JPH0462352A - Control of duct air conditioner - Google Patents

Control of duct air conditioner

Info

Publication number
JPH0462352A
JPH0462352A JP2170204A JP17020490A JPH0462352A JP H0462352 A JPH0462352 A JP H0462352A JP 2170204 A JP2170204 A JP 2170204A JP 17020490 A JP17020490 A JP 17020490A JP H0462352 A JPH0462352 A JP H0462352A
Authority
JP
Japan
Prior art keywords
damper
air
conditioned
opening degree
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2170204A
Other languages
Japanese (ja)
Inventor
Toshimasa Tanaka
田中 俊雅
Isao Takahashi
功 高橋
Nobuo Matsui
松井 伸郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2170204A priority Critical patent/JPH0462352A/en
Publication of JPH0462352A publication Critical patent/JPH0462352A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To reduce the number of opening and closing of dampers for reducing friction and troubles of the damper and to improve reliability by a method in which the damper corresponding to at least one space to be air conditioned of the largest heat load of a plurality of spaces to be air conditioned is fixed to a prescribed opening degree, and the dampers corresponding to the other spaces to be air conditioned are controlled based on temperature differences between the temperature of the spaces to be air conditioned and a set value. CONSTITUTION:When damper opening degree adjusting mechanisms 9 are connected to a power source, receiving of information from a room unit 2 is waited, then room temperature is received from a remote controller 10 mounted in a space to be air conditioned and further a set temperature from the remote controller 10. Then damper opening degree is determined from a difference between the received room temperature and the set temperature, and whether or not a damper fixed opening degree command is commanded based on room unit information is discriminated. If the command is commanded, a damper is fixed to be full-open for a damper fixed opening degree control, and if it is not commanded, damper free opening control is carried out. Further, an order for receiving information from the damper opening degree adjusting mechanisms 9 after receiving the room unit information is waited and transmission of information from the damper opening degree adjusting mechanisms 9 is carried out, and thus a main controller 8 obtains information of each of the damper opening degree adjusting mechanisms 9. By this, the most appropriate air sending control and outdoor unit control can be obtained.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、運転周波数可変型圧縮機および送風量可変型
送風機を備えた空気調和機本体にダクトを介して接続さ
れた複数の被空調部を空調制御するダクト式空気調和装
置の制御方法に関し、更に詳しくは、各被空調部に設け
られたダンパの開度の制御方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention provides an air conditioner that is connected to an air conditioner body equipped with a variable operating frequency compressor and a variable air flow blower through a duct. The present invention relates to a method of controlling a duct type air conditioner that air-conditions a plurality of air-conditioned units, and more specifically, to a method of controlling the opening degree of a damper provided in each air-conditioned unit.

(従来の技術) ダクト式空気調和装置は、第1図に示すように、図示し
ない運転周波数可変型圧縮機および室外側熱交換機を備
えた室外機1および例えば天井に埋め込まれた図示しな
い室内側熱交換機および送風量可変型送風機を備えた室
内機2を有し、該室外機1と室内機2とは冷媒管3を介
して連結され、空気調和機本体4を構成している。
(Prior Art) As shown in FIG. 1, a duct type air conditioner includes an outdoor unit 1 equipped with a variable operating frequency compressor (not shown) and an outdoor heat exchanger, and an indoor unit (not shown) embedded in the ceiling, for example. It has an indoor unit 2 equipped with a heat exchanger and a variable air blower, and the outdoor unit 1 and the indoor unit 2 are connected via a refrigerant pipe 3 to form an air conditioner main body 4.

前記室内機2の熱交換空気吹き出し部は、ダクト5を介
して複数の吹出口6に連結されている。
The heat exchange air blowing section of the indoor unit 2 is connected to a plurality of blowing outlets 6 via a duct 5.

この複数の吹出口6は、それぞれ被空調部である複数の
部屋の天井に各部屋内を向いて設けられたり、または大
広間の天井に大広間内を向いて適当な間隔をあけて取り
付けられ、室内機2の熱交換空気吹き出し部からダクト
5を介して供給される熱交換空気を吹出口6から各部屋
内または大広間内に吹き出すようになっている。また、
各吹出口6内には、図示のようにダンパ7が回転自在に
設けられている。このダンパ7は各吹出口6毎に設けら
れているダンパ開度調整機構9に機械的に連結され、ダ
ンパ開度調整機構9の制御により回転駆動され、開度を
調整し得るようになっている。
The plurality of air outlets 6 are provided on the ceilings of the plurality of rooms to be air-conditioned, facing into each room, or are mounted on the ceiling of a large hall facing into the large hall at appropriate intervals. The heat exchange air supplied from the heat exchange air blow-off section of the machine 2 via the duct 5 is blown out from the blow-off port 6 into each room or into the large hall. Also,
A damper 7 is rotatably provided in each outlet 6 as shown in the figure. This damper 7 is mechanically connected to a damper opening adjustment mechanism 9 provided for each outlet 6, and is rotationally driven under the control of the damper opening adjustment mechanism 9, so that the opening can be adjusted. There is.

すなわち、吹出口6から各被空調部内に吹き出される熱
交換空気の風量はダンパ7の開度量ニヨって変化し、こ
れにより被空調部内を空調し得るようになっている。
That is, the volume of heat exchange air blown out from the outlet 6 into each air-conditioned section varies depending on the opening degree of the damper 7, thereby making it possible to air-condition the inside of the air-conditioned section.

前記室内機2には、マイクロコンピュータ等からなる主
制御装置8が設けられているが、この主!1111装!
f8は点線で示すように室外機1に設けられている運転
周波数可変型圧縮機に電気的に接続されるとともに、各
ダンパ開度調整機構9にも電気的に接続され、該ダンパ
開度調整機構9を介して各被空調部に取り付けられてい
る室温設定用の各リモコン10に電気的に接続されてい
る。
The indoor unit 2 is provided with a main control device 8 consisting of a microcomputer or the like. 1111 pieces!
As shown by the dotted line, f8 is electrically connected to the variable operating frequency compressor provided in the outdoor unit 1, and is also electrically connected to each damper opening adjustment mechanism 9 to adjust the damper opening. It is electrically connected via a mechanism 9 to each remote control 10 for setting the room temperature attached to each air-conditioned unit.

また、室内機2の吹き出し口に近いダクト5内には、温
度センサ12が設けられている。この温度センサ12は
ダクト5に吹き出される熱交換空気の温度を検知し、こ
の検知信号を前記主制御装[8に供給するようになって
いる。
Further, a temperature sensor 12 is provided in the duct 5 near the air outlet of the indoor unit 2. This temperature sensor 12 detects the temperature of the heat exchange air blown into the duct 5, and supplies this detection signal to the main control unit [8].

空気調和機本体4は、冷凍サイクル運転を行うとともに
、室内機2に設けられている送風機を駆動し、これによ
り室内機2て生成される熱交換空気をダクト5を介して
各吹出口6から各被空調部に吹き出し、被空調部を空調
するようになっている。
The air conditioner main body 4 performs a refrigeration cycle operation and also drives a blower provided in the indoor unit 2, thereby sending heat exchange air generated by the indoor unit 2 from each outlet 6 through a duct 5. Air is blown out to each air-conditioned area to air-condition the air-conditioned area.

各被空調部においては、リモコン10によって室温を設
定するとともに、各被空調部の実際の室温を検知し、こ
れにより各ダンパ7の開度を決定し、各ダンパ開度調整
機構9に駆動信号を供給する。また、各ダンパ開度調整
機構9は、ダンパ開度に応じた開度情報を主制御装置8
に供給する。
In each air-conditioned part, the room temperature is set using the remote control 10, and the actual room temperature of each air-conditioned part is detected, and the opening degree of each damper 7 is determined based on this, and a drive signal is sent to each damper opening adjustment mechanism 9. supply. In addition, each damper opening adjustment mechanism 9 transmits opening information corresponding to the damper opening to the main controller 8.
supply to.

従って、各吹出口6から被空調部には各ダンパ7の開度
に応じた熱交換空気風量が吹き出され、リモコン10で
設定された設定温度に適応した空気調和が行われるよう
になっている。ダンパ開度は室温と設定温度との差によ
ってのみ決定され、最適な空気調和を行おうとするもの
である。
Therefore, an amount of heat exchange air is blown out from each outlet 6 to the air-conditioned area according to the opening degree of each damper 7, and air conditioning is performed in accordance with the set temperature set with the remote controller 10. . The damper opening degree is determined only by the difference between the room temperature and the set temperature, and is intended to achieve optimal air conditioning.

また、ダクト5内の温度センサ12は室内機2から導出
される熱交換空気の温度を検知し、この検知信号を主制
御装置8に供給しているが、主制御装置8はこの検知信
号に基づいて室内機2に配置される前記送風機の送風量
および室外機1に配置される圧縮機の運転周波数を設定
している。
Further, the temperature sensor 12 in the duct 5 detects the temperature of the heat exchange air led out from the indoor unit 2, and supplies this detection signal to the main controller 8. Based on this, the air flow rate of the blower disposed in the indoor unit 2 and the operating frequency of the compressor disposed in the outdoor unit 1 are set.

(発明が解決しようとする課電) 上述したような従来のダクト式空気調和装置においては
、゛空気調和を行うための熱源本体は1箇所であり、そ
こで発生した熱源をダクトを介して各被空調部に分配し
て空気調和を行っている。
(Electrification to be Solved by the Invention) In the conventional duct type air conditioner as described above, ``there is only one heat source main body for air conditioning, and the heat source generated there is transmitted to each air conditioner through the duct. Air conditioning is performed by distributing it to the air conditioning section.

このため、被空調部に対して適正に熱分配が行われると
は限らない。すなわち、室温と設定温度の差がそれぞれ
1℃、2℃、4℃の被空調部が存在するとき、空気調和
機本体に対しては、それぞれ被空調部からの温度差の総
計に相当する熱負荷要求を出すので、空気調和機本体は
それに応した運転を行う。従って、被空調部のダンパ開
度は被空調部の室温と設定温度との差によって自動的に
ダンパの開閉度を決定するため、それぞれ3室の被空調
部のダンパ開度は1灼2対4の比率になっていない。ま
た、上述した例の場合、4℃の被空調部のダンパ開度は
被空調部の温度差が解消するまで100%に固定されて
いたほうか被空調部の温度差解消か速くなることは言う
までもないことである。そして、従来の被空調部毎の分
散処理方式では、被空調部の温度差が少なくなる毎にダ
ンパを閉していく制御方法になっているため、最大の温
度差を有している被空調部のダンパ開度が100%を割
り込み、100%以下のダンパ開度で制御されてしまう
ことが一般的である。また、−室運転の場合、被空調部
の温度差てダンパ開度を開閉する従来の方法では、温度
差が解消される毎にダンパ開度は閉じていき、これに伴
って空気調和機本体が能力を低下させるが、空気調和機
本体の能力低下によって被空調部の温度差の解消速度が
低下するためにダンパ開度は開くようになる。ダンパが
開いていくと、被空調部により多くの空調が行われ、再
び温度差が少なくなっていくために、今度は温度差解消
の程度に合わせてダンパは閉じる動作を行う。このよう
にダンパが頻繁に開閉を繰り返しながら被空調部の温度
制御を行うことがこれまでの分散処理方式の特徴であり
、同時に空気調和機本体もダンパ開度に合わせて、その
能力を増減させながら被空調部の空気調和を行っていた
。このため、ダンパの開閉と空気調和機本体との調和が
取れていないとともに、ダンパ音が耳障りになるほどダ
ンパの開閉が頻繁に行われ、ダンパの信頼性を低下させ
るという問題がある。
For this reason, heat is not necessarily distributed appropriately to the air-conditioned area. In other words, when there are air-conditioned parts with a difference between the room temperature and the set temperature of 1°C, 2°C, and 4°C, respectively, the air conditioner body receives heat equivalent to the total temperature difference from each air-conditioned part. Since a load request is issued, the air conditioner itself operates accordingly. Therefore, since the damper opening degree of the air-conditioned area is automatically determined based on the difference between the room temperature of the air-conditioned area and the set temperature, the damper opening degree of the air-conditioned area of each of the three rooms is 1 to 2 pairs. The ratio is not 4. In addition, in the case of the above example, it would be better if the damper opening degree of the air-conditioned part at 4°C was fixed at 100% until the temperature difference in the air-conditioned part was resolved. It goes without saying. In the conventional distributed processing method for each air-conditioned part, the damper is closed each time the temperature difference between the air-conditioned parts decreases. It is common for the damper opening of some parts to fall below 100% and the damper opening to be controlled at less than 100%. In addition, in the case of room operation, in the conventional method of opening and closing the damper opening depending on the temperature difference between the air conditioned parts, the damper opening closes each time the temperature difference is eliminated, and the air conditioner body However, due to the decrease in the capacity of the air conditioner itself, the speed at which the temperature difference in the air-conditioned parts is resolved decreases, so the damper opening degree opens. As the damper opens, more air conditioning is performed on the air-conditioned area, and the temperature difference decreases again. This time, the damper closes in accordance with the extent to which the temperature difference is eliminated. A characteristic of conventional distributed processing systems is that the damper frequently opens and closes to control the temperature of the air conditioned area, and at the same time, the air conditioner itself also increases or decreases its capacity according to the damper opening. At the same time, air conditioning was being carried out in the air-conditioned areas. For this reason, there is a problem in that the opening and closing of the damper is not in harmony with the air conditioner main body, and the damper is opened and closed so frequently that the damper sound becomes harsh, reducing the reliability of the damper.

本発明は、上記に鑑みてなされもので、その目的とする
ところは、最大熱負荷を有する被空調部のダンパ開度を
所定開度に固定し、ダンパの開閉回数を低減してダンパ
の摩耗および故障を低下し、信頼性を向上したダクト式
空気調和装置の制御方法を提供することにある。
The present invention has been made in view of the above, and its purpose is to fix the damper opening degree of the air-conditioned part having the maximum heat load to a predetermined opening degree, reduce the number of opening and closing times of the damper, and thereby reduce the wear and tear of the damper. Another object of the present invention is to provide a control method for a duct type air conditioner that reduces failures and improves reliability.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するため、本発明のダクト式空気調和装
置の制御方法は、運転周波数可変型圧縮機および送風量
可変型送風機を備えた空気調和機本体にダクトを介して
接続された複数の被空調部を該被空調部の各々に設けら
れたダンパを開閉制御しながら空調制御するダクト式空
気調和装置の制御方法であって、複数の被空調部のうち
少なくとも熱負荷が最大の被空調部に対応するダンパを
所定の開度に固定し、その他の被空調部に対応するダン
パを該被空調部の温度と設定温度との温度差に基づいて
制御して空調制御することを要旨とする。
(Means for Solving the Problems) In order to achieve the above object, a method for controlling a duct type air conditioner according to the present invention provides a method for controlling a duct type air conditioner, in which a duct is installed in an air conditioner body equipped with a variable operating frequency compressor and a variable air flow blower. A control method for a duct type air conditioner that controls air conditioning of a plurality of air conditioned parts connected through a plurality of air conditioned parts while controlling opening and closing of a damper provided in each of the air conditioned parts. At least the damper corresponding to the air conditioned part with the maximum heat load is fixed at a predetermined opening degree, and the dampers corresponding to the other air conditioned parts are controlled based on the temperature difference between the temperature of the air conditioned part and the set temperature. The main idea is to control air conditioning using

(作用) 本発明のダクト式空気調和装置の制御方法ては、複数の
被空調部のうち少なくとも熱負荷が最大の被空調部に対
応するダンパを所定の開度に固定し、その他の被空調部
に対応するダンパを該被空調部の温度と設定温度との温
度差に基づいて制御して空調制御している。
(Function) In the control method of the duct type air conditioner of the present invention, at least the damper corresponding to the air-conditioned area with the largest heat load among the plurality of air-conditioned areas is fixed at a predetermined opening degree, and the other air-conditioned areas are fixed at a predetermined opening degree. The air conditioning is controlled by controlling the damper corresponding to the air-conditioned area based on the temperature difference between the temperature of the air-conditioned area and the set temperature.

(実施例) 以下、図面を用いて本発明の詳細な説明する。(Example) Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明の一実施例に係わるダクト式空気調和装
置の制御方法が適用されるダクト式空気調和装置の構成
図であり、第2図は第1図のダクト式空気調和装置に使
用されている室外機1、主制御装置8、ダンパ開度調整
機構9およびリモコン10間の電気接続関係を示す図で
ある。第1図に示すダクト式空気調和装置の構成は前述
した通りであるので、説明は省略する。
FIG. 1 is a configuration diagram of a duct type air conditioner to which a control method for a duct type air conditioner according to an embodiment of the present invention is applied, and FIG. FIG. 2 is a diagram showing the electrical connection relationship between the outdoor unit 1, the main controller 8, the damper opening adjustment mechanism 9, and the remote controller 10. Since the configuration of the duct type air conditioner shown in FIG. 1 is as described above, the explanation will be omitted.

第2図において、リモコン10は、各被空調部に設置さ
れるものであるが、被空調部の室温を検出するサーミス
タ61を有し、該サーミスタ61で検出した室温情報は
マイクロコンピュータ63に供給されている。また、マ
イクロコンピュータ63には設定表示部65が接続され
、該設定表示部65を介して室温の設定および表示がで
きるようになっている。更に、マイクロコンピュータ6
3は通信回路67を介してダンパ開度調整機構9に接続
され、これにより前記サーミスタ61で検出した室温や
設定室温等の情報を伝達し得るようになっている。
In FIG. 2, the remote control 10 is installed in each air-conditioned unit, and has a thermistor 61 that detects the room temperature of the air-conditioned unit, and the room temperature information detected by the thermistor 61 is supplied to a microcomputer 63. has been done. Further, a setting display section 65 is connected to the microcomputer 63, and the room temperature can be set and displayed via the setting display section 65. Furthermore, microcomputer 6
3 is connected to the damper opening adjustment mechanism 9 via a communication circuit 67, so that information such as the room temperature detected by the thermistor 61 and the set room temperature can be transmitted.

ダンパ開度調整機構9は、通信回路9つを介して前記リ
モコン10に接続され、該リモコン10から供給される
室温および設定室温との差をマイクロコンピュータ95
て算出し、この差によってダンパ駆動回路93を介して
ダンパ用ステッピングモータ91を駆動し、前記ダンパ
7を所定の開度に制御し、被空調部の空気調和を行うよ
うになっている。また、ダンパ開度調整機構9のマイク
ロコンピュータ95は通信回路97を介して前記主制御
装置8に接続され、これによりリモコン10から供給さ
れた室温および設定室温情報に加えて、ダンパ開度調整
機構9で制御したダンパ開度情報を主制御装置8に供給
するようになっている。
The damper opening adjustment mechanism 9 is connected to the remote controller 10 via nine communication circuits, and the microcomputer 95 detects the difference between the room temperature supplied from the remote controller 10 and the set room temperature.
Based on this difference, a damper stepping motor 91 is driven via a damper drive circuit 93, and the damper 7 is controlled to a predetermined opening degree to perform air conditioning in the air-conditioned section. The microcomputer 95 of the damper opening adjustment mechanism 9 is connected to the main control device 8 via a communication circuit 97, so that in addition to the room temperature and set room temperature information supplied from the remote controller 10, the microcomputer 95 of the damper opening adjustment mechanism The damper opening information controlled in step 9 is supplied to the main controller 8.

主制御装置8は、ダンパ開度調整機構9から供給される
室温、設定室温およびダンパ開度情報を通信回路89を
介してマイクロコンピュータ85て受信し、これらの情
報に基づいて送風機ドライバ81を介して室内送風機8
3を駆動し、室内送風機83の風量調節を行っている。
The main controller 8 receives the room temperature, set room temperature, and damper opening information supplied from the damper opening adjustment mechanism 9 via the communication circuit 89, and receives the information from the blower driver 81 based on this information. Indoor blower 8
3 to adjust the air volume of the indoor blower 83.

また、主制御装置8のマイクロコンピュータ85は、室
温および設定室温から決定される運転制御ポイントの総
計によって求められた圧縮機の運転周波数を計算し、こ
の圧縮機の運転周波数情報を通信回路87を介して室外
機1に供給するようになっている。
Further, the microcomputer 85 of the main controller 8 calculates the operating frequency of the compressor determined by the total of the operation control points determined from the room temperature and the set room temperature, and sends the operating frequency information of the compressor to the communication circuit 87. The water is supplied to the outdoor unit 1 through the air.

なお、送風機ドライバ81は交流電源100に接続され
、該交流電源100て作動するようになっている。
Note that the blower driver 81 is connected to an AC power source 100 and is operated by the AC power source 100.

室外機1は、主制御装置8から供給される圧縮機の運転
周波数情報を通信回路23を介してマイクロコンピュー
タ21で受信する。マイクロコンピュータ21は、この
受信した圧縮機の運転周波数に基づいて信号発生回路1
9およびインバータ駆動回路15を介して運転周波数可
変型圧縮機17を駆動し、該圧縮機17の周波数を制御
している。そして、この圧縮機17の運転周波数を可変
制御することによってリモコン10が配置されている被
空調部の空気調和を行うようになっている。
In the outdoor unit 1 , the microcomputer 21 receives compressor operating frequency information supplied from the main controller 8 via the communication circuit 23 . The microcomputer 21 controls the signal generation circuit 1 based on the received operating frequency of the compressor.
9 and an inverter drive circuit 15, a variable operating frequency compressor 17 is driven, and the frequency of the compressor 17 is controlled. By variably controlling the operating frequency of this compressor 17, the air conditioning of the air-conditioned area in which the remote controller 10 is placed is performed.

なお、インバータ駆動回路15は交流電源100からの
交流電圧をコンバータ11および平滑回路13を介して
平滑された電圧で作動するようになっている。
Note that the inverter drive circuit 15 operates with a voltage obtained by smoothing an AC voltage from the AC power supply 100 via the converter 11 and the smoothing circuit 13.

以上のように構成されるダクト式空気調和装置において
、ダンパ開度調整機構9の送信データは、第3図に示す
ように、運転モード、設定温度、室温、オプション、運
転制御ポイント、停止制御ポイント、希望ダンパ開度、
現行ダンパ開度から構成され、これらのデータが各ダン
パ開度調整機構9から主制御装置8に送信され、主制御
装置8においてどのダンパ開度調整機構9が一番大きな
熱負荷を要求しているかが判断てきるようになっている
。また、主制御装置8は、各ダンパ開度調整機構9から
の送信されるデータを受信すると、ダンパ開度調整機構
9に対して第4図に示すようなデータを送信する。この
主制御装置8から送信されるデータは、主制御装置8の
運転状態を示す運転モード、風量、熱交換温度、運転周
波数およびダンパ開度指令から構成されている。このダ
ンパ開度指令ビットが「0」てあれば、例えばダンパ開
度指令5が「0」ならば、ダンパ開度調整機構9の設定
アドレスが5番目のダンパ開度はその対応するダンパ開
度調整機構9が室温と設定温度から求められるダンパ開
度に自由に開度制御できることを示し、ダンパ開度指令
が「1」であれば、そのダンパ開度調整機構9の設定ア
ドレスが8番目のダンパ開度は主制御装置8が指示する
開度(100%)に固定しなければならない。
In the duct type air conditioner configured as described above, the data transmitted by the damper opening adjustment mechanism 9 includes the operation mode, set temperature, room temperature, options, operation control points, and stop control points, as shown in FIG. , desired damper opening,
These data are sent from each damper opening adjustment mechanism 9 to the main controller 8, and the main controller 8 determines which damper opening adjustment mechanism 9 requires the largest heat load. It is now possible to determine whether there are any. Further, upon receiving the data transmitted from each damper opening adjustment mechanism 9, the main controller 8 transmits data as shown in FIG. 4 to the damper opening adjustment mechanism 9. The data transmitted from the main controller 8 includes an operating mode indicating the operating state of the main controller 8, an air volume, a heat exchange temperature, an operating frequency, and a damper opening command. If this damper opening command bit is "0", for example, if the damper opening command 5 is "0", the damper opening with the fifth setting address of the damper opening adjustment mechanism 9 is the corresponding damper opening. Indicates that the adjustment mechanism 9 can freely control the opening of the damper to the degree determined from the room temperature and the set temperature, and if the damper opening command is "1", the setting address of the damper opening adjustment mechanism 9 is the 8th one. The damper opening degree must be fixed at the opening degree (100%) instructed by the main controller 8.

以下、第5図〜第7図に示すフローチャートに従って作
用を説明する。
The operation will be explained below according to the flowcharts shown in FIGS. 5 to 7.

第5図は主制御装置8の制御動作を示すフローチャート
である。同図に示すように、主制御装置8の電源がはい
ると(ステップ110)、主制御装置8の制御情報であ
る室内機2の情報をダンパ開度調整機構9に対して同報
送信するので(ステップ120)、−産生制御装置8が
室内機2の情報を送信すると、すべてのダンパ開度調整
機構9は同時に受信することができる。主制御装置8が
室内機2の情報を送信すると、各ダンパ開度調整機構9
は各ダンパ開度調整機構9の制御情報であるVAV情報
を順次送信してくるので、この情報を受信することにな
る(ステップ130)。この受信した情報が各ダンパ開
度調整機19の設定アドレスであるか否か判定しくステ
ップ140)、設定アドレスの場合には、主制御装置8
に設けられている記憶装[RAMに保存しくステップ1
50)、すべてのダンパ開度調整機構9からの情報を受
信完了するまで繰り返し行う(ステップ160)。すべ
てのダンパ開度調整機構9からの情報を受信した場合に
は、主制御装置8の運転モードを判定しくステップ17
0)、空気調和のための室内機2の送風量を決定して指
令しくステップ180)、冷風・温風とその程度i決定
するための室内機2の指令を行い(ステップ190)、
室内機情報処理により室内機2の情報を同報送信する(
ステップ200)。
FIG. 5 is a flowchart showing the control operation of the main controller 8. As shown in the figure, when the main control device 8 is powered on (step 110), information on the indoor unit 2, which is control information of the main control device 8, is broadcasted to the damper opening adjustment mechanism 9. Therefore (step 120), - When the production control device 8 transmits the information of the indoor unit 2, all the damper opening adjustment mechanisms 9 can receive it at the same time. When the main controller 8 transmits information about the indoor unit 2, each damper opening adjustment mechanism 9
sequentially transmits VAV information, which is control information for each damper opening adjustment mechanism 9, so this information is received (step 130). It is determined whether this received information is the setting address of each damper opening adjustment machine 19 (step 140), and if it is the setting address, the main controller 8
The storage device provided in [Step 1 to save to RAM]
50), the process is repeated until the information from all damper opening adjustment mechanisms 9 has been received (step 160). If information from all damper opening adjustment mechanisms 9 has been received, the operation mode of the main controller 8 is determined in step 17.
0), determine and command the amount of air blown by the indoor unit 2 for air conditioning (step 180), command the indoor unit 2 to determine cold air/warm air and its degree i (step 190);
Broadcast the information of indoor unit 2 by indoor unit information processing (
Step 200).

第6図は第5図のステップ200の室内機情報処理を示
す詳細フローチャートである。この第6図に示す室内機
情報処理においては、各ダンパ開度調整機構9からの受
信信号を判定しくステップ210)、最大負荷のダンパ
開度調整機構9であるか否か判定する(ステップ220
)。最大負荷のダンパ開度調整機構9である場合には、
ダンパ固定開度指令を設定しくステップ230) 、最
大負荷のダンパ開度調整機構9でない場合には、ダンパ
自由開度指令を設定しくステップ240)、その他の室
内機情報と合わせてダンパ開度調整機構9に同報送信を
行う(ステップ250)。
FIG. 6 is a detailed flowchart showing the indoor unit information processing at step 200 in FIG. In the indoor unit information processing shown in FIG. 6, the reception signal from each damper opening adjustment mechanism 9 is determined (step 210), and it is determined whether the damper opening adjustment mechanism 9 has the maximum load (step 220).
). In the case of the maximum load damper opening adjustment mechanism 9,
Set the damper fixed opening command (Step 230), and if the damper opening adjustment mechanism 9 is not at the maximum load, set the damper free opening command (Step 240), and adjust the damper opening in conjunction with other indoor unit information. Broadcast transmission is performed to mechanism 9 (step 250).

各ダンパ開度調整機構9の制御動作は第7図のフローチ
ャートを参照して詳細に説明する。
The control operation of each damper opening adjustment mechanism 9 will be explained in detail with reference to the flowchart in FIG.

第7図において、ダンパ開度調整機構9に電源がはいる
と(ステップ310)、室内機2の情報の受信を待って
(ステップ320)、被空調部に取り付けられているリ
モコン10からの室温を受信しくステップ330)、更
にリモコン10から設定温度を受信する(ステップ34
0)。それから、受信した室温と設定温度との差からダ
ンパ開度を決定する(ステップ350)。室内機情報に
よってダンパ固定開度指令が指令されているか否かを判
定する(ステップ360)。ダンパ固定開度指令が指令
されている場合には、ダンパ固定開度制御のためにダン
パを全開に固定する(ステップ370)。ダンパ固定開
度指令が指令されていない場合には、ダンパ自由開度制
御を行う(ステップ380)。それから、ステップ32
0で室内機情報を受信してからのダンパ開度調整機構情
報送信順番を待ち(ステップ390)、ダンパ開度調整
機構9の情報送信を行い、主制御装置8が各ダンパ開度
調整機構9の情報を得ることによって最適な送風制御、
室外機制御が行えるようにしている。
In FIG. 7, when power is applied to the damper opening adjustment mechanism 9 (step 310), it waits for information from the indoor unit 2 to be received (step 320), and then the room temperature is determined from the remote control 10 attached to the air conditioned part. (step 330), and further receives the set temperature from the remote controller 10 (step 34).
0). Then, the damper opening degree is determined from the difference between the received room temperature and the set temperature (step 350). It is determined whether a damper fixed opening command is issued based on the indoor unit information (step 360). If the damper fixed opening command has been issued, the damper is fixed fully open for damper fixed opening control (step 370). If the damper fixed opening command has not been issued, damper free opening control is performed (step 380). Then step 32
After receiving the indoor unit information at step 0, the main controller 8 waits for the damper opening adjustment mechanism information transmission order (step 390), transmits the information of the damper opening adjustment mechanism 9, and the main controller 8 sends the damper opening adjustment mechanism information to each damper opening adjustment mechanism 9. Optimal air blow control by obtaining information on
The outdoor unit can be controlled.

前記ステップ360において、ダンパ固定開度指令がな
い場合には、各ダンパ開度調整機構9は分散処理だけを
行うことになり、他のダンパ開度調整機構9との組み合
せによる最適な空気調和制御を行うことができない。従
来、主制御装置8に開度指令手段はまったく考えられて
いなかったので、主制御装置8の送風制御や室外機制御
と各ダンパ開度調整機構9によるダンパ開度制御との融
合性がとれなくて、一番負荷を必要としている被空調部
のダンパが必ずしも100%になっているのでなく、絶
えず100%と100%以下の開度を頻繁に開閉してい
るということが実験の結果から判明してきたので、分散
処理制御して各ダンパ開度調整機lll9が主制御装置
8に融合していずれかの開度調節機構のダンパ開度が1
00%になって、一番負荷を必要としているダンパ開度
調整機構9の被空調部の空気調和が有効になされるよう
にと制御方法が各種考えられていたが分散処理制御を主
体に考えた制御では、主制御装置8と各ダンパ開度調整
機構9との融合をはかることは困難であった。しかしな
がら、分散処理制御の中に主制御装置8からのダンパ固
定開度指令を導入して、一部集中制御形態を取り入れる
ことによって主制御装置8の制御があまり複雑にならな
いで各ダンパ開度調整機構9との融合がはかれる最適な
ダンパ開度制御が実現できたとともに、ダンパが固定さ
れることによって頻繁に開閉を繰り返す動作がなくなり
、ダンパの摩耗も少なくなり、ダンパの開閉音の減少お
よび故障率低下による信頼性の向上を図ることができる
In the step 360, if there is no damper fixed opening command, each damper opening adjustment mechanism 9 performs only distributed processing, and optimal air conditioning control is achieved by combining with other damper opening adjustment mechanisms 9. can't do it. Conventionally, no opening command means was considered in the main controller 8, so it was possible to integrate the ventilation control and outdoor unit control of the main controller 8 with the damper opening control by each damper opening adjustment mechanism 9. The experimental results show that the damper of the air-conditioned part that requires the most load is not necessarily at 100%, but is constantly opening and closing at 100% and below 100%. As it has become clear, each damper opening adjustment mechanism 1ll9 is integrated with the main controller 8 through distributed processing control, so that the damper opening of any one of the opening adjustment mechanisms is adjusted to 1.
00%, various control methods have been considered in order to effectively condition the air in the air-conditioned part of the damper opening adjustment mechanism 9 that requires the most load, but distributed processing control has been mainly considered. In the control described above, it is difficult to integrate the main controller 8 and each damper opening adjustment mechanism 9. However, by introducing a damper fixed opening command from the main controller 8 into distributed processing control and incorporating a partially centralized control mode, the control of the main controller 8 can be adjusted without becoming too complicated. Optimal damper opening control that integrates with the mechanism 9 has been realized, and since the damper is fixed, frequent opening and closing operations are eliminated, damper wear is reduced, and damper opening/closing noise is reduced and failures occur. It is possible to improve reliability by reducing the rate.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、複数の被空調部
のうち少なくとも熱負荷が最大の被空調部に対応するダ
ンパを所定の開度に固定し、その他の被空調部に対応す
るダンパを該被空調部の温度と設定温度との温度差に基
づいて制御して空調制御しているので、最大負荷の被空
調部に対しては最大の空気調和を実現でき、該被空調部
の空気調和を行うダンパの開閉音を低減し、快適な空気
調和を行うことができるとともに、ダンパの摩耗を低減
し、ダンパの故障率の低下を図ることができる。
As explained above, according to the present invention, at least the damper corresponding to the air-conditioned area with the largest heat load among the plurality of air-conditioned areas is fixed at a predetermined opening degree, and the damper corresponding to the other air-conditioned areas is fixed at a predetermined opening degree. Since the air conditioning is controlled based on the temperature difference between the temperature of the air-conditioned part and the set temperature, maximum air conditioning can be achieved for the air-conditioned part with the maximum load, and the temperature of the air-conditioned part is It is possible to reduce the opening/closing sound of the damper that performs air conditioning, and to perform comfortable air conditioning, and also to reduce the wear of the damper and reduce the failure rate of the damper.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係わるダクト式空気調和装
置の制御方法が適用されるダクト式空気調和装置の構成
図、第2図は第1図のダクト式空気調和装置の電気接続
図、第3図は第1図のダクト式空気調和装置に使用され
ているダンパ開度調整機構の主制御装置への送信データ
の一部のビットデータの説明図、第4図は第1図のダク
ト式空気調和装置に使用されている主制御装置のダンパ
開度調整機構への回報送信データの一部のビットデータ
の説明図、第5図は第1図のダクト式空気調和装置に使
用されている主制御装置の制御動作を示すフローチャー
ト、第6図は第5図のフローチャートにおける室内機情
報処理の詳細な処理を示すフローチャート、第7図は第
1図のダクト式空気調和装置に使用されているダンパ開
度調整機構の制御動作を示すフローチャートである。 85 ・ 91 ・ ・マイクロコンピュータ、 ・ダンパ用ステッピングモータ。
Fig. 1 is a configuration diagram of a duct type air conditioner to which a control method for a duct type air conditioner according to an embodiment of the present invention is applied, and Fig. 2 is an electrical connection diagram of the duct type air conditioner shown in Fig. 1. , FIG. 3 is an explanatory diagram of some bit data of the transmission data to the main control device of the damper opening adjustment mechanism used in the duct type air conditioner shown in FIG. 1, and FIG. Figure 5 is an explanatory diagram of some bit data of the relay transmission data to the damper opening adjustment mechanism of the main controller used in the duct type air conditioner. 6 is a flowchart showing the detailed process of indoor unit information processing in the flowchart of FIG. 5, and FIG. 7 is a flowchart showing the control operation of the main controller shown in FIG. 3 is a flowchart showing the control operation of the damper opening adjustment mechanism. 85 ・ 91 ・ ・Microcomputer, ・Stepping motor for damper.

Claims (1)

【特許請求の範囲】[Claims] 運転周波数可変型圧縮機および送風量可変型送風機を備
えた空気調和機本体にダクトを介して接続された複数の
被空調部を該被空調部の各々に設けられたダンパを開閉
制御しながら空調制御するダクト式空気調和装置の制御
方法であって、複数の被空調部のうち少なくとも熱負荷
が最大の被空調部に対応するダンパを所定の開度に固定
し、その他の被空調部に対応するダンパを該被空調部の
温度と設定温度との温度差に基づいて制御して空調制御
することを特徴とするダクト式空気調和装置の制御方法
A plurality of air-conditioned parts connected via ducts to an air conditioner body equipped with a variable operating frequency compressor and a variable air flow blower are air-conditioned while controlling the opening and closing of dampers provided in each of the air-conditioned parts. A control method for a duct type air conditioner, in which a damper corresponding to at least the air conditioned area with the largest heat load among a plurality of air conditioned areas is fixed at a predetermined opening degree, and other air conditioned areas are controlled. 1. A method for controlling a duct type air conditioner, comprising controlling a damper based on a temperature difference between the temperature of the air-conditioned section and a set temperature.
JP2170204A 1990-06-29 1990-06-29 Control of duct air conditioner Pending JPH0462352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2170204A JPH0462352A (en) 1990-06-29 1990-06-29 Control of duct air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2170204A JPH0462352A (en) 1990-06-29 1990-06-29 Control of duct air conditioner

Publications (1)

Publication Number Publication Date
JPH0462352A true JPH0462352A (en) 1992-02-27

Family

ID=15900599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2170204A Pending JPH0462352A (en) 1990-06-29 1990-06-29 Control of duct air conditioner

Country Status (1)

Country Link
JP (1) JPH0462352A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7827813B2 (en) * 2007-01-30 2010-11-09 Johnson Controls Technology Company Adaptive real-time optimization control
US8027742B2 (en) 2007-07-17 2011-09-27 Johnson Controls Technology Company Fault detection systems and methods for self-optimizing heating, ventilation, and air conditioning controls
US8200344B2 (en) 2007-07-17 2012-06-12 Johnson Controls Technology Company Extremum seeking control with reset control
JP2012112564A (en) * 2010-11-24 2012-06-14 Chuo Reiki Seisakusho:Kk Air supply and exhaust device for kitchen
US8567204B2 (en) 2007-01-30 2013-10-29 Johnson Controls Technology Company Sensor-free optimal control of air-side economizer
US8841833B2 (en) 2010-02-05 2014-09-23 Sony Corporation Organic el display and method of manufacturing the same
US9069338B2 (en) 2009-06-22 2015-06-30 Johnson Controls Technology Company Systems and methods for statistical control and fault detection in a building management system
US9196009B2 (en) 2009-06-22 2015-11-24 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US9286582B2 (en) 2009-06-22 2016-03-15 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US9348392B2 (en) 2009-06-22 2016-05-24 Johnson Controls Technology Corporation Systems and methods for measuring and verifying energy savings in buildings
US9390388B2 (en) 2012-05-31 2016-07-12 Johnson Controls Technology Company Systems and methods for measuring and verifying energy usage in a building
US9429927B2 (en) 2009-06-22 2016-08-30 Johnson Controls Technology Company Smart building manager
US9568910B2 (en) 2009-06-22 2017-02-14 Johnson Controls Technology Company Systems and methods for using rule-based fault detection in a building management system
US9606520B2 (en) 2009-06-22 2017-03-28 Johnson Controls Technology Company Automated fault detection and diagnostics in a building management system
US9639413B2 (en) 2009-06-22 2017-05-02 Johnson Controls Technology Company Automated fault detection and diagnostics in a building management system
US9753455B2 (en) 2009-06-22 2017-09-05 Johnson Controls Technology Company Building management system with fault analysis
US9778639B2 (en) 2014-12-22 2017-10-03 Johnson Controls Technology Company Systems and methods for adaptively updating equipment models
US10739741B2 (en) 2009-06-22 2020-08-11 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US11269303B2 (en) 2009-06-22 2022-03-08 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8096140B2 (en) 2007-01-30 2012-01-17 Johnson Controls Technology Company Adaptive real-time optimization control
US7827813B2 (en) * 2007-01-30 2010-11-09 Johnson Controls Technology Company Adaptive real-time optimization control
US8495888B2 (en) 2007-01-30 2013-07-30 Johnson Controls Technology Company Adaptive real-time optimization control
US8567204B2 (en) 2007-01-30 2013-10-29 Johnson Controls Technology Company Sensor-free optimal control of air-side economizer
US8694132B2 (en) 2007-07-17 2014-04-08 Johnson Controls Technology Company Extremum seeking control with actuator saturation control
US8027742B2 (en) 2007-07-17 2011-09-27 Johnson Controls Technology Company Fault detection systems and methods for self-optimizing heating, ventilation, and air conditioning controls
US8200344B2 (en) 2007-07-17 2012-06-12 Johnson Controls Technology Company Extremum seeking control with reset control
US8200345B2 (en) 2007-07-17 2012-06-12 Johnson Controls Technology Company Extremum seeking control with actuator saturation control
US8478433B2 (en) 2007-07-17 2013-07-02 Johnson Controls Technology Company Fault detection systems and methods for self-optimizing heating, ventilation, and air conditioning controls
US8666517B2 (en) 2007-07-17 2014-03-04 Johnson Controls Technology Company Extremum seeking control with reset control
US10261485B2 (en) 2009-06-22 2019-04-16 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US9575475B2 (en) 2009-06-22 2017-02-21 Johnson Controls Technology Company Systems and methods for generating an energy usage model for a building
US9069338B2 (en) 2009-06-22 2015-06-30 Johnson Controls Technology Company Systems and methods for statistical control and fault detection in a building management system
US9196009B2 (en) 2009-06-22 2015-11-24 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US9286582B2 (en) 2009-06-22 2016-03-15 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US9348392B2 (en) 2009-06-22 2016-05-24 Johnson Controls Technology Corporation Systems and methods for measuring and verifying energy savings in buildings
US10739741B2 (en) 2009-06-22 2020-08-11 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US9429927B2 (en) 2009-06-22 2016-08-30 Johnson Controls Technology Company Smart building manager
US9568910B2 (en) 2009-06-22 2017-02-14 Johnson Controls Technology Company Systems and methods for using rule-based fault detection in a building management system
US10901446B2 (en) 2009-06-22 2021-01-26 Johnson Controls Technology Company Smart building manager
US9606520B2 (en) 2009-06-22 2017-03-28 Johnson Controls Technology Company Automated fault detection and diagnostics in a building management system
US9639413B2 (en) 2009-06-22 2017-05-02 Johnson Controls Technology Company Automated fault detection and diagnostics in a building management system
US9753455B2 (en) 2009-06-22 2017-09-05 Johnson Controls Technology Company Building management system with fault analysis
US11927977B2 (en) 2009-06-22 2024-03-12 Johnson Controls Technology Company Smart building manager
US11269303B2 (en) 2009-06-22 2022-03-08 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US11416017B2 (en) 2009-06-22 2022-08-16 Johnson Controls Technology Company Smart building manager
US8841833B2 (en) 2010-02-05 2014-09-23 Sony Corporation Organic el display and method of manufacturing the same
JP2012112564A (en) * 2010-11-24 2012-06-14 Chuo Reiki Seisakusho:Kk Air supply and exhaust device for kitchen
US9390388B2 (en) 2012-05-31 2016-07-12 Johnson Controls Technology Company Systems and methods for measuring and verifying energy usage in a building
US10325331B2 (en) 2012-05-31 2019-06-18 Johnson Controls Technology Company Systems and methods for measuring and verifying energy usage in a building
US10317864B2 (en) 2014-12-22 2019-06-11 Johnson Controls Technology Company Systems and methods for adaptively updating equipment models
US9778639B2 (en) 2014-12-22 2017-10-03 Johnson Controls Technology Company Systems and methods for adaptively updating equipment models

Similar Documents

Publication Publication Date Title
JPH0462352A (en) Control of duct air conditioner
US7832465B2 (en) Affordable and easy to install multi-zone HVAC system
JP2838941B2 (en) Duct air conditioner
JPH10232040A (en) Air-conditioning system device
US5317907A (en) Air conditioning apparatus having ambient air-conditioning unit and a plurality of personal air-conditioning units connected to outdoor unit
JPH0278849A (en) Air conditioner
JPH05118614A (en) Air conditioner
JPH1183112A (en) Air conditioner
JP3518015B2 (en) Ventilation air conditioner
JP3425295B2 (en) Air conditioning system equipment
JPS6335321Y2 (en)
JP2762021B2 (en) Mixing loss reduction air conditioner
JP2000065410A (en) Air conditioner system
JP2789936B2 (en) Control device for air conditioner
JPH0455653A (en) Control method for duct type air-conditioning device
JPH06341723A (en) Air conditioner
JPH07318154A (en) Ceiling mounting type air conditioner
JPH06185783A (en) Air conditioning system
JPH10311590A (en) Ventilation air-conditioning device
JP3327376B2 (en) Operation control method of building thermal storage air conditioning system
JP3348959B2 (en) Conditioned air supply equipment and its operation method
JPH01107041A (en) Centralized control system for air conditioner
JP2002257399A (en) Air conditioning system
JPH07332739A (en) Air conditioner
JPH0812009B2 (en) Air conditioner