (k+1)*360°/n,...
..., α is (n-2)*360°/n~(n-1)*
360°/n area, α is (n-1)*360°/n~
A multi-stage insulating pipe characterized in that it is divided into a number of regions equal to the number of stages n of the 360° region, and only one voltage dividing resistor is installed in each region. 5. In the multi-tiered insulating tubes shown in claim 3, the position angle α around the central axis of the insulating tubes with the side surface of the outer periphery of the multi-tiered insulating tubes set at an arbitrary position as a reference position is 0.
~360°/n region, α is 360°/n ~720°/
Area of n, ..., α is k*360°/n~(k
+1)*360°/n area, ..., α is (n
-2) Divide into a number of regions equal to the number of stages n in the region from *360°/n to (n-1)*360°/n, where α is (n-1)*360°/n to 360°. , a multi-tiered insulating pipe characterized in that only one voltage dividing resistor is installed in each region. 6. A multi-tiered insulating tube according to claim 1, characterized in that a voltage dividing resistor is arranged in a spiral around the insulating tube. 7. A multi-tiered insulating tube according to claim 2, characterized in that a voltage dividing resistor is arranged spirally around the insulating tube. 8. A multi-tier stacked insulator tube as set forth in claim 3, characterized in that a voltage dividing resistor is arranged spirally around the insulator tube. 9. A multi-tier stacked insulating pipe characterized in that a curved-shaped voltage dividing resistor is used when installing the voltage dividing resistor for adjusting voltage sharing in each stage. 10. When installing a voltage dividing resistor to adjust the voltage sharing in each stage in multi-stage insulated insulating tubes, use a voltage dividing resistor consisting of connecting fittings between the insulating tube and the voltage dividing resistor, and between the voltage dividing resistor and the electrode. A multi-tiered insulating pipe characterized by using an installation guide. 11. When installing a voltage dividing resistor to adjust the voltage sharing in each stage in multi-stage insulator tubes, use a resistor whose ends are tilted diagonally from the plane perpendicular to the center axis of the resistor. A multi-tiered insulating tube characterized by its use as a resistor. 12. When installing a voltage dividing resistor to adjust the voltage sharing in each stage in multi-tier stacked insulating pipes, divide the voltage by using a single resistor with an intermediate terminal or surface conductive layer that connects to a metal flange in the middle. A multi-tiered insulating tube characterized by its use as a resistor. 13. The multi-tiered insulating tube according to claim 12, characterized in that a rod-shaped or pipe-shaped insulator on which a resistance layer is formed by ion implantation is used as the resistor. 14. The multi-tiered insulating tube according to claim 12, characterized in that a flexible resistor is used as the resistor, and the resistor is arranged in a spiral around the insulator tube. 15. In a multi-tiered insulator constructed by stacking cylindrical insulators and metal flanges, the voltage dividing resistor or the method for installing a voltage dividing resistor according to one or more of claims 1 to 14. A multi-tiered insulator characterized by applying a piezoresistive installation guide. 16. A resistor in the shape of a cylinder, cylinder, prism, or a modified form thereof, characterized in that both end surfaces are inclined obliquely from a plane perpendicular to the central axis of the resistor.
JP17001290A 1990-06-29 1990-06-29 Multi-step accumulation insulation tube Pending JPH0462729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17001290A JPH0462729A (en) 1990-06-29 1990-06-29 Multi-step accumulation insulation tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17001290A JPH0462729A (en) 1990-06-29 1990-06-29 Multi-step accumulation insulation tube

Publications (1)

Publication Number Publication Date
JPH0462729A true JPH0462729A (en) 1992-02-27

Family

ID=15896956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17001290A Pending JPH0462729A (en) 1990-06-29 1990-06-29 Multi-step accumulation insulation tube

Country Status (1)

Country Link
JP (1) JPH0462729A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070744A1 (en) * 2004-12-28 2006-07-06 Kyoto Institute Of Technology Charged particle generator and accelerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070744A1 (en) * 2004-12-28 2006-07-06 Kyoto Institute Of Technology Charged particle generator and accelerator
JPWO2006070744A1 (en) * 2004-12-28 2008-06-12 国立大学法人京都工芸繊維大学 Charged particle generator and accelerator

Similar Documents

Publication Publication Date Title
US4223179A (en) Cable termination connector assembly
US10027071B2 (en) Cable connection device
US3585274A (en) Relief of dielectric stress in high voltage cable connections
CN1355951A (en) High voltage insulating tube
CA1117195A (en) Method and means for dissipating heat in a high voltage termination
KR20150101353A (en) Power cable having termination connection box
JPH0462729A (en) Multi-step accumulation insulation tube
EP0798950B1 (en) High voltage noise filter and magnetron device using it
CN110459353A (en) The dedicated long stator cable of magnetic suspension
SE1930052A1 (en) Elastic tubular high-voltage insulating body
US3793475A (en) Dielectric system for a high voltage power transmission cable and termination
US20130248224A1 (en) Stress control device
CN114400814A (en) Stator bar, stator and generator
EP3417674A1 (en) Flexible small-diameter self-regulating heater cable
US3539703A (en) High voltage termination apparatus for high voltage cables and pipetype transmission lines
TWI649769B (en) Wire and laser device
KR20230134941A (en) Different diameter pre-molded joint for jointing beyween extra high voltage cables with different conductor size and different diameter rubber unit
KR20030043652A (en) Winding for a transformer or a coil
JPH06283062A (en) Bushing shield device
US1217890A (en) High-voltage insulating-bushing.
JPH02142315A (en) Terminal connection of cv cable
JPH0416414Y2 (en)
JPS6038849B2 (en) Conduit wire connection part of stationary induction electric equipment
JPH043366Y2 (en)
JPS6011713Y2 (en) Connection busbar for electrical equipment