JPH0462246B2 - - Google Patents

Info

Publication number
JPH0462246B2
JPH0462246B2 JP15037284A JP15037284A JPH0462246B2 JP H0462246 B2 JPH0462246 B2 JP H0462246B2 JP 15037284 A JP15037284 A JP 15037284A JP 15037284 A JP15037284 A JP 15037284A JP H0462246 B2 JPH0462246 B2 JP H0462246B2
Authority
JP
Japan
Prior art keywords
pressure
screw
mold
nozzle
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15037284A
Other languages
Japanese (ja)
Other versions
JPS6127227A (en
Inventor
Yoshinari Sasaki
Etsuji Oda
Naoki Kurita
Hirozumi Nagata
Hiroyuki Maehara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP15037284A priority Critical patent/JPS6127227A/en
Priority to US06/753,623 priority patent/US4820464A/en
Priority to CA000486573A priority patent/CA1250718A/en
Priority to DE8585108840T priority patent/DE3581565D1/en
Priority to AT85108840T priority patent/ATE60543T1/en
Priority to EP85108840A priority patent/EP0168804B1/en
Priority to KR1019850005063A priority patent/KR900007344B1/en
Publication of JPS6127227A publication Critical patent/JPS6127227A/en
Publication of JPH0462246B2 publication Critical patent/JPH0462246B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/03Injection moulding apparatus
    • B29C45/07Injection moulding apparatus using movable injection units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • G05B19/231Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude
    • G05B19/237Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude with a combination of feedback covered by G05B19/232 - G05B19/235
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42094Speed then pressure or force loop
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45244Injection molding

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 (発明の技術分野) この発明は、射出成形機の射出用ノズルを製品
成形用の金型に円滑に接触させて射出を行なうた
めの射出成形機の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for controlling an injection molding machine for smoothly bringing an injection nozzle of the injection molding machine into contact with a mold for molding a product to perform injection.

(発明の技術的背景とその問題点) 射出成形機を設計する場合、特に自動化に際し
ては成形品の品質の向上、省エネルギー化及び生
産性の古城に留意しなければならず、これらは特
に計量工程においてその重要性を占めている。こ
れらの中で品質の向上という点でみると、成型品
の品質は射出速度、圧力、樹脂温度や射出量等に
より左右され、バラツキの少ない正確な射出量を
得るには高い精度で計量しなければならない。ま
た、省エネルギー化という点でみると、粒状の樹
脂を均質な溶融状態にするためにヒータで熱を加
え、スクリユーにより剪断、混練するのである
が、スクリユーの回転数及び背圧を樹脂の種類、
温度等に合わせて効果的に制御することによつ
て、計量に必要なエネルギーを最小にすることが
できるし、計量に要する時間を出来る限り短縮さ
せることにより、生産性の向上を図ることもでき
る。
(Technical background of the invention and its problems) When designing an injection molding machine, especially when automating, it is necessary to pay attention to the improvement of molded product quality, energy saving, and productivity, and these are especially important in the measurement process. It occupies importance in this field. Among these, from the point of view of quality improvement, the quality of molded products is affected by injection speed, pressure, resin temperature, injection amount, etc., and in order to obtain an accurate injection amount with little variation, it is necessary to measure with high precision. Must be. In addition, from the point of view of energy saving, heat is applied with a heater to make the granular resin into a homogeneous molten state, and the screw is sheared and kneaded.
By effectively controlling temperature, etc., the energy required for weighing can be minimized, and productivity can be improved by reducing the time required for weighing as much as possible. .

第1図は従来の射出成形機の計量機構を示す図
であり、全周面にネジ溝を付けられた棒状のスク
リユー1の回転により、ホツパ3に収納されてい
る樹脂4はネジ溝を伝わつてシリンダ2へ送ら
れ、ヒータ(図示せず)で熱を加えられながらス
クリユー1の回転により、剪断、混練されて可塑
化される。この場合、シリンダ2の先端に設けら
れているノズル5は製品の形状が彫り込まれた金
型(図示せず)に押圧されているので、シリンダ
2内に満たされ金型を充填した樹脂6の圧力によ
りスクリユー1が図示Y方向に後退する。つま
り、計量時には溶融した樹脂6が外部に流れ出さ
ない構造となつており、シリンダ2内へノズル5
やホツパ3から空気が吸引されないようにすると
共に、正確な樹脂量を計量するために駆動装置1
00による駆動でスクリユー1に背圧が加えられ
る。従つて、スクリユー1の回転によつて生じる
樹脂圧と駆動装置100からの背圧との差によつ
て、スクリユー1は徐々に矢印Y方向に後退させ
られる。これらスクリユー1の回転数と背圧は使
用する樹脂4の種類、温度等から経験的に設定さ
れ、射出量を決めるスクリユー1の位置はリミツ
トスイツチ等の形成手段によつて設定されてい
る。なお、スクリユー1を回転する機構やスクリ
ユー1に背圧を加える機構、リミツトスイツチ等
は、駆動装置100内に装備されている。
Figure 1 is a diagram showing the metering mechanism of a conventional injection molding machine, in which the rotation of a bar-shaped screw 1 with thread grooves on the entire circumference causes the resin 4 stored in the hopper 3 to be transmitted through the thread grooves. The material is then sent to the cylinder 2, where it is sheared, kneaded, and plasticized by the rotation of the screw 1 while being heated by a heater (not shown). In this case, since the nozzle 5 provided at the tip of the cylinder 2 is pressed against a mold (not shown) in which the shape of the product is engraved, the resin 6 that fills the cylinder 2 and fills the mold The screw 1 retreats in the Y direction in the figure due to the pressure. In other words, the structure is such that the molten resin 6 does not flow out during measurement, and the nozzle 5 flows into the cylinder 2.
In order to prevent air from being sucked in from the hopper 3 and the hopper 3, and to accurately measure the amount of resin, the drive device 1
Back pressure is applied to the screw 1 by driving by 00. Therefore, the screw 1 is gradually retreated in the direction of arrow Y due to the difference between the resin pressure generated by the rotation of the screw 1 and the back pressure from the drive device 100. The rotational speed and back pressure of the screw 1 are set empirically based on the type of resin 4 used, its temperature, etc., and the position of the screw 1, which determines the injection amount, is set by a forming means such as a limit switch. Note that a mechanism for rotating the screw 1, a mechanism for applying back pressure to the screw 1, a limit switch, and the like are installed in the drive device 100.

ここで問題となるのは、スクリユー位置を直接
決定する要素がリミツトスイツチであり、回転数
と背圧の相互関係によりスクリユー位置を間接的
にしか制御できないことである。すなわち、リミ
ツトスイツチが動作してからスクリユー1の回転
を停止させたのでは、スクリユー1は所望の位置
を行き過ぎてしまう。従つて、行き過ぎを無くす
ためにはスクリユー1がリミツトスイツチに近づ
くに従い、スクリユー1の回転を徐々に下げてい
くとか、又はリミツトスイツチ作動点に対する行
き過ぎ量を見越して手前に設定しておくなどの対
策しかない。このため、実際には計量工程の試行
錯誤を繰返して決定する必要があり、更に樹脂4
の種類、金型の形状等によつて異なるのみなら
ず、温度変化や樹脂の温度、ホツパ3からシリン
ダ2への移送量等の変化が外乱として加わるとい
う点からすると、リミツトスイツチ作動点の設定
が煩雑であるばかりか正確な射出量を得ることも
困難であり、射出量にバラツキが生じ、成形品の
品質の低下は免れない。更に、このような方式で
はリミツトスイツチにより正確な位置で停止させ
るために、スクリユー1の回転数を定常回転時で
も必要以上に小さくしなければならず、計量に要
する時間が長くなり、生産性が落ちると共にエネ
ルギー効率も低くなつてしまつていた。
The problem here is that the element that directly determines the screw position is the limit switch, and the screw position can only be indirectly controlled by the interrelationship between rotational speed and back pressure. That is, if the rotation of the screw 1 is stopped after the limit switch is activated, the screw 1 will end up going past the desired position. Therefore, in order to prevent overtravel, the only measures available are to gradually lower the rotation of screw 1 as it approaches the limit switch, or to set it closer to the limit switch operating point in anticipation of the amount of overtravel. . Therefore, in reality, it is necessary to repeatedly determine the measurement process by trial and error, and furthermore, the resin
The setting of the limit switch operating point is not only different depending on the type of resin, the shape of the mold, etc., but also changes in temperature, resin temperature, transfer amount from the hopper 3 to the cylinder 2, etc. are added as disturbances. Not only is it complicated, but it is also difficult to obtain an accurate injection amount, resulting in variations in the injection amount, which inevitably leads to a deterioration in the quality of the molded product. Furthermore, in such a method, in order to stop the screw 1 at an accurate position using the limit switch, the rotation speed of the screw 1 must be made lower than necessary even during steady rotation, which increases the time required for weighing and reduces productivity. At the same time, energy efficiency also decreased.

このような問題と共に、ノズルと金型とを接触
させる場合、ノズルを速度制御によつて金型へ向
かつて前進させ、ノズルが金型に十分近づいた時
に圧力制御に切換えるようにしているが、速度制
御を圧力制御に切換える位置又は時間が分らず、
速度制御を圧力制御に切換えた時に速度又は圧力
が不連続に変化してしまい、円滑な制御ができな
いといつた問題点があつた。
In addition to these problems, when bringing the nozzle into contact with the mold, the nozzle is advanced toward the mold by speed control, and when the nozzle gets close enough to the mold, the pressure control is switched to. I don't know the position or time to switch speed control to pressure control,
There was a problem in that when speed control was switched to pressure control, the speed or pressure changed discontinuously, making smooth control impossible.

(発明の目的) この発明は上述のような事情からなされたもの
であり、その目的は、射出成形機の構成と相俟つ
てノズルを円滑に金型に接触させることができる
射出成形機の制御方法を提供することにある。
(Object of the Invention) This invention was made in view of the above-mentioned circumstances, and its purpose is to provide a control for an injection molding machine that allows the nozzle to come into smooth contact with the mold by combining the configuration of the injection molding machine. The purpose is to provide a method.

(発明の概要) この発明は、先端にノズルを穿設されているシ
リンダ内に、前後進すると共に回転するスクリユ
ーを配設し、シリンダ内に溶融されている樹脂を
ノズルから、製品の形状が彫り込まれた金型内に
射出のるようになつている射出成形機の制御方法
に関するもので、ノズルを速度制御で金型方向に
移動させ、ノズルの金型に対する圧力を測定し、
この測定圧力が設定圧力となつた時に上記ノズル
の速度制御を圧力制御に切換え、上記ノズルを設
定圧力で金型に圧接させるように制御するもので
ある。
(Summary of the Invention) This invention includes a screw that moves back and forth as well as rotates inside a cylinder with a nozzle at its tip, and the resin molten inside the cylinder is passed through the nozzle to form the shape of the product. This relates to a control method for an injection molding machine that is designed to inject into a carved mold.The nozzle is moved toward the mold under speed control, and the pressure of the nozzle against the mold is measured.
When this measured pressure reaches a set pressure, the speed control of the nozzle is switched to pressure control, and the nozzle is controlled so as to be brought into pressure contact with the mold at the set pressure.

(発明の実施例) この発明では、第2図に示すように制御装置1
5にスクリユー1に対する位置指令Siが入力さ
れ、演算されたスクリユー背圧信号Piがスクリユ
ー1の位置を移動するモータ13に与えられ、演
算されたスクリユー回転信号Riがスクリユー1
の回転を行なうモータ7に入力されている。ここ
で、スクリユー回転信号Riによりモータ7が回
転することによりスクリユー1が回転され、ホツ
パ3から樹脂4がシリンダ2へ送られ、スクリユ
ー1により剪断、混練されて可塑化された樹脂6
がシリンダ2内に満たされ、この圧力によりスク
リユー1は矢印N方向に後退する。このとき、シ
リンダ2内に空気が吸引されないようにしながら
正確な樹脂量を計量するために、スクリユー1に
背圧が加えられるのであるが、これはモータ13
がスクリユー背圧信号Piにより駆動され、モータ
13に連結されたボールネジ11が回転すること
により、これに螺合されたボールナツト12が矢
印M方向のトルクを発生するため、ボールナツト
12に連結されている駆動台10上に載置・固定
されたモータ7、スクリユー1などがN方向に後
退する力に対して、背圧として作用するのであ
る。ここで、モータ7に連結されている回転数セ
ンサ8は、スクリユー1の回転数nを検出してス
クリユー回転数フイードバツク信号Rfを、また、
モータ13に連結されている位置センサ14は、
ボールナツト12の位置、つまりスクリユー1の
位置を検出して背圧pを示すスクリユー位置フイ
ードバツク信号Sfをそれぞれ制御装置15に入力
している。さらに、ノズル5の前面には溶融され
た樹脂を射出して、製品を成形するための金型3
0の射出口が圧接されている。
(Embodiment of the invention) In this invention, as shown in FIG.
5, the position command Si for the screw 1 is input, the calculated screw back pressure signal Pi is given to the motor 13 that moves the position of the screw 1, and the calculated screw rotation signal Ri is input to the screw 1.
The signal is input to the motor 7 which rotates the signal. Here, the screw 1 is rotated by the motor 7 being rotated by the screw rotation signal Ri, and the resin 4 is sent from the hopper 3 to the cylinder 2, and the resin 6 is sheared, kneaded, and plasticized by the screw 1.
is filled in the cylinder 2, and this pressure causes the screw 1 to retreat in the direction of arrow N. At this time, back pressure is applied to the screw 1 in order to accurately measure the amount of resin while preventing air from being sucked into the cylinder 2.
is driven by the screw back pressure signal Pi, and as the ball screw 11 connected to the motor 13 rotates, the ball nut 12 screwed thereon generates a torque in the direction of arrow M, so that it is connected to the ball nut 12. This acts as a back pressure against the force of the motor 7, screw 1, etc. placed and fixed on the drive stand 10 moving back in the N direction. Here, a rotation speed sensor 8 connected to the motor 7 detects the rotation speed n of the screw 1 and outputs a screw rotation speed feedback signal Rf.
The position sensor 14 connected to the motor 13 is
The position of the ball nut 12, that is, the position of the screw 1, is detected and a screw position feedback signal Sf indicating the back pressure p is inputted to the control device 15, respectively. Furthermore, a mold 3 for injecting molten resin and molding a product is provided in front of the nozzle 5.
No. 0 injection port is pressed.

次に、この制御装置15の内容を具体化した一
例を第3図に示しこの構成について説明すると、
位置指令Siとスクリユー位置フイードバツク信号
Sfとの偏差Seが位置制御要素21に入力され、
閉ループ制御の特性を補償するように演算された
信号Soが速度制御要素22に入力され、スクリ
ユー1を制御するに必要な背圧指令Hiと回転数
指令Kiを出力する。そして、背圧指令Hiは背圧
制御要素18に入力され、この閉ループ制御の特
性を補償するように演算された信号Hoが電力増
幅器20Aに入力され、モータ13を駆動するた
めに電力増幅されてスクリユー背圧信号Piとして
モータ13に入力される。一方、回転数指令Ki
は演算器24に入力され、この演算器24で求め
られたスクリユー回転数フイードバツク信号Rf
との偏差Keが回転数制御要素19に入力され、
この閉ループ制御の特性を補償するように演算さ
れた出力Koが電力増幅器20Bに入力され、モ
ータ7を駆動するために電力増幅されてスクリユ
ー回転信号Riとしてモータ7に入力される。
Next, an example embodying the contents of this control device 15 is shown in FIG. 3, and the configuration will be explained as follows.
Position command Si and screw position feedback signal
The deviation Se from Sf is input to the position control element 21,
A signal So calculated to compensate for the characteristics of closed loop control is input to the speed control element 22, which outputs a back pressure command Hi and a rotation speed command Ki necessary for controlling the screw 1. The back pressure command Hi is input to the back pressure control element 18, and the signal Ho calculated to compensate for the characteristics of this closed loop control is input to the power amplifier 20A, where it is power amplified to drive the motor 13. It is input to the motor 13 as a screw back pressure signal Pi. On the other hand, rotation speed command Ki
is input to the computing unit 24, and the screw rotation speed feedback signal Rf obtained by this computing unit 24 is input to the computing unit 24.
The deviation Ke is input to the rotation speed control element 19,
The output Ko calculated to compensate for the characteristics of this closed loop control is input to the power amplifier 20B, power amplified to drive the motor 7, and input to the motor 7 as a screw rotation signal Ri.

第4図は上述装置についての動作を説明するた
めの特性図で、横軸にスクリユー1の回転数n、
縦軸にスクリユー1の背圧pをとり、スクリユー
1の移動速度V0(小)〜V4(大)をパラメータと
して示している。
FIG. 4 is a characteristic diagram for explaining the operation of the above-mentioned device, in which the horizontal axis represents the number of revolutions n of the screw 1;
The back pressure p of the screw 1 is plotted on the vertical axis, and the moving speeds of the screw 1 V0 (small) to V4 (large) are shown as parameters.

ここで、計量工程を説明しながら一連の動作に
ついて述べると、先ず計量すべき樹脂6の量はス
クリユー1が停止する位置によつて決定されるの
で、制御装置15に入力される位置指令Siが計量
すべき樹脂6の量となる。そして、位置センサ1
4がこの位置指令Siに相当するスクリユー位置フ
イードバツク信号Sfを出力するようになるまでス
クリユー1が移動したとき、計量工程は終了す
る。この計量工程が終了するまでの過程は、第3
図において先ず位置制御要素21が偏差Seを入
力すると、所定の周波数特性を有するなどしてこ
の閉ループ特性を補償するように制御され、求め
られた信号Soを速度制御要素22に入力し、こ
の速度制御要素22は背圧指令Hiと回転数指令
Kiとをその組合せにより効率良く、かつ迅速に
スクリユー1の回転速度を零にして計量工程を終
了させるように制御して出力する。これを第4図
の特性図に従つて説明すると、先ず計量の開始時
には背圧指令及び回転指令はそれぞれp4及びn4
を指令し、スクリユー1の回転数nを出来るだけ
高くして計量の効率を上げるようにする。すなわ
ち、第2図における矢印N方向の速度と矢印M方
向の背圧との差でスクリユー1の移動速度はV4
となり、この移動速度もかなり高くなつている。
ここで、第4図の破線L1は計量行程の過程に応
じて変化する回転数nと背圧pの組合せを示して
おり、の傾斜は自由に選択、設定することができ
る。上記のように計量開始時にn4とp4の組合せ
で始まり、以降順にn3とp3,n2とp2,n1とp1と
変化していき、最終的にはnsとpsの組合せでスク
リユー1の移動速度はV0となり、スクリユー1
が停止して計量工程は終了する。すなわち、スク
リユー回転数ns及びスクリユー移動速度V0に近
づくと、これらは殆ど停止に近い値となり、この
計量終了時には位置指令Siに対して正しい位置に
スムーズに停止できるので、位置指令Siに対して
行き過ぎることなく適正な値の計量ができ、かつ
そのときの背圧pも適正な値psに選択でき、次の
射出工程の準備もできるのである。また、計量中
に回転数nが高くとれれば、これによる摩擦熱が
大きくなり、ヒータの容量は小さくても済むとい
う利点も出でくる。
Here, to describe a series of operations while explaining the measuring process, first, the amount of resin 6 to be measured is determined by the position where the screw 1 stops, so the position command Si input to the control device 15 is This is the amount of resin 6 to be measured. And position sensor 1
When the screw 1 moves until the screw 4 outputs the screw position feedback signal Sf corresponding to the position command Si, the metering process ends. The process until the end of this weighing process is as follows:
In the figure, first, when the position control element 21 inputs the deviation Se, it is controlled to have a predetermined frequency characteristic to compensate for this closed loop characteristic, and the obtained signal So is input to the speed control element 22, and this speed The control element 22 is a back pressure command Hi and a rotation speed command.
In combination with Ki, the rotational speed of the screw 1 is efficiently and quickly controlled to zero and the metering process is completed. To explain this according to the characteristic diagram in Figure 4, first, at the start of measurement, the back pressure command and rotation command are p4 and n4, respectively.
The rotational speed n of the screw 1 is increased as much as possible to increase the efficiency of weighing. That is, the moving speed of screw 1 is V4 due to the difference between the speed in the direction of arrow N and the back pressure in the direction of arrow M in FIG.
Therefore, this movement speed is also quite high.
Here, the broken line L1 in FIG. 4 shows the combination of the rotational speed n and the back pressure p that change according to the process of the metering process, and the slope of the line L1 can be freely selected and set. As mentioned above, at the start of weighing, the combination of n4 and p4 starts, and thereafter it changes in order to n3 and p3, n2 and p2, n1 and p1, and finally the moving speed of screw 1 is determined by the combination of ns and ps. It becomes V0, Screw 1
stops and the weighing process ends. In other words, when the screw rotation speed ns and the screw movement speed V0 are approached, these values almost stop, and at the end of this measurement, the screw can be smoothly stopped at the correct position relative to the position command Si, so the screw may go too far relative to the position command Si. It is possible to measure to an appropriate value without any trouble, and at the same time, the back pressure p at that time can be selected to an appropriate value ps, and preparations for the next injection process can be made. Further, if the rotational speed n can be high during measurement, the frictional heat generated by this will be large, and there is an advantage that the capacity of the heater can be small.

次に、上述の原理で制御される射出成形機の具
体的な構造を第5図に示して説明する。
Next, a specific structure of an injection molding machine controlled according to the above-mentioned principle will be explained with reference to FIG.

モータ7及び13は射出成形機の固定された筐
体40に取付けられており、モータ13の回転軸
13Aにはギア41及び42が装着され、モータ
7の回転軸7Aにはギア43及び44が装着され
ており、これらギア41〜44は回転軸13A及
び7Aの各端部に設けられているクラツチ機構4
5及び46によつて駆動力の伝達が断続されるよ
うになつている。また、筐体40にはクラツチ機
構47及び48で駆動力の伝達が断続される伝達
軸47A及び48Aが軸架されており、伝達軸4
7Aにはギア49及び50が、伝達軸48Aには
ギア51及び52がそれぞれ装着されている。さ
らに、筐体40には金型30の移動を行なう駆動
軸30Aが軸架され、その端部に設けられている
クラツチ機構31で駆動力の伝達が断続されるよ
うになつているギア32〜34が筐体40内で装
着され、駆動軸30Aは更に金型30の筐体35
に軸架されている。筐体35内の駆動軸30Aに
はギア36が装着され、ギア37を介して作動軸
38に回転力を伝達し、この回転によつて型部材
39を摺動軸38A,38B上で摺動させて前後
進するようになつている。さらに、筐体40内に
はスクリユー1に連結された軸1Aが設けらてお
り、この軸1Aにギア53が装着され、このギア
53の内胴にベアリングを介して係合された作動
軸54には更にギア55が装着されている。
The motors 7 and 13 are attached to a fixed housing 40 of the injection molding machine, gears 41 and 42 are attached to the rotating shaft 13A of the motor 13, and gears 43 and 44 are attached to the rotating shaft 7A of the motor 7. These gears 41 to 44 are connected to a clutch mechanism 4 provided at each end of the rotating shafts 13A and 7A.
5 and 46, transmission of the driving force is interrupted and interrupted. Furthermore, transmission shafts 47A and 48A are mounted on the housing 40, and transmission of driving force is interrupted and interrupted by clutch mechanisms 47 and 48.
Gears 49 and 50 are attached to the transmission shaft 7A, and gears 51 and 52 are attached to the transmission shaft 48A, respectively. Further, a drive shaft 30A for moving the mold 30 is mounted on the casing 40, and gears 32 to 32 to which transmission of driving force is interrupted by a clutch mechanism 31 provided at the end of the drive shaft 30A. 34 is mounted within the housing 40, and the drive shaft 30A is further mounted within the housing 35 of the mold 30.
It is mounted on a shaft. A gear 36 is attached to the drive shaft 30A inside the housing 35, and transmits rotational force to the operating shaft 38 via the gear 37, and this rotation causes the mold member 39 to slide on the sliding shafts 38A, 38B. It is designed to move forward and backward. Furthermore, a shaft 1A connected to the screw 1 is provided within the housing 40, a gear 53 is attached to this shaft 1A, and an operating shaft 54 is engaged with the inner body of this gear 53 via a bearing. Furthermore, a gear 55 is attached.

このような構成において、射出成形機は型部材
39を前進させて金型を合せる型締と、この型締
の圧力を増加する昇圧と、ノズル5を金型30の
方向に前進させるノズル前進と、溶融された樹脂
の金型30内への射出充填と、樹脂の可塑化を行
なう計量及び冷却と、ノズル5を筐体40方向に
後退させるノズル後退と、金型の降圧及び型開
と、金型30内で成型された製品の突落し停止と
を繰返して行なう。ここにおいて、第5図は射出
成形機の初期状態を示しており、型締及び昇圧を
行なう場合にはモータ13を駆動し、その回転駆
動が回転軸13A→ギア41→図示されないギヤ
→ギア33を介して駆動軸30Aに伝達され、ギ
ア36及び37を介して作動軸38が回転される
ことによつて型部材39が前進される。こうして
型部材39が前進されてストツプ位置で停止する
ことにより所定圧まで昇圧されると、クラツチ機
構901を切換えてギア33からギア36への伝
達を遮断し、クラツチ機構45及び47を切換え
て軸47Aのみを回転させることによつて筐体4
0の金型30方向への移動を行ない、静止してい
る金型30に対してノズル5を前進させる。な
お、ノズル5の後退はモータ13の回転を逆にす
ることによつて行なわれる。
In such a configuration, the injection molding machine performs mold clamping to advance the mold member 39 to fit the mold together, pressure increasing to increase the pressure of this mold clamping, and nozzle advancement to advance the nozzle 5 in the direction of the mold 30. , injection and filling of the molten resin into the mold 30, metering and cooling to plasticize the resin, nozzle retreat to retreat the nozzle 5 toward the housing 40, pressure reduction of the mold and mold opening, The falling and stopping of the product molded in the mold 30 is repeated. Here, FIG. 5 shows the initial state of the injection molding machine, and when performing mold clamping and pressure increase, the motor 13 is driven, and the rotational drive is from the rotating shaft 13A→gear 41→gear 33 (not shown). is transmitted to the drive shaft 30A through the gears 36 and 37, and the operating shaft 38 is rotated, thereby moving the mold member 39 forward. When the mold member 39 is advanced and stopped at the stop position and the pressure is increased to a predetermined pressure, the clutch mechanism 901 is switched to cut off the transmission from the gear 33 to the gear 36, and the clutch mechanisms 45 and 47 are switched to By rotating only 47A, the housing 4
0 in the direction of the mold 30, and the nozzle 5 is advanced relative to the stationary mold 30. Note that the nozzle 5 is moved back by reversing the rotation of the motor 13.

また、樹脂の射出を行なう場合にはモータ7及
び13を駆動し、クラツチ機構45及び46を切
換えてギア41の回転及びギア42の回転が図示
されないギアによりそれぞれギア33及び34に
伝達されるようにする。更にクラツチ機構31を
切換えることによつて、モータ7及び13の回転
駆動がギア55に伝達され、軸54及び1Aを介
してスクリユー1が移動され、上述したように溶
融樹脂の金型30へのことができる。さらに、樹
脂の計量を行なう射出を行なう場合にはモータ7
のみを駆動し、この回転駆動をギア43→図示さ
れないギア→ギア52→軸48A→ギア51→ギ
ア49→ギア32→ギア53→を介してスクリユ
ー1に伝え、このスクリユー1を回転させると共
にモータ13を駆動し、この回転駆動をギヤ42
→図示されないギア→ギア33→クラツチ31→
ギア55→軸54→軸1Aを介してスクリユー1
に伝え、スクリユー1に背圧が加えられることに
よつて計量を行う。そして、型開は上記型締の場
合と逆にモータ13を回転し、型部材39を後退
させることによつて行なわれる。
Further, when injecting resin, the motors 7 and 13 are driven, and the clutch mechanisms 45 and 46 are switched so that the rotation of the gear 41 and the rotation of the gear 42 are transmitted to the gears 33 and 34 by gears (not shown), respectively. Make it. Furthermore, by switching the clutch mechanism 31, the rotational drive of the motors 7 and 13 is transmitted to the gear 55, the screw 1 is moved via the shafts 54 and 1A, and the molten resin is transferred to the mold 30 as described above. be able to. Furthermore, when performing injection to measure resin, the motor 7
This rotational drive is transmitted to the screw 1 via the gear 43 → gear not shown → gear 52 → shaft 48A → gear 51 → gear 49 → gear 32 → gear 53 → to rotate this screw 1 and to drive the motor. 13, and this rotational drive is applied to the gear 42.
→ Gear not shown → Gear 33 → Clutch 31 →
Screw 1 via gear 55 → shaft 54 → shaft 1A
The metering is performed by applying back pressure to the screw 1. The mold opening is performed by rotating the motor 13 and retracting the mold member 39 in the opposite manner to the mold clamping described above.

ここにおいて、上述の型締後のノズル5の前進
はモータ13の駆動による速度制御によつて行な
われ、ノズル5が金型30に接触した後は所定圧
力で圧接する必要がある。したがつて、モータ1
3を第6図に示すような速度指令viに対する速度
制御系から、圧力指令Piの圧力制御系に切換える
のにどのようにするかが問題となる。すなわち、
第6図の速度制御系は速度偏差veをループ系6
0(Gs)でトルク指令Tiに変換し、このトルク
指令Tiに従つて電力増幅器61を介してモータ
13を制御するようになつており、第7図A,B
に示す如く時点t0からt1までを指令速度viの一定
速度で制御し、時点t1以降を指令圧力piの一定圧
力で制御するようにすると、制御モードが切換わ
る時点t1において速度v及び圧力pが共に不連続
となり、射出等を円滑に行なうことができない。
Here, the advance of the nozzle 5 after the mold clamping described above is performed by controlling the speed by driving the motor 13, and after the nozzle 5 contacts the mold 30, it is necessary to press the mold 30 with a predetermined pressure. Therefore, motor 1
The problem is how to switch from the speed control system for the speed command vi as shown in FIG. 6 to the pressure control system for the pressure command Pi as shown in FIG. That is,
The speed control system in Fig. 6 is a loop system 6 for speed deviation ve.
0 (Gs) into a torque command Ti, and the motor 13 is controlled via the power amplifier 61 according to this torque command Ti, as shown in FIGS. 7A and B.
As shown in the figure, if control is performed at a constant command speed vi from time t0 to t1, and at a constant command pressure pi from time t1 onwards, the speed v and pressure p will change at time t1 when the control mode is switched. Both become discontinuous, making it impossible to perform injection etc. smoothly.

このため、この発明では速度制御でノズル5を
前進させ、ノズル5が金型30に衝突した時点で
は、移動距離xが一定になると共に速度vが0に
なることを利用して衝突を検知し、この衝突検知
後に実際の圧力pが指令圧力piとなつた時に圧力
制御に切換えるようにする。第8図A及びBはノ
ズル5の金型30への衝突の様子を示すもので、
時点t2までは一定の指令速度viで移動されている
ので、ノズル5の移動距離xも線形に増加する
が、ノズル5が金型30に衝突すると速度vが0
になると共に、移動距離xも増加せず一定値x0
を保持することになる。したがつて、移動距離x
の変化の様子又は速度vの0を何らかの手段によ
つて検出することによつて、ノズル5の金型30
への衝突時点t2を検出することができる。ノズル
5の金型30への衝突後(時点t2)、速度vは減
少し、圧力pが速度制御形の特性に従つて次第に
上昇するので、第9図A及びBに示す如く実際の
圧力pが設定器等で設定されている指令圧力piと
なつた時(時点t3)に圧力制御に切換える。も
し、指令圧力piが衝突前の圧力pよりも低いとき
は、衝突後(時点t2)、速度指令治具viを零にす
ることによつて圧力pは速度制御形の特性に従つ
て次第に下降するので、指令圧力piとなつた時に
圧力制御に切換える。このようにすれば、時点t2
までは速度指令viによる一定速度の速度制御が実
現され、ノズル5が金型30に衝突した時点t2か
ら以後の短い過渡期間内に指令圧力piとなるのを
待ち、指令圧力piとなつた時(t3)に圧力制御に
切換えられるので、速度制御から圧力制御への切
換を円滑に行なうことができる。なお、ノズル5
の金型30への衝突は、ノズル5又は金型30が
破壊されない程度の速度で行なわれる。
Therefore, in this invention, the nozzle 5 is moved forward by speed control, and when the nozzle 5 collides with the mold 30, the collision is detected by utilizing the fact that the moving distance x becomes constant and the speed v becomes 0. After this collision is detected, when the actual pressure p reaches the command pressure pi, the pressure control is switched to. FIGS. 8A and 8B show how the nozzle 5 collides with the mold 30,
Since the nozzle 5 is moved at a constant command speed vi until time t2, the moving distance x of the nozzle 5 also increases linearly, but when the nozzle 5 collides with the mold 30, the speed v becomes 0.
As it becomes, the moving distance x also does not increase and becomes a constant value x0
will be retained. Therefore, the moving distance x
The mold 30 of the nozzle 5 is
The collision time t2 can be detected. After the nozzle 5 collides with the mold 30 (time t2), the velocity v decreases and the pressure p gradually increases in accordance with the characteristics of the velocity control type, so that the actual pressure p increases as shown in FIGS. 9A and B. When the pressure reaches the command pressure pi set on the setting device, etc. (time t3), switch to pressure control. If the command pressure pi is lower than the pressure p before the collision, by setting the speed command jig vi to zero after the collision (time t2), the pressure p will gradually decrease according to the characteristics of the speed control type. Therefore, when the command pressure reaches pi, it switches to pressure control. In this way, time t2
Until then, speed control at a constant speed was achieved using the speed command vi, and the pressure was waited for to reach the command pressure pi within a short transient period from the time t2 when the nozzle 5 collided with the mold 30, and when the command pressure reached the command pressure pi. Since the control is switched to pressure control at (t3), it is possible to smoothly switch from speed control to pressure control. In addition, nozzle 5
The collision with the mold 30 is performed at a speed that does not destroy the nozzle 5 or the mold 30.

第10図はこの発明方法を実現する装置の一例
を示すものであり、モータ13の駆動電流や位置
センサ14からのパルス数を検出することによつ
て、ノズル5と金型30との衝突を検出して衝突
信号CLを出力する衝突検出回路70を設け、更
にループ系60からのトルクTを設定回路72か
らの指令圧力piと比較して切換信号SWを出力す
るトルク検出回路71を設けている。また、ルー
プ系60と電力増幅器61との間には切換信号
SWによつてトルクT(接点a)、圧力pi(接点b)
を切換えるスイツチ回路73設けられている。
FIG. 10 shows an example of a device for realizing the method of the present invention, which detects the drive current of the motor 13 and the number of pulses from the position sensor 14 to prevent collision between the nozzle 5 and the mold 30. A collision detection circuit 70 is provided which detects the collision and outputs a collision signal CL, and a torque detection circuit 71 which compares the torque T from the loop system 60 with the command pressure pi from the setting circuit 72 and outputs a switching signal SW is provided. There is. Furthermore, a switching signal is provided between the loop system 60 and the power amplifier 61.
Torque T (contact a) and pressure pi (contact b) depending on SW
A switch circuit 73 for switching is provided.

このような構成において、衝突検出回路70は
常にノズル5と金型30との衝突を検出するよう
になつており、衝突を検知した時に衝突信号CL
をトルク検出回路71に入力して実際のトルクT
(圧力p)と設定回路72で設定されている指令
圧力piとの比較を行なう。もし、指令圧力piが衝
突前の圧力pよりも低いときは、衝突を検知した
時に速度指令viを零にする。そして、トルクTが
設定圧力piと等しくなつた時に切換信号SWを出
力し、スイツチ回路71の接点をaからbに切換
えて指令圧力piの圧力制御とする。なお、設定回
路72に設定されている指令圧力piを適宜変更す
ることにより、速度制御から圧力制御への切換時
間を自由に変更することができる。
In such a configuration, the collision detection circuit 70 always detects a collision between the nozzle 5 and the mold 30, and when a collision is detected, a collision signal CL is output.
is input to the torque detection circuit 71 to obtain the actual torque T.
(pressure p) and the command pressure pi set by the setting circuit 72 are compared. If the command pressure pi is lower than the pressure p before the collision, the speed command vi is made zero when the collision is detected. Then, when the torque T becomes equal to the set pressure pi, a switching signal SW is output, and the contact point of the switch circuit 71 is switched from a to b to control the pressure at the command pressure pi. Note that by appropriately changing the command pressure pi set in the setting circuit 72, the switching time from speed control to pressure control can be freely changed.

なお、上述では、スクリユー1の回転数nをモ
ータ7に連結された回転数センサ8を検出するよ
うにしているが、ギア等を介して検出したり、モ
ータ電流を検出するようにしても良く、スクリユ
ー1の位置も駆動台10やボールナツト12等の
位置から求めるようにしても良い。また、モータ
は直流でも交流制御でも良く、スクリユーの位置
移動はボールスクリユーとボールナツトの組合せ
の他、モータ駆動でガイド上を走行させたりする
ことも可能である。
In the above description, the rotation speed n of the screw 1 is detected by the rotation speed sensor 8 connected to the motor 7, but it may also be detected through a gear or the like or by detecting the motor current. The position of the screw 1 may also be determined from the position of the drive base 10, ball nut 12, etc. Further, the motor may be controlled by direct current or alternating current, and the position of the screw can be moved by a combination of a ball screw and a ball nut, or by driving the screw by driving it on a guide.

(発明の効果) 以上のようにこの発明の射出成形機の制御方法
によれば、単純な衝突の検出又は他の手段によつ
て速度制御から圧力制御に切換えることができる
ので、安価で簡易な制御を実現することができ
る。また、速度制御から圧力制御への切換えを、
実現の圧力が設定圧力となることを検出した時に
行なうようにしているので、制御系の切換えを円
滑に行なうことができる。
(Effects of the Invention) As described above, according to the injection molding machine control method of the present invention, it is possible to switch from speed control to pressure control by simple collision detection or other means. control can be realized. In addition, switching from speed control to pressure control,
Since the switching is performed when it is detected that the actual pressure becomes the set pressure, the control system can be switched smoothly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の射出成形機の一例を示す図、第
2図はこの発明を適用できる射出成形機の一実施
例を示す図、第3図はその制御装置の一実施例を
示すブロツク図、第4図はその動作を説明するた
めの回転数と背圧の関係を示す特性図、第5図は
射出成形機の具体的な構造を示す構成図、第6図
は速度制御系のブロツク図、第7図A及びBは速
度制御から圧力制御への不連続性を説明する図、
第8図A,B及び第9図A,Bはこの発明の原理
を説明するための図、第10図はこの発明による
回路系の一例を示すブロツク図である。 1……スクリユー、2……シリンダ、3……ホ
ツパ、4,6……樹脂、5……ノズル、7,13
……モータ、8……回転数センサ、10……駆動
台、11……ボールスクリユー、12……ボール
ナツト、14……位置センサ、15……制御装
置、30……金型,40,35……筐体、70…
…衝突検出回路、71……トルク検出回路、72
……設定回路、73……スイツチ回路。
Fig. 1 is a diagram showing an example of a conventional injection molding machine, Fig. 2 is a diagram showing an embodiment of the injection molding machine to which the present invention can be applied, and Fig. 3 is a block diagram showing an embodiment of its control device. , Fig. 4 is a characteristic diagram showing the relationship between rotation speed and back pressure to explain its operation, Fig. 5 is a configuration diagram showing the specific structure of the injection molding machine, and Fig. 6 is a block diagram of the speed control system. 7A and 7B are diagrams illustrating discontinuity from speed control to pressure control,
8A and 9B and 9A and 9B are diagrams for explaining the principle of the present invention, and FIG. 10 is a block diagram showing an example of a circuit system according to the present invention. 1... Screw, 2... Cylinder, 3... Hopper, 4, 6... Resin, 5... Nozzle, 7, 13
... Motor, 8 ... Rotation speed sensor, 10 ... Drive base, 11 ... Ball screw, 12 ... Ball nut, 14 ... Position sensor, 15 ... Control device, 30 ... Mold, 40, 35 ...Housing, 70...
... Collision detection circuit, 71 ... Torque detection circuit, 72
...Setting circuit, 73...Switch circuit.

Claims (1)

【特許請求の範囲】 1 先端にノズルを穿設させているシリンダ内
に、前後進すると共に回転するスクリユーを配設
し、前記シリンダ内に溶融されている樹脂を前記
ノズルから、製品の形状が彫り込まれた金型内に
抽出するようになつている射出成形機の制御方法
において、前記ノズルを速度制御で前記金型方向
に移動させ、前記ノズルの前記金型に対する圧力
を測定し、この測定圧力が設定圧力となつた時に
前記ノズルの速度制御を圧力制御に切換え、前記
ノズルを前記設定圧力で前記金型に圧接させるよ
うに制御することを特徴とする射出成形機の制御
方法。 2 前記速度制御から圧力制御に切換えるタイミ
ングを設定圧力の変更により変更可能とした特許
請求の範囲第1項に記載の射出成形機の制御方
法。
[Claims] 1. A screw that moves back and forth and rotates is disposed in a cylinder with a nozzle bored at its tip, and the resin molten in the cylinder is passed through the nozzle to form a product shape. In a method for controlling an injection molding machine configured to extract into a mold that has been engraved, the nozzle is moved toward the mold under speed control, the pressure of the nozzle against the mold is measured, and the pressure of the nozzle against the mold is measured. A method for controlling an injection molding machine, characterized in that when the pressure reaches a set pressure, speed control of the nozzle is switched to pressure control, and the nozzle is controlled so as to be brought into pressure contact with the mold at the set pressure. 2. The injection molding machine control method according to claim 1, wherein the timing of switching from speed control to pressure control can be changed by changing the set pressure.
JP15037284A 1984-07-19 1984-07-19 Method of controlling injection molding machine Granted JPS6127227A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP15037284A JPS6127227A (en) 1984-07-19 1984-07-19 Method of controlling injection molding machine
US06/753,623 US4820464A (en) 1984-07-19 1985-07-09 Method for controlling injection molding machine
CA000486573A CA1250718A (en) 1984-07-19 1985-07-10 Methods for controlling injection molding machine
DE8585108840T DE3581565D1 (en) 1984-07-19 1985-07-15 METHOD FOR CONTROLLING AN INJECTION MOLDING MACHINE.
AT85108840T ATE60543T1 (en) 1984-07-19 1985-07-15 METHOD OF CONTROLLING AN INJECTION MOLDING MACHINE.
EP85108840A EP0168804B1 (en) 1984-07-19 1985-07-15 Methods for controlling injection molding machine
KR1019850005063A KR900007344B1 (en) 1984-07-19 1985-07-16 Methods for controlling injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15037284A JPS6127227A (en) 1984-07-19 1984-07-19 Method of controlling injection molding machine

Publications (2)

Publication Number Publication Date
JPS6127227A JPS6127227A (en) 1986-02-06
JPH0462246B2 true JPH0462246B2 (en) 1992-10-05

Family

ID=15495549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15037284A Granted JPS6127227A (en) 1984-07-19 1984-07-19 Method of controlling injection molding machine

Country Status (1)

Country Link
JP (1) JPS6127227A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195819A (en) * 1985-02-26 1986-08-30 Niigata Eng Co Ltd Pressure control device in injection molding machine
JP2571931B2 (en) * 1987-05-30 1997-01-16 不動建設株式会社 Earth covering method using lightweight material
JP2552550Y2 (en) * 1991-03-20 1997-10-29 三菱重工業株式会社 Wheel structure of rough terrain vehicle

Also Published As

Publication number Publication date
JPS6127227A (en) 1986-02-06

Similar Documents

Publication Publication Date Title
CN108068282B (en) Forming machine
US4820464A (en) Method for controlling injection molding machine
KR100408886B1 (en) Method And Apparatus For Controlling Injection Molding Machine Capable Of Reducing Variations In Weight Of Molded Products
KR100405834B1 (en) Apparatus and method for controlling an injection molding machine capable of reducing variations in weight of molded products
EP1163993B1 (en) Injection molding machine and method for controlling screw position in the same
EP0804324B1 (en) Compensating for efficiency variations in electric motors
JP5351307B1 (en) Pressure control device for injection molding machine
JPH0462246B2 (en)
JPH0693962A (en) Driving device
JPS62124925A (en) Metering method in injection molding machine
JPH0462249B2 (en)
JPH0126857B2 (en)
JPS61202813A (en) Control method of injection molding machine
JPH0464492B2 (en)
JPH0439410B2 (en)
JP2000167875A (en) Nozzle touch off method for injection molding machine and mechanism using this method
JPH0152170B2 (en)
JPH0372453B2 (en)
JP4039460B1 (en) Weighing method in injection molding machine
JPH053814B2 (en)
JPH0344889B2 (en)
KR200348431Y1 (en) Control apparatus for rear pressure of injection machine
JPH0592461A (en) Measurement controlling method for injection molding machine of in-line screw type
JP3240513B2 (en) How to set screw speed of injection molding machine
JP3245818B2 (en) Screw rotation setting method for injection molding machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees