JPH0462001B2 - - Google Patents

Info

Publication number
JPH0462001B2
JPH0462001B2 JP59001159A JP115984A JPH0462001B2 JP H0462001 B2 JPH0462001 B2 JP H0462001B2 JP 59001159 A JP59001159 A JP 59001159A JP 115984 A JP115984 A JP 115984A JP H0462001 B2 JPH0462001 B2 JP H0462001B2
Authority
JP
Japan
Prior art keywords
metal tube
eddy current
coating
detection coils
current detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59001159A
Other languages
Japanese (ja)
Other versions
JPS60144603A (en
Inventor
Koji Kawamura
Kyoharu Hiramoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP115984A priority Critical patent/JPS60144603A/en
Publication of JPS60144603A publication Critical patent/JPS60144603A/en
Publication of JPH0462001B2 publication Critical patent/JPH0462001B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は渦流検出器により金属管被膜の厚さを
測定する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for measuring the thickness of metal pipe coatings using an eddy current detector.

(従来技術) 導電材である金属に被覆されたプラスチツク等
の非導電材の被膜の厚さを測定する手段として渦
流検出器を直接被膜表面に接触させた金属表面と
のギヤツプを測定することにより被膜の厚さを測
定する手段があり、携帯型の測定器として実用さ
れている。しかしこの測定器はスポツト的に被膜
厚さを測定するためのものであるから連続測定に
は不適当である。例えばプラスチツク被膜鋼管の
被膜厚さをライニング工程中に連続的に測定しよ
うとする場合、直接接触式では被膜表面の凹凸に
追従させるのが困難であり、また1つの渦流検出
器では管の局部的な温度や材質の変化、管の傾
き、溶接管の場合の溶接ビード部の形状変化等の
渦流検出値の変動要因の変化に対応した測定値の
捕正を行うことが極めて困難であつた。
(Prior art) As a means of measuring the thickness of a coating of a non-conductive material such as plastic coated on a conductive metal, an eddy current detector is brought into direct contact with the coating surface and the gap between the coating and the metal surface is measured. There is a means to measure the thickness of a coating, and it is used as a portable measuring device. However, this measuring device is not suitable for continuous measurement since it is for measuring coating thickness in spots. For example, when trying to continuously measure the coating thickness of a plastic-coated steel pipe during the lining process, it is difficult to follow the unevenness of the coating surface with a direct contact method, and with a single eddy current detector, it is difficult to measure the coating thickness locally on the pipe. It has been extremely difficult to correct the measured values in response to changes in the fluctuation factors of the detected eddy current values, such as changes in temperature and material, pipe inclination, and changes in the shape of the weld bead in the case of welded pipes.

(発明の目的) 本発明は従つて渦流検出器を用いて被膜厚さを
連続的に測定可能な方法を提供することを目的と
する。
OBJECTS OF THE INVENTION It is therefore an object of the present invention to provide a method capable of continuously measuring coating thickness using an eddy current detector.

(発明の概要) 上述の目的を達成するための本発明方法は (1) 非導電性物質を被覆した金属管の被膜に接し
て回転する接触ローラの上下動に連動して上下
動する支持軸に該支持軸から金属管管軸方向に
同一距離離れた対称位置にそれぞれ金属管と非
接触の状態で渦流検出コイルを一対取りつけ、
該一対の渦流検出コイルの信号出力の平均値を
用いて金属管の被膜の厚さを求めることを特徴
とする被覆金属管の被膜厚さ連続測定方法およ
び (2) 非導電性物質を被覆した金属管の被膜に接し
て回転する接触ローラの上下動に連動して上下
する支持軸に該支持軸から金属管管軸方向に
各々一定距離離れた対称位置にそれぞれ金属管
と非接触の状態で検出コイル下面と接触ローラ
下面との高さを変えた渦流検出コイルを2対取
付けるとともに、該2対の全渦流検出コイルの
信号出力の平均値および各対の2個の渦流検出
コイルの信号出力の平均値ならびに2対の渦流
検出コイルの支持軸軸方向の配置間隔を用いて
金属管の被膜の厚さを求めることを特徴とする
被覆金属管の被膜厚さ測定連続方法である。
(Summary of the Invention) The method of the present invention for achieving the above-mentioned objects includes (1) a support shaft that moves up and down in conjunction with the up and down movement of a contact roller that rotates in contact with a coating of a metal tube coated with a non-conductive substance; A pair of eddy current detection coils are installed at symmetrical positions the same distance apart from the support shaft in the axial direction of the metal tube, each without contacting the metal tube,
A method for continuously measuring the coating thickness of a coated metal tube, characterized in that the thickness of the coating of the metal tube is determined using the average value of the signal output of the pair of eddy current detection coils; A support shaft that moves up and down in conjunction with the up and down movement of a contact roller that rotates in contact with the coating of the metal tube is provided at symmetrical positions a certain distance away from the support shaft in the axial direction of the metal tube, respectively, without contacting the metal tube. Two pairs of eddy current detection coils with different heights between the lower surface of the detection coil and the lower surface of the contact roller are installed, and the average value of the signal output of all the eddy current detection coils of the two pairs and the signal output of the two eddy current detection coils of each pair are determined. This is a continuous method for measuring the coating thickness of a coated metal tube, characterized in that the thickness of the coating of the metal tube is determined using the average value of and the arrangement interval of two pairs of eddy current detection coils in the support axis direction.

(発明の構成作用) 以下本発明を図面に基づいて詳細に説明する。
第1図a,bは、渦流検出コイルを用いて被膜厚
さを連続的に測定するための検出部の基本構成を
説明するための図でaは正面図、bは側面図であ
る。鋼管2の外面に被覆されたプラスチツク等の
被膜1に接触して回転する接触ローラ3は、スパ
イラル状に、回転し管軸方向に移動する管の動き
に伴つて生ずる、被膜との接触点pの被膜厚さt
の変化に応じてスライド軸受5を介して支持軸6
とともに上下動する。渦流検出器の検出コイル4
はその中心が接触ローラ3の中心から管軸方向に
距離l0だけ離れ、かつその下面が接触ローラ3の
下面から上方に距離h0だけ離れた位置になるよう
に接触ローラ3の支持軸6に取りつけられ、接触
ローラ3の動きに連動して上下動するようになつ
ている。
(Construction and Effect of the Invention) The present invention will be explained in detail below based on the drawings.
FIGS. 1a and 1b are diagrams for explaining the basic configuration of a detection unit for continuously measuring coating thickness using an eddy current detection coil, in which a is a front view and FIG. 1b is a side view. A contact roller 3 that rotates in contact with a coating 1 made of plastic or the like coated on the outer surface of a steel pipe 2 spirally moves to a contact point p with the coating that occurs as the tube rotates and moves in the axial direction of the tube. coating thickness t
The support shaft 6 is moved through the slide bearing 5 according to changes in the
It moves up and down. Eddy current detector detection coil 4
The support shaft 6 of the contact roller 3 is moved so that its center is a distance l 0 away from the center of the contact roller 3 in the tube axis direction, and its lower surface is a distance h 0 upward from the bottom surface of the contact roller 3. It is attached to the contact roller 3 and moves up and down in conjunction with the movement of the contact roller 3.

検出コイル4は非導電材である被膜1には反応
しないので検出コイル4の信号出力は検出コイル
4の直下の鋼管表面からの距離g0に対応した値に
なる。鋼管2は管軸方向には形状がほとんど変化
なく真直であり、溶接鋼管でも直線溶接の場合は
溶接ビードも管軸方向には形状変化が少ないか
ら、距離l0を小さくとれば接触点pの被膜厚さt
は次式により測定できる。
Since the detection coil 4 does not react to the coating 1, which is a non-conductive material, the signal output of the detection coil 4 has a value corresponding to the distance g 0 from the surface of the steel pipe directly below the detection coil 4. The steel pipe 2 is straight with almost no change in shape in the pipe axial direction, and in the case of straight welding of welded steel pipes, the weld bead also has little change in shape in the pipe axial direction, so if the distance l 0 is made small, the contact point p Coating thickness t
can be measured using the following formula.

t=g0−h0 …(1) スパイラル鋼管の溶接部の膜厚を測定したい場
合は2コの検出コイルの配置を溶接部に平行かつ
直線に配置すればよい。
t=g 0 −h 0 (1) When it is desired to measure the film thickness of a welded portion of a spiral steel pipe, two detection coils may be arranged parallel to the welded portion and in a straight line.

原理的には上述の方法で被膜の厚さを測定でき
るわけであるが、実際には検出部の傾き、管の傾
き等により検出部と管表面との相対的な傾きが発
生する。このために距離g0が変化し、(1)式に従つ
て膜厚測定値tも変化して測定誤差を生じること
となる。そこで本発明においては、対の検出コイ
ルを管軸方向に接触ローラを狭んで対称の位置に
配置した検出部を用いて、前述の傾きの影響を減
少させるようにした。すなわち第2図aに示すよ
うに一対の検出コイル4a,4bを、その中心が
接触ローラ3の中心から管軸方向にそれぞれ距離
l1,l2離した位置に検出コイル4a,4bの下面
と接触ローラ3の下面とのそれぞれの距離をh1
して対向して支持軸6に取りつけた検出部を用い
る。
In principle, the thickness of the coating can be measured by the method described above, but in reality, a relative inclination between the detection part and the tube surface occurs due to the inclination of the detection part, the inclination of the tube, etc. For this reason, the distance g 0 changes, and the film thickness measurement value t also changes according to equation (1), resulting in a measurement error. Therefore, in the present invention, the influence of the above-mentioned inclination is reduced by using a detection section in which a pair of detection coils are arranged in symmetrical positions with the contact rollers narrowed in the tube axis direction. In other words, as shown in FIG.
Detectors are used which are mounted on the support shaft 6 so that the lower surfaces of the detection coils 4a, 4b and the lower surface of the contact roller 3 face each other with a distance of h 1 at positions l 1 and l 2 apart.

検出部と管表面との相対的な傾きがないとき
は、検出コイル4a,4bと鋼管表面との距離は
それぞれgとなり、接触点pの被膜厚さtは t=g1−h1 …(2) となりいづれの検出コイルの測定値も等しくな
る。しかし第2図bに示すように、検出部と管表
面とに相対的な傾きがあると、検出コイル4a,
4bと鋼管表面との距離がg1a,g1bとなり検出器
4aと4bで測定される見掛け上の被膜厚さは異
なる値taとtbになる。ここで本発明において用い
る検出部は前述のように対の検出コイルが接触ロ
ーラに対して対称に配定されているので、次式 t=ta+tb/2=g1a+g1b/2−h1 …(3) により接触点pの被膜厚さtを得ることができ
る。即ち2つの検出コイルの信号出力の平均値を
用いることにより、検出部と管表面との相対的な
傾きがあつても、これによる測定値の変化を自動
的に補正して被膜厚さtを正しく測定できる。さ
らに管の局部的な温度や材質の変化溶接ビード部
の形状の変化による測定誤差に対しては、第3図
に示すように接触ローラを狭んで対称の位置に配
置した対の検出コイルを高さを変えて2対設ける
ことにより解決できる。
When there is no relative inclination between the detection part and the pipe surface, the distance between the detection coils 4a, 4b and the steel pipe surface is g, and the coating thickness t at the contact point p is t=g 1 - h 1 ...( 2) The measured values of the adjacent detection coils are also equal. However, as shown in FIG. 2b, if there is a relative inclination between the detection part and the tube surface, the detection coil 4a,
The distances between 4b and the surface of the steel pipe are g 1 a and g 1 b, and the apparent film thicknesses measured by detectors 4a and 4b have different values ta and tb. Here, in the detection unit used in the present invention, the pair of detection coils are arranged symmetrically with respect to the contact roller as described above, so the following formula t=ta+tb/2=g 1 a+g 1 b/2-h 1 ...(3) allows the coating thickness t at the contact point p to be obtained. In other words, by using the average value of the signal outputs of the two detection coils, even if there is a relative inclination between the detection part and the tube surface, changes in the measured value due to this can be automatically corrected and the coating thickness t can be calculated. Can be measured correctly. Furthermore, in order to prevent measurement errors due to changes in the local temperature of the pipe, changes in material quality, and changes in the shape of the weld bead, a pair of detection coils placed at symmetrical positions with the contact roller narrowed as shown in Fig. This can be solved by providing two pairs of different sizes.

すなわち第3図に示すように、第1の対の検出
コイル4a,4bを接触ローラー3の中心から管
軸方向に距離l2離した位置に接触ローラ3の下面
との距離をh2として、対向して取りつけ第2の対
の検出コイル4a2と4b2を距離l3、h3の条件で対
向して取りつける。このように鋼管表面との距離
を変えて取りつけた2対の検出コイルの信号出力
を用いることにより、信号出力に影響する前記要
因の変化に対する信号出力の補正を行うことがで
きる。いま2つの対の検出コイルの上下方向の間
隔をαとするとき、第1の対の検出コイル4a1
4b1の信号出力の平均値と第2の対の検出コイル
4a2,4b2の信号出力の平均値との差と前記距離
αとの比を求めることにより、任意の測定点にお
ける検出コイルと鋼板表面との距離gと検出コイ
ルの信号出力の大きさVとの相関関係を定量的に
把握できる。
That is, as shown in FIG. 3, the first pair of detection coils 4a and 4b are placed at a distance l2 in the tube axis direction from the center of the contact roller 3, with the distance from the lower surface of the contact roller 3 being h2 . A second pair of detection coils 4a 2 and 4b 2 are mounted facing each other with distances l 3 and h 3 . By using the signal outputs of the two pairs of detection coils attached at different distances from the surface of the steel pipe in this way, it is possible to correct the signal output for changes in the factors that affect the signal output. Now, when the vertical distance between the two pairs of detection coils is α, the first pair of detection coils 4a 1 ,
By determining the ratio of the difference between the average value of the signal output of 4b 1 and the average value of the signal output of the second pair of detection coils 4a 2 and 4b 2 to the distance α, the detection coil at any measurement point and The correlation between the distance g to the steel plate surface and the magnitude V of the signal output of the detection coil can be quantitatively understood.

この関係を第4図により説明すると、図の横軸
は検出コイルの信号出力(V)であり縦軸は検出
コイルと鋼管表面との距離(g)である。いまあ
る測定点において第1の対の検出コイルと鋼管表
面との距離がg2で第2の対の検出コイルと鋼管表
面との距離がg3であつたとし、そのときの各検出
コイルの信号出力がVa1,Vb1,Va2,Vb2であ
つたとすると V(=Va1+Vb1+Va2+Vb1/4)とg(=g2+g3/2) の関係を示す直線イはg=α/Va2+Vb2/2− Va1+Vb1/2Vで 表わされこの直線の勾配は α/Va2+Vb2/2−Va1+Vb1/2であり、 また距離g2,g3が同じときに何らかの理由(鋼管
の温度や材質が局部的に変化しているような場
合)により各検出コイルの信号出力がVa′1
Vb′1、Va′2,Vb′2に変化したときの V(=Va′1+Vb′1+Va′2+Vb′2/4)とgの関係を 示す直線(b)はg=α/Va′2+Vb′2/2− Va′1+Vb′1/2Vで表わされ、この 直線の勾配はα/Va′2+Vb′2/2−Va′1+Vb′1/2 である。
This relationship will be explained with reference to FIG. 4. The horizontal axis of the figure is the signal output (V) of the detection coil, and the vertical axis is the distance (g) between the detection coil and the surface of the steel pipe. Assume that the distance between the first pair of detection coils and the steel pipe surface is g 2 and the distance between the second pair of detection coils and the steel pipe surface is g 3 at the current measurement point, and the distance of each detection coil at that time is If the signal outputs are Va 1 , Vb 1 , Va 2 , Vb 2 , the straight line A showing the relationship between V (=Va 1 +Vb 1 +Va 2 +Vb 1 /4) and g (=g 2 +g 3 /2) is g=α/Va 2 +Vb 2 /2− Va 1 +Vb 1 /2V, the slope of this straight line is α/Va 2 +Vb 2 /2−Va 1 +Vb 1 /2, and the distance g 2 , g 3 are the same, for some reason (such as when the temperature or material of the steel pipe changes locally), the signal output of each detection coil becomes Va′ 1 ,
The straight line (b) showing the relationship between V (=Va′ 1 +Vb′ 1 +Va′ 2 +Vb′ 2 /4) and g when it changes to Vb 1 , Va′ 2 , Vb′ 2 is g=α/Va ' 2 +Vb' 2 /2-Va' 1 +Vb' 1 /2V, and the slope of this straight line is α/Va' 2 +Vb' 2 /2-Va' 1 +Vb' 1 /2.

以上の関係から第3図に示した検出部を用いた
ときには被膜厚さtは tg2+g3/2−h2+h3/2=α/Va2+Vb2/2−Va1
+Vb1/2・Va1+Vb1+Va2+Vb2/4−h2+h3/2…(4)
またはt=α/Va′2+Vb′2/2−Va′1+Vb′1/2
・Va′1+Vb′1+Va′2+Vb′2/4−h2+h3/2……(5
) として得られ、検出コイルの信号処理に影響する
前記要因の変化があつたとしてもこれを自動的に
補正して常に正しい被膜厚さの測定が可能とな
る。
From the above relationship, when the detection part shown in Fig. 3 is used, the film thickness t is tg 2 +g 3 /2-h 2 +h 3 /2=α/Va 2 +Vb 2 /2-Va 1
+Vb 1 /2・Va 1 +Vb 1 +Va 2 +Vb 2 /4−h 2 +h 3 /2…(4)
or t=α/Va′ 2 +Vb′ 2 /2−Va′ 1 +Vb′ 1 /2
・Va′ 1 +Vb′ 1 +Va′ 2 +Vb′ 2 /4−h 2 +h 3 /2……(5
), and even if there is a change in the above-mentioned factors that affect the signal processing of the detection coil, this can be automatically corrected and the coating thickness can always be measured correctly.

なお前記影響要因の変化(たとえば渦度変化)
が時間的にゆるやかな場合あるいは別途他の手段
により影響要因の変化部位(たとえば材質の変化
部位)がわかつている場合は第3図の検出部によ
らずとも、第2図に示した検出部を用いこの検出
コイルを間欠的に(一時的に)h1をαに相当する
距離だけ変えて上述のような補正を行うことも可
能である。今まで接触ローラ3と検出コイル4を
鋼管2の上方に設けた例で説明して来たが、鋼管
2の下方、側方等に設けても測定可能なことは言
うまでもない。
In addition, changes in the above-mentioned influencing factors (for example, changes in vorticity)
If the change is gradual over time, or if the location where the influencing factor changes (for example, the location where the material changes) is known by other means, the detection section shown in FIG. 2 may be used instead of the detection section shown in FIG. 3. It is also possible to perform the above-mentioned correction by intermittently (temporarily) changing h 1 by a distance corresponding to α using this detection coil. Up to now, an example has been described in which the contact roller 3 and the detection coil 4 are provided above the steel pipe 2, but it goes without saying that measurements can also be made even if they are provided below, on the side, etc. of the steel pipe 2.

(実施例) 本発明を各種被覆鋼管(UO鋼管、SP鋼管、電
縫鋼管)に適用したが、測定条件としてパイプ外
径φ400〜φ1500、曲り1.5/1000、ポリエチレン
膜厚測定範囲2〜7mm、パイプ周速4〜25m/
min、軸速1.5m/minのスパイラル送りラインで
のオンライン測定で再現性σ=±13μ、直線性ε
=±20μ、ドリフトd=±10μで給合精度a=3σ
+ε+d=±69μの高精度の性能を確認した。こ
れは従来の接角カム型のスポツト的な測定性能よ
りも数倍優れた性能である。
(Example) The present invention was applied to various coated steel pipes (UO steel pipes, SP steel pipes, ERW steel pipes), and the measurement conditions were: pipe outer diameter φ400 to φ1500, bend 1.5/1000, polyethylene film thickness measurement range 2 to 7 mm, Pipe peripheral speed 4-25m/
min, reproducibility σ = ±13μ, linearity ε in online measurement on a spiral feed line with a shaft speed of 1.5m/min
= ±20μ, drift d = ±10μ, feeding accuracy a = 3σ
High precision performance of +ε+d=±69μ was confirmed. This performance is several times better than the spot measurement performance of the conventional tangential cam type.

本発明の適用は上記鋼管のみならず、板状、
線、棒、形鋼等の塗膜膜厚に適用可能である。
The present invention is applicable not only to the above-mentioned steel pipes, but also to plate-shaped,
Applicable to coating film thickness on wires, bars, shaped steel, etc.

(発明の効果) 以上述べたごとく本発明方法によれば渦流検出
器と被検材との相対的な傾き、および渦流検出値
に影響する要因の変化による測定値の変化を自動
的に補正して常に正しい被膜厚さを連続的に測定
することができる。
(Effects of the Invention) As described above, according to the method of the present invention, changes in measured values due to changes in the relative inclination between the eddy current detector and the test material and changes in factors that affect the detected eddy current values can be automatically corrected. It is possible to continuously measure the correct coating thickness at all times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は渦流検出コイルを用いた被膜厚さの測
定原理図、第2図は本発明の渦流検出コイル2ケ
を用いた被膜厚さの測定原理図、第3図,第4図
は本発明の渦流検出コイル4ケを用いた測定方法
を示す説明図である。 1…被膜、2…鋼管、3…接触ローラ、4,4
a,4b,4a1,4b1,4a2,4b2…検出コイ
ル、5…スライド軸受、6…支持軸。
Figure 1 is a diagram of the principle of measuring coating thickness using an eddy current detection coil, Figure 2 is a diagram of the principle of measuring coating thickness using two eddy current detection coils of the present invention, and Figures 3 and 4 are of the present invention. FIG. 3 is an explanatory diagram showing a measurement method using four eddy current detection coils of the invention. 1... Coating, 2... Steel pipe, 3... Contact roller, 4, 4
a, 4b, 4a 1 , 4b 1 , 4a 2 , 4b 2 ... detection coil, 5 ... slide bearing, 6 ... support shaft.

Claims (1)

【特許請求の範囲】 1 非導電性物質を被覆した金属管の被膜に接し
て回転する接触ローラの上下動に連動して上下動
する支持軸に該支持軸から金属管管軸方向に同一
距離離れた対称位置にそれぞれ金属管と非接触の
状態で渦流検出コイルを一対取り付け、該一対の
渦流検出コイルの信号出力の平均値を用いて金属
管の被膜の厚さを求めることを特徴とする被覆金
属管の被膜厚さ連続測定方法。 2 非導電性物質を被覆した金属管の被膜に接し
て回転する接触ローラの上下動に連動して上下す
る支持軸に該支持軸から金属管管軸方向に各々一
定距離離れた両側位置にそれぞれ金属管と非接触
の状態で検出コイル下面と接触ローラ下面との高
さを変えた渦流検出コイルを2対取付けるととも
に、該2対の渦流検出コイルの信号出力の平均値
および各対の2個の渦流検出コイルの信号出力の
平均値ならびに2対の渦流検出コイルの支持軸軸
方向の配置間隔を用いて金属管の被膜の厚さを求
めることを特徴とする被覆金属管の被膜厚さ連続
測定方法。
[Scope of Claims] 1. A support shaft that moves up and down in conjunction with the up and down movement of a contact roller that rotates in contact with the coating of a metal tube coated with a non-conductive substance, the same distance from the support shaft in the axial direction of the metal tube. A pair of eddy current detection coils are installed at separate symmetrical positions without contact with the metal tube, and the thickness of the coating on the metal tube is determined using the average value of the signal output of the pair of eddy current detection coils. A method for continuously measuring the coating thickness of coated metal pipes. 2. On a support shaft that moves up and down in conjunction with the up and down movement of a contact roller that rotates in contact with the coating of a metal tube coated with a non-conductive substance, each side is placed at a certain distance from the support shaft in the axial direction of the metal tube. Two pairs of eddy current detection coils are installed in which the heights of the lower surface of the detection coil and the lower surface of the contact roller are changed in a non-contact state with the metal tube, and the average value of the signal output of the two pairs of eddy current detection coils and the two of each pair are determined. Continuous coating thickness of a coated metal tube characterized in that the thickness of the coating of the metal tube is determined using the average value of the signal output of the eddy current detection coils and the arrangement interval in the supporting shaft axis direction of the two pairs of eddy current detection coils. Measuring method.
JP115984A 1984-01-07 1984-01-07 Continuous measuring method of coating thickness of coated metallic tube Granted JPS60144603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP115984A JPS60144603A (en) 1984-01-07 1984-01-07 Continuous measuring method of coating thickness of coated metallic tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP115984A JPS60144603A (en) 1984-01-07 1984-01-07 Continuous measuring method of coating thickness of coated metallic tube

Publications (2)

Publication Number Publication Date
JPS60144603A JPS60144603A (en) 1985-07-31
JPH0462001B2 true JPH0462001B2 (en) 1992-10-02

Family

ID=11493653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP115984A Granted JPS60144603A (en) 1984-01-07 1984-01-07 Continuous measuring method of coating thickness of coated metallic tube

Country Status (1)

Country Link
JP (1) JPS60144603A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4977853A (en) * 1989-06-01 1990-12-18 E. I. Du Pont De Nemours And Company Non-contact wet or dry film thickness measuring device
DE102005054593B4 (en) * 2005-11-14 2018-04-26 Immobiliengesellschaft Helmut Fischer Gmbh & Co. Kg Measuring probe for measuring the thickness of thin layers
JP5513821B2 (en) * 2009-09-17 2014-06-04 株式会社荏原製作所 Eddy current sensor, polishing apparatus, plating apparatus, polishing method, plating method
CN107806817A (en) * 2017-11-30 2018-03-16 宁波市鄞州磁泰电子科技有限公司 The detection means and method of a kind of carburized layer thickness
EP4053495A1 (en) * 2021-03-03 2022-09-07 ABB Schweiz AG Tilt and curvature measurements of metal sheets in a rolling mill

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219402A (en) * 1982-06-05 1983-12-20 エム・ア−・エヌ−ロ−ラント・ドルツクマシ−ネン・アクチエンゲゼルシヤフト Measuring device for thickness of sheet of paper

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219402A (en) * 1982-06-05 1983-12-20 エム・ア−・エヌ−ロ−ラント・ドルツクマシ−ネン・アクチエンゲゼルシヤフト Measuring device for thickness of sheet of paper

Also Published As

Publication number Publication date
JPS60144603A (en) 1985-07-31

Similar Documents

Publication Publication Date Title
US4027527A (en) System for determining tube eccentricity
US6120833A (en) Method and device for measuring the thickness of an insulating coating
CN1207493A (en) Method and apparatus for non-contact measuring thickness of non-metal coating on surface of metal matrix
JPH0367573B2 (en)
US4206511A (en) Locating a welding seam
JPH0462001B2 (en)
JPS58160805A (en) Method for measuring size and shape of large-diameter steel pipe
JP2501237B2 (en) Device for measuring outer diameter and wall thickness of steel pipe ends
JPH07280526A (en) Thickness measuring method for steel plate by laser distance meter
JP3473404B2 (en) Weld bead center position detector
JPH073327B2 (en) Method and apparatus for automatic measurement of tubular products
JPS6221058A (en) Transporting system of specimen
JP3334091B2 (en) Roll roll profile measurement method
JPH05272959A (en) Measurement of roll profile
JPS5850407A (en) Device for measuring bending of tube body end part
JPS63121705A (en) Instrument for measuring outer diameter and center position of pipe
JPS62266401A (en) Measurement of liner thickness of lined pipe
JPS61259113A (en) Method for measuring bend and out of roundness of tubular rod material
JPH028164Y2 (en)
JPH07260466A (en) Welding seam profiling method of spiral pipe
JPH02115711A (en) Laser range finding and method for calibrating thickness gauge using such range finder
JPH01209302A (en) Method for measuring tube size
JPS6293086A (en) Measuring method for upsetting quantity of spiral welded pipe
JPS61172006A (en) Welded step meter of pipe seam part
JP2000176642A (en) Method and device for detecting center position of weld bead