JPH0461723A - Impregnation type cathode and its manufacture - Google Patents

Impregnation type cathode and its manufacture

Info

Publication number
JPH0461723A
JPH0461723A JP2166813A JP16681390A JPH0461723A JP H0461723 A JPH0461723 A JP H0461723A JP 2166813 A JP2166813 A JP 2166813A JP 16681390 A JP16681390 A JP 16681390A JP H0461723 A JPH0461723 A JP H0461723A
Authority
JP
Japan
Prior art keywords
electron emitting
emitting surface
porous body
cathode
opening part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2166813A
Other languages
Japanese (ja)
Other versions
JP3068160B2 (en
Inventor
Kyoichi Sato
恭一 佐藤
Hidetaka Mano
真野 秀孝
Atsushi Inoue
淳 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP16681390A priority Critical patent/JP3068160B2/en
Publication of JPH0461723A publication Critical patent/JPH0461723A/en
Application granted granted Critical
Publication of JP3068160B2 publication Critical patent/JP3068160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid Thermionic Cathode (AREA)

Abstract

PURPOSE:To secure less deterioration of the characteristics even when exposed to the condition with low degree of vacuum and ensure that stable operation is maintained, by specifying the mean spacing between openings in an electron emitting surface of a porous body and the area ratio of the opening part to the electron emitting surface. CONSTITUTION:The mean spacing between openings 4 in the electron emitting surface of a porous body 3 is made to range between 25-125mum, while the area ratio of the opening part to the electron emitting surface range between 0.02-1.0%. This provides the area of the opening part as small as 1/100 thru 1/50 of the corresponding figure as per conventional arrangements, which reduce remarkably defective influence upon the impregnation part under a low degree of vacuum. Concerning the electron emitting characteristics, on the other hand, there is no risk of bringing about drop of the emission current despite smaller area of the opening part. This permits strongly sustaining a low vacuum atmosphere, and ensures that stable operation is maintained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は主として電子ビーム発生装置、陰極線管の電子
源として用いられる含浸型陰極に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention mainly relates to an impregnated cathode used as an electron source for an electron beam generator or a cathode ray tube.

〔従来の技術〕[Conventional technology]

従来、含浸型陰極は以下のような方法で作られている。 Conventionally, impregnated cathodes have been made by the following method.

まず4〜6μm程度の平均粒径のタングステン粉末をプ
レス成型し、約2000〜2300°Cで焼結を行い、
気孔率20〜25%の多孔質タングステンを作る。陰極
形状への機械加工が必要な場合は銅やプラスチックを含
浸し、加工後に熱処理でこれを除去するなどの工程が入
るが、多孔質体にはその後BaCO3を主成分とする化
合物を水素雰囲気中にて約1800°Cに加熱、溶融し
多孔質体内部に含浸する。陰極表面に残った余剰の含浸
剤を研摩紙等で除去した後、真空中で熱処理を行い、陰
極製作の基本工程を完了する。
First, tungsten powder with an average particle size of about 4 to 6 μm is press-molded and sintered at about 2000 to 2300°C.
Create porous tungsten with a porosity of 20-25%. If machining into the shape of a cathode is required, a process such as impregnating copper or plastic and removing it by heat treatment is required after machining, but the porous body is then treated with a compound mainly composed of BaCO3 in a hydrogen atmosphere. The mixture is heated to about 1800°C, melted, and impregnated into the porous body. After removing excess impregnating agent remaining on the cathode surface with abrasive paper, etc., heat treatment is performed in a vacuum to complete the basic process of cathode production.

このようにして作られた陰極の電子放射面には含浸剤を
詰められた5μmφ程度の大きさの開孔が無数に存在し
ている。
On the electron emitting surface of the cathode thus produced, there are countless openings each having a size of about 5 μm and filled with an impregnating agent.

第1図は、そのような電子放射面の一部を拡大した模式
図であり、1は多孔質体、2はその間孔を示す。図示し
たように開孔間の間隔をd(平均値をd)とするとd’
=2〜10μm程度となっている。また電子放射面(全
面)に対する開孔部分の面積比は20〜50%程度とな
っている。
FIG. 1 is a schematic enlarged view of a part of such an electron emitting surface, where 1 indicates a porous body and 2 indicates the pores therebetween. As shown in the figure, if the distance between the holes is d (the average value is d), then d'
= approximately 2 to 10 μm. Further, the area ratio of the opening portion to the electron emitting surface (the entire surface) is about 20 to 50%.

[発明が解決しようとする課題] 上記のようにして作られた含浸型陰極は、10−’〜1
0−BTorrのような非常に良好な真空中では安定し
て動作するが、真空度が10−5〜10−’Torrで
使用される装置や、工程中に水蒸気等にさらされること
が不可避のような場合には電子放出特性の劣化又は不安
定動作が引きおこされるという問題点があった。
[Problem to be solved by the invention] The impregnated cathode produced as described above has a
Although it operates stably in a very good vacuum such as 0-B Torr, equipment used at a vacuum degree of 10-5 to 10-'Torr or unavoidable exposure to water vapor etc. during the process. In such cases, there is a problem in that electron emission characteristics deteriorate or unstable operation occurs.

本発明は上記問題点を解消し、真空度の低い状態にさら
されても特性の劣化が小さく安定動作が保たれる改善さ
れた含浸型陰極およびその製造方法を提供しようとする
ものである。
The present invention aims to solve the above-mentioned problems and provide an improved impregnated cathode that exhibits little deterioration of characteristics and maintains stable operation even when exposed to a low degree of vacuum, and a method for manufacturing the cathode.

〔課題を解決するための手段〕 上記目的を達成するために、本発明はタングステン、モ
リブデン等の高融点金属の多孔質体にBaCO3を主成
分とする化合物を溶融、含浸してなる含浸型陰極におい
て、前記多項質体の電子放射面における開孔間の平均間
隔を25〜125μmとし、電子放射面に対する開孔部
分の面積比が0.02〜1.0%となるようにしたもの
である。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides an impregnated cathode obtained by melting and impregnating a porous body of a high-melting point metal such as tungsten or molybdenum with a compound mainly composed of BaCO3. In the above, the average interval between the openings on the electron emission surface of the polytopic body is set to 25 to 125 μm, and the area ratio of the openings to the electron emission surface is 0.02 to 1.0%. .

また、上記陰極を作る製造方法として、平均粒径1〜2
.5μmのタングステン、モリブデン等の高融点金属の
粉末を成型、焼結して多孔質体を作り、該多孔質体にB
、CO,を主成分とする化合物を溶融、含浸した後、前
記多孔質体の電子放射面の開口部分の一部を目詰まりさ
せることにより、前記平均間隔、前記面積比を有する陰
極を製造するようにしたものである。
In addition, as a manufacturing method for making the above cathode, an average particle size of 1 to 2
.. A porous body is made by molding and sintering 5 μm powder of high melting point metal such as tungsten or molybdenum, and B is added to the porous body.
, CO, is melted and impregnated with the compound as a main component, and then a part of the opening portion of the electron emitting surface of the porous body is clogged, thereby manufacturing a cathode having the above-mentioned average spacing and the above-mentioned area ratio. This is how it was done.

〔作用〕[Effect]

含浸型陰極の電子放射面を本発明のように構成すること
により開孔部分の面積が従来のものに較べ1/100〜
1150と格段に小さくなるので低真空下における含浸
部分への悪影響が著しく低減される。
By configuring the electron emitting surface of the impregnated cathode as in the present invention, the area of the aperture can be reduced to 1/100 to 1/100 compared to the conventional one.
1150, which is significantly smaller, so that the adverse effect on the impregnated part under low vacuum is significantly reduced.

一方、電子放射特性については開孔部分の面積が小さく
なるにも拘らず以下に述べる理由で放射電流の低下を招
くことはない。
On the other hand, regarding the electron emission characteristics, although the area of the aperture becomes smaller, the emission current does not decrease for the reasons described below.

バリウムを含む含浸型陰極においては、陰極温度を10
00〜1100°C6に加熱すると含浸した化合物と多
孔質体内部とが界面にて化学反応をおこして遊離バリウ
ムが生成し、これが陰極表面に拡散してバリウムの単原
子層を作り電子放射源となるが、このバリウム単原子層
の拡散距離は900°C11で約250 a m、 1
100”Cmで約100μmである。本発明においては
開孔間の平均間隔を125μm以下とするのでバリウム
単原子層を電子放射面に隈なく生成させるには充分短か
い間隔であり、その生成は充分に行なわれ電子放射特性
が損われることは全くない。
In an impregnated cathode containing barium, the cathode temperature is set to 10
When heated to 00 to 1100°C6, a chemical reaction occurs at the interface between the impregnated compound and the inside of the porous body, producing free barium, which diffuses onto the cathode surface to form a monoatomic layer of barium, which acts as an electron radiation source. However, the diffusion distance of this barium monoatomic layer is approximately 250 am at 900°C, 1
At 100"Cm, it is approximately 100 μm. In the present invention, the average distance between the openings is set to 125 μm or less, which is a sufficiently short distance to generate a barium monoatomic layer all over the electron emitting surface. It is carried out satisfactorily and the electron emission characteristics are not impaired at all.

また従来の含浸型陰極においては開孔が近接して存在す
るため電子放射面に過剰なバリウム原子を生じ、特性が
逆に悪化することがあったが本発明では平均間隔を25
μm以上とすることにしたのでそのおそれを軽減するこ
とができる。
In addition, in conventional impregnated cathodes, the openings are located close to each other, resulting in excessive barium atoms on the electron emitting surface, which may actually deteriorate the properties, but in the present invention, the average spacing is reduced to 25
Since the thickness is set to be .mu.m or more, this possibility can be reduced.

〔実施例〕〔Example〕

本発明の実施例について以下に説明する。まず、平均粒
径2μm、純度99.9%のタングステン粉末を0.5
〜1.0 t/cm”の圧力で所要の形状にプレス成型
し、その後2200〜2500°Cの還元性雰囲気中で
焼結を行い気孔率18〜25%の多孔質タングステンを
得る。多孔質タングステンに銅又はプラスチックを含浸
した後、機械加工により所要の陰極寸法に加工し、その
後熱処理により含浸した銅またはプラスチックを完全に
除去する。
Examples of the present invention will be described below. First, 0.5 μm of tungsten powder with an average particle size of 2 μm and a purity of 99.9% was
It is press-molded into the desired shape at a pressure of ~1.0 t/cm", and then sintered in a reducing atmosphere at 2200-2500°C to obtain porous tungsten with a porosity of 18-25%. Porous After impregnating tungsten with copper or plastic, it is machined to the required cathode dimensions, and then heat treated to completely remove the impregnated copper or plastic.

次に、モリブデン等の高融点金属よりなるカソードスリ
ーブ(カソード支持筒)の端部に上記陰極をMo−Ru
粉末ロウ材により接合し、カソードスリーブの内側に陰
極加熱用ヒータをアルミナ粉末によるポツティングによ
り埋め込む。次に、含浸剤としてBaCO3、CaC0
1,^!20.を11:1に混合した化合物を陰極表面
に載せ、還元性雰囲気炉で多孔質体内部に溶融、含浸す
る。含浸されない余剰の含浸剤を除去した後#600〜
# 1000メツシユの粗さのアルミナ製研摩紙を用い
て電子放射面を研摩する。この研摩により多孔質タング
ステンの表面の薄層に微細な変形を生じるが、無数に存
在する開孔の中の一部はその変形により目詰まりされ塞
がれた状態となる。
Next, the cathode was attached to the end of a cathode sleeve (cathode support cylinder) made of a high melting point metal such as molybdenum.
They are joined using powder brazing material, and a cathode heater is embedded inside the cathode sleeve by potting with alumina powder. Next, as an impregnating agent, BaCO3, CaC0
1, ^! 20. A compound prepared by mixing 11:1 is placed on the surface of the cathode, and is melted and impregnated into the inside of the porous body in a reducing atmosphere furnace. After removing the excess impregnating agent that is not impregnated, #600~
# Polish the electron emitting surface using alumina abrasive paper with a roughness of 1000 mesh. This polishing causes minute deformations in the thin layer on the surface of the porous tungsten, but this deformation causes some of the countless openings to become clogged and blocked.

第2図は本発明の陰極の電子放射面の一部を拡大した模
式図であり、3は多孔質体、4は開孔である。研摩前の
状態では開孔間隔は2〜5μm程度であり、電子放射面
に対する開孔部の面積比は10〜20%程度となってい
るが、上記研摩を行いその強度(圧力、速度、時間等)
を調節することにより図示したように開孔間隔をd=2
5〜125μmとすることができる。同時に開孔部分の
面積比は0.02〜1.0%となる。上記研摩工程のあ
と真空炉中で熱処理を行い含浸型陰極の製作を完了する
FIG. 2 is a schematic enlarged view of a part of the electron emitting surface of the cathode of the present invention, where 3 is a porous body and 4 is an opening. Before polishing, the gap between the holes is about 2 to 5 μm, and the area ratio of the holes to the electron emitting surface is about 10 to 20%. etc)
By adjusting the hole spacing as shown in the figure, d=2
It can be 5 to 125 μm. At the same time, the area ratio of the open hole portion is 0.02 to 1.0%. After the above polishing step, heat treatment is performed in a vacuum furnace to complete the production of the impregnated cathode.

本実施例の陰極を真空度10−S〜10−6Torrの
電子ビーム発生装置に装着し動作させたという、顕著な
特性の改善が見られた。特性例を第3図に本発明による
陰極の特性を示す。本発明の場合、放射電流特性の改善
により図示したように従来技術のものに較べ約100°
CIl低い陰極温度で同一な陰極電流が得られることが
確められた。
When the cathode of this example was installed and operated in an electron beam generator with a vacuum degree of 10-S to 10-6 Torr, a remarkable improvement in characteristics was observed. An example of the characteristics is shown in FIG. 3, which shows the characteristics of the cathode according to the present invention. In the case of the present invention, as shown in the figure, due to the improvement in the radiation current characteristics, the angle is approximately 100° compared to the conventional technology.
It was confirmed that the same cathode current can be obtained at a lower cathode temperature.

上述の実施例は多孔質体に含浸剤を含浸した後に研摩工
程を設は所要の表面状態を得るようにし比が得られる加
工方法であればよく、上述の方法に限られるものではな
い。
The above-mentioned embodiments are not limited to the above-mentioned method, as long as the polishing step is performed after the porous body is impregnated with the impregnating agent to obtain the desired surface condition and the ratio can be obtained.

たとえば多孔質体の本体となるべき粒度4〜6μmのタ
ングステン粉末の上層に適度な粒度(2μm以下)のタ
ングステン粉末の層(成型後の厚さ約100μm)を被
せて一体に成型し、これを焼結することにより、研摩工
程なしで上記と同等な表面状態の得ることが可能である
。なお従来の様な方法で表面から内部まで均一な多孔質
体で同様な表面状態を得ることも可能ではあるが、この
場合は同時に気孔率が小さくなり、含浸量が減る結果と
なるので寿命の点で好ましくない。
For example, a layer of tungsten powder with an appropriate particle size (2 μm or less) (about 100 μm thick after molding) is placed on top of a layer of tungsten powder with a particle size of 4 to 6 μm, which is to form the main body of the porous body, and then molded into one piece. By sintering, it is possible to obtain a surface condition equivalent to that described above without a polishing step. It is also possible to obtain a similar surface condition with a porous material that is uniform from the surface to the inside using conventional methods, but in this case, the porosity becomes smaller and the amount of impregnation decreases, resulting in a shorter service life. Unfavorable in some respects.

〔効果〕〔effect〕

以上説明したように本発明による含浸型陰極は従来技術
によるものに較べ電子放射面における開孔部分の面積が
極めて小さいので低真空雰囲気に強く、且つ充分な電子
放射が得られるので、比較的低真空度雰囲気で使用する
電子装置の陰極として利用する場合、特にその効果が発
揮される。
As explained above, the impregnated cathode according to the present invention has an extremely small area of the opening on the electron emitting surface compared to the conventional technology, so it is resistant to low vacuum atmosphere and can obtain sufficient electron emission, so it has a relatively low This effect is particularly exhibited when used as a cathode for electronic devices used in a vacuum atmosphere.

また前述のように製造方法としては本実施例の他に種々
考えられるが実施例のような方法によった場合は、多孔
質体内部の気孔率は18〜25%と大きくとれるので含
浸剤を充分に貯えることができ、且つ開孔部分の面積が
小さく作られるので含浸剤の蒸発を充分抑制でき、寿命
の点でも好結果が得られる。
In addition, as mentioned above, various manufacturing methods can be considered other than those in this example, but if the method in this example is used, the porosity inside the porous body can be as high as 18 to 25%, so no impregnating agent can be used. Since it can be stored sufficiently and the area of the opening is made small, evaporation of the impregnating agent can be sufficiently suppressed, and good results can be obtained in terms of service life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術による含浸型陰極の電子放射面の拡大
模式図、第2図は本発明による同上陰極の拡大模式図、
第3図は陰極電流の対陰極温度特性を示す特性図であり
、本発明によるものと従来技術によるものとを対比して
示す。 1.3・・・多孔質体、2.4・・・開孔、5・・・従
来技術による含浸型陰極の特性、6・・・本発明による
含浸型陰極の特性。 第1図 第2図 1α℃ 120゜ 陰極1度 (’CB) 第3図
FIG. 1 is an enlarged schematic diagram of the electron emitting surface of an impregnated cathode according to the prior art, and FIG. 2 is an enlarged schematic diagram of the same cathode according to the present invention.
FIG. 3 is a characteristic diagram showing anticathode temperature characteristics of cathode current, and shows a comparison between the present invention and the prior art. 1.3...Porous body, 2.4...Open pores, 5...Characteristics of the impregnated cathode according to the prior art, 6...Characteristics of the impregnated cathode according to the present invention. Figure 1 Figure 2 1α℃ 120° Cathode 1 degree ('CB) Figure 3

Claims (1)

【特許請求の範囲】 1、タングステン、モリブデン等の高融点金属の多孔質
体にBaCO_3を主成分とする化合物を溶融、含浸し
てなる含浸型陰極において、前記多孔質体の電子放射面
における開孔間の平均間隔を25〜125μmとし、電
子放射面に対する開孔部分の面積比を0.02〜1.0
%としたことを特徴とする含浸型陰極。 2、平均粒径1〜2.5μmのタングステン、モリブデ
ン等の高融点金属の粉末を成型、焼結して多孔質体を作
り、該多孔質体にBaCO_3を主成分とする化合物を
溶融、含浸した後、前記多孔質体の電子放射面に研摩加
工を加えて該電子放射面の開孔部分の一部を目詰まりさ
せ、請求項1項記載の含浸型陰極を製造する方法。
[Claims] 1. An impregnated cathode obtained by melting and impregnating a porous body of a high-melting point metal such as tungsten or molybdenum with a compound containing BaCO_3 as a main component, in which an electron emitting surface of the porous body has an open area. The average interval between holes is 25 to 125 μm, and the area ratio of the opening to the electron emission surface is 0.02 to 1.0.
%. 2. Molding and sintering powder of high melting point metals such as tungsten and molybdenum with an average particle size of 1 to 2.5 μm to create a porous body, and melting and impregnating the porous body with a compound whose main component is BaCO_3. 2. The method for producing an impregnated cathode according to claim 1, wherein the electron emitting surface of the porous body is then polished to partially clog the openings of the electron emitting surface.
JP16681390A 1990-06-27 1990-06-27 Impregnated cathode and method for producing the same Expired - Fee Related JP3068160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16681390A JP3068160B2 (en) 1990-06-27 1990-06-27 Impregnated cathode and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16681390A JP3068160B2 (en) 1990-06-27 1990-06-27 Impregnated cathode and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0461723A true JPH0461723A (en) 1992-02-27
JP3068160B2 JP3068160B2 (en) 2000-07-24

Family

ID=15838142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16681390A Expired - Fee Related JP3068160B2 (en) 1990-06-27 1990-06-27 Impregnated cathode and method for producing the same

Country Status (1)

Country Link
JP (1) JP3068160B2 (en)

Also Published As

Publication number Publication date
JP3068160B2 (en) 2000-07-24

Similar Documents

Publication Publication Date Title
JPS58154131A (en) Impregnation type cathode
US2389060A (en) Refractory body of high electronic emission
US4675570A (en) Tungsten-iridium impregnated cathode
US4626470A (en) Impregnated cathode
EP0390269B1 (en) Scandate cathode
JPH03173034A (en) Scan dart cathode and its manufacture
US2972078A (en) Carburization of dispenser cathodes
JPH0461723A (en) Impregnation type cathode and its manufacture
JPH03173036A (en) Dispenser cathode
JP2710700B2 (en) Method for producing impregnated cathode and cathode obtained by this method
EP0157634B1 (en) Tungsten-iridium impregnated cathode
EP0637046B1 (en) Thermoionic emissive cathode method of fabricating the same thermoionic emissive cathode and electron beam apparatus
US2995674A (en) Impregnated cathodes
JP2001006521A (en) Cathode body structure and color picture tube
KR100259298B1 (en) Impregnation-type cathode for crt
JPH06103885A (en) Porous sintered base, manufacture thereof and method for evaluating porosity of porous material
JPS612226A (en) Impregnated cathode
JPS5918539A (en) Impregnated cathode
KR920007414B1 (en) Manufacturing method of reservoir type cathode
JP3715790B2 (en) Method for producing impregnated cathode for discharge tube
JPH0997561A (en) Manufacture of cathode for electron tube
JPS6017831A (en) Impregnated cathode
JPH05234502A (en) Manufacture of electric discharge lamp electrode
JPS6032232A (en) Impregnated cathode
KR100235995B1 (en) Impregnation treatment type cathode

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees