JPH0461458B2 - - Google Patents

Info

Publication number
JPH0461458B2
JPH0461458B2 JP10914884A JP10914884A JPH0461458B2 JP H0461458 B2 JPH0461458 B2 JP H0461458B2 JP 10914884 A JP10914884 A JP 10914884A JP 10914884 A JP10914884 A JP 10914884A JP H0461458 B2 JPH0461458 B2 JP H0461458B2
Authority
JP
Japan
Prior art keywords
writing
flow control
voltage
electrode
electron flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10914884A
Other languages
Japanese (ja)
Other versions
JPS60253137A (en
Inventor
Kazuo Terao
Tooru Teshigawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP10914884A priority Critical patent/JPS60253137A/en
Publication of JPS60253137A publication Critical patent/JPS60253137A/en
Publication of JPH0461458B2 publication Critical patent/JPH0461458B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/15Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen with ray or beam selectively directed to luminescent anode segments

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は発光ドツトの密度を低下させることな
く面積階調法により十分な階調再現性を得ること
のできる発光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a light-emitting device that can obtain sufficient gradation reproducibility by area coverage modulation without reducing the density of light-emitting dots.

〔従来の技術〕[Conventional technology]

従来の発光装置として、例えば、レーザや
LED等の発光デバイスがあり、書き込み用のデ
バイスとして用いられている。例えば、LEDの
場合、記録用紙の紙幅相当の長さに多数のLED
ドツトを密接させて一列に配設し、これらを原稿
の読み取り情報(白、黒情報)に応じて点灯さ
せ、この光を感光体ドラム等の感光層に露光して
感光体に潜像を形成するようにしている。このよ
うな発光装置において、階調再現性を向上させる
ためには、表示用ドツト1個を複数の発光ドツト
で形成し、この発光ドツトの点灯数を変化させる
ことによつて表示用ドツトサイズを変化させる所
謂疑似面積階調法が用いられる。
Conventional light emitting devices include, for example, lasers and
There are light emitting devices such as LEDs, which are used as writing devices. For example, in the case of LEDs, there are many LEDs along a length equivalent to the width of the recording paper.
The dots are arranged closely in a line, and they are turned on according to the reading information (white, black information) of the original, and this light is exposed to the photosensitive layer of a photoreceptor drum, forming a latent image on the photoreceptor. I try to do that. In order to improve gradation reproducibility in such a light-emitting device, one display dot is formed from a plurality of light-emitting dots, and the display dot size is changed by changing the number of light-emitting dots. A so-called pseudo-area gradation method is used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来の発光装置にあつては、複数の発
光ドツトの集合で表示用の1ドツトを形成してい
るため、階調ステツプに限界があると共に、実質
的なドツト密度が低下する不具合がある。
However, in conventional light emitting devices, one display dot is formed by a collection of multiple light emitting dots, so there is a limit to the gradation steps and there is a problem that the actual dot density decreases. .

〔問題点を解決するための手段および作用〕[Means and actions for solving problems]

本発明は、上記に鑑みてなされたものであり、
発光ドツトの密度を低下させることなく階調再現
性を向上させるため、電子線を蛍光体に照射して
励起ならびに発光させると共に電子線の流束径を
制御して面積階調を変化させるようにした発光装
置を提供するものである。
The present invention has been made in view of the above,
In order to improve gradation reproducibility without reducing the density of light-emitting dots, we irradiated the phosphor with an electron beam to excite and emit light, and at the same time controlled the flux diameter of the electron beam to change the area gradation. The present invention provides a light-emitting device that achieves this.

〔実施例〕〔Example〕

以下、本発明による発光装置10を詳細に説明
する。
Hereinafter, the light emitting device 10 according to the present invention will be described in detail.

第1図及び第2図は本発明の一実施例を示し、
電子線を図示の矢印方向に放出する陰極フイラメ
ント1と、該フイラメント1に対面して平行配置
され所定間隔で設けられたアパーチヤー2を通過
する電子線の流束を電極(後述する)に印加する
電圧の大きさで制御する電子流制御電極3、と該
電極3に対し平行配置されてアパーチヤー2を通
過してくる電子線によつて励起されて発光する蛍
光体4と、該蛍光体4の非電子線入射面に接して
配設され、電子流を誘引する陽極5と、該陽極5
を表面に貼着けた基板ガラス6とより構成され
る。尚、陰極1及び電子流制御電極3が設置され
る空間は真空状態にされ、気密性が保たれてい
る。また、陰極フイラメント1は数ボルト〜十数
ボルトの低電圧直流電源7に接続され、電子流制
御電極3の各々には出力電圧可変の直流電源8が
個別に接続され、更に、電極5には十数ボルト〜
百数十ボルトの正電圧が印加される直流電源9が
接続される。
1 and 2 show an embodiment of the present invention,
A flux of electron beams passing through a cathode filament 1 that emits electron beams in the direction of the arrow shown in the figure and apertures 2 that are arranged in parallel facing the filament 1 and provided at predetermined intervals is applied to an electrode (described later). an electron flow control electrode 3 that is controlled by the magnitude of voltage; a phosphor 4 that is arranged parallel to the electrode 3 and emits light when excited by the electron beam passing through the aperture 2; an anode 5 disposed in contact with a non-electron beam incident surface and inducing an electron flow;
It is composed of a substrate glass 6 with a glass 6 attached to its surface. Note that the space in which the cathode 1 and the electron flow control electrode 3 are installed is kept in a vacuum state and kept airtight. Further, the cathode filament 1 is connected to a low voltage DC power supply 7 of several volts to more than ten volts, a DC power supply 8 with a variable output voltage is individually connected to each of the electron flow control electrodes 3, and A dozen volts ~
A DC power supply 9 to which a positive voltage of 100-odd volts is applied is connected.

上記出力電圧可変の直流電源8が本発明の面積
階調によつて書き込み時の階調を制御するための
書き込みサイズに応じた電圧を前記電極に印加す
る電圧制御手段を構成する。
The variable output voltage DC power supply 8 constitutes voltage control means for applying a voltage to the electrodes according to the writing size for controlling the gradation during writing by the area gradation of the present invention.

第3図は電子流制御電極3の正面図を示し、第
4図は第3図の−面断面図を示している。こ
の電子流制御電極3は、第2図に示すように、そ
の長手方向の中心線上に一定間隔で多数のアパー
チヤー2が設けられた帯板状の絶縁体31と、該
絶縁体31の各アパーチヤー2の上面及び下面に
アパーチヤー2を囲むように設けられ、各々に直
流電源8が接続される第1の電極32及び第2の
電極33とより構成される。
FIG. 3 shows a front view of the electron flow control electrode 3, and FIG. 4 shows a sectional view taken from the - plane of FIG. As shown in FIG. 2, this electron flow control electrode 3 includes a strip-shaped insulator 31 in which a large number of apertures 2 are provided at regular intervals on its longitudinal center line, and each aperture in the insulator 31. The first electrode 32 and the second electrode 33 are provided on the upper and lower surfaces of the aperture 2 so as to surround the aperture 2, and are connected to a DC power source 8, respectively.

以上の構成において、フイラメント1及び陽極
5に直流電源7及び9より所定の電圧を供給す
る。電子流制御電極3に電圧を印加しない場合、
陰極フイラメント1から陽極4に向かう電子線
は、第1図に示すように陽極4に向かつて平行に
進み、アパーチヤー2に向かつた電子線のみが蛍
光体4に到達し、この電子線の励起によつて蛍光
体4はスポツト状に発光する。
In the above configuration, a predetermined voltage is supplied to the filament 1 and the anode 5 from the DC power supplies 7 and 9. When no voltage is applied to the electron flow control electrode 3,
The electron beam heading from the cathode filament 1 to the anode 4 travels parallel to the anode 4 as shown in FIG. As a result, the phosphor 4 emits light in a spot-like manner.

ついで、電子流制御電極3の第1の電極32に
正電圧を供給し、第2の電極33に零(アース)
又は負電圧を供給する直流電源8の出力電圧を上
昇させるに従つて、アパーチヤー2を通過しよう
とする電子流は、第4図に示すように電極32に
近い電子線が該電極側へ屈折し、アパーチヤー2
を通過する電子線数が少なくなる。この電子線の
通過数は電極32と33に印加する電圧が高くな
るほど減少する。この結果、電子流制御電極3の
電圧を変化させることによつて、蛍光体4に衝突
する電子線束径を変化させることができ、発光ド
ツトサイズを制御することができる。
Next, a positive voltage is supplied to the first electrode 32 of the electron flow control electrode 3, and zero (ground) is applied to the second electrode 33.
Alternatively, as the output voltage of the DC power supply 8 that supplies a negative voltage is increased, the electron current attempting to pass through the aperture 2 will change as the electron beam near the electrode 32 is refracted toward the electrode, as shown in FIG. , aperture 2
The number of electron beams passing through decreases. The number of electron beams passing through the electron beam decreases as the voltage applied to the electrodes 32 and 33 increases. As a result, by changing the voltage of the electron flow control electrode 3, the diameter of the electron beam colliding with the phosphor 4 can be changed, and the size of the light emitting dot can be controlled.

発明者らによる具体的な実施例を示せば次の如
くである。
Specific examples by the inventors are as follows.

アパーチヤー2のサイズ:20μm アパーチヤー2間のピツチ:50μm 絶縁体31の厚み:30μm 以上の条件において、第1図の構成により、直
流電源8の電圧を零ボルトから徐々に上昇させ、
第1の電極32に印加した電圧に対する蛍光体4
面上の発光ドツトサイズを測定したところ、第5
図に示す結果が得られた。この結果、印加電圧
VGが0〜30Vの範囲では略アパーチヤーサイズ
相当の電子線流が通過し、ほぼ50μmの発光ドツ
トサイズが得られ、VGが30V以上では、VGに比
例してアパーチヤー2を通過する電子線束が細く
なり、発光ドツトサイズも小さくなる。更に、印
加電圧VGが75V〜85V以上になると、電子線はア
パーチヤー2を通過することができず、電子線3
5は蛍光体4に到達せず、発光しなくなる。この
ように電圧VGを変えるのみで連続的に発光ドツ
トサイズを変えることができる。
Size of aperture 2: 20 μm Pitch between apertures 2: 50 μm Thickness of insulator 31: 30 μm Under the above conditions, the voltage of the DC power source 8 is gradually increased from zero volts using the configuration shown in FIG.
The phosphor 4 in response to the voltage applied to the first electrode 32
When we measured the size of the luminescent dots on the surface, we found that the fifth
The results shown in the figure were obtained. As a result, the applied voltage
When V G is in the range of 0 to 30 V, an electron beam current approximately equivalent to the aperture size passes through, and a luminescent dot size of approximately 50 μm is obtained. When V G is 30 V or more, electrons pass through aperture 2 in proportion to V G. The beam becomes thinner, and the emitting dot size also becomes smaller. Furthermore, when the applied voltage V G exceeds 75V to 85V, the electron beam cannot pass through the aperture 2 and the electron beam 3
5 does not reach the phosphor 4 and ceases to emit light. In this way, the size of the light-emitting dots can be continuously changed simply by changing the voltage VG .

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の発光装置によれ
ば、蛍光対に電子線を当てて発光させると共に、
蛍光体へ送る電子線束径を制御するようにしたた
め、発光ドツトの面積を自在に制御することがで
きる。しかも、ドツトサイズを連続的に制御でき
るため、従来のように階調ステツプの制限が無く
なると共に、ドツト密度の低下を招くこともな
い。
As explained above, according to the light emitting device of the present invention, the fluorescent pair is irradiated with an electron beam to cause it to emit light, and
Since the diameter of the electron beam sent to the phosphor is controlled, the area of the light emitting dot can be freely controlled. Moreover, since the dot size can be controlled continuously, there is no restriction on gradation steps as in the prior art, and there is no reduction in dot density.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2
図は第1図に示す実施例の斜視図、第3図は本発
明に係る電子流制御電極の正面図、第4図は第3
図の電極の−面断面図、第5図は本発明を実
施して得られた制御電極電圧に対する発光ドツト
サイズ特性図。 符号の説明、1……陰極フイラメント、2……
アパーチヤー、3……電子流制御電極、4……蛍
光体、5……陽極、6……基板ガラス、7,8,
9……直流電源、31……絶縁体、32,33…
…電極。
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
The figure is a perspective view of the embodiment shown in Figure 1, Figure 3 is a front view of the electron flow control electrode according to the present invention, and Figure 4 is a perspective view of the embodiment shown in Figure 1.
FIG. 5 is a cross-sectional view of the electrode shown in FIG. Explanation of symbols, 1... cathode filament, 2...
Aperture, 3...electron flow control electrode, 4...phosphor, 5...anode, 6...substrate glass, 7,8,
9...DC power supply, 31...Insulator, 32, 33...
…electrode.

Claims (1)

【特許請求の範囲】 1 陽極となる導電膜上に被着した螢光体と、該
螢光体に対向して配置された電子線を放射する陰
極と、該螢光体と該陰極との間に平行配置した電
子流制御電極と、該電子流制御電極に直流電圧を
印加する電源とからなる書き込み用発光装置にお
いて、 該電子流制御電極は、書き込みのため所定間隔
で配置され通過する電子線を発光体へ導く多数の
アパーチヤと、該アパーチヤを通過する電子線を
偏向させる電極を備え、 該電源は、面積階調によつて書き込み時の階調
を制御するための書き込みサイズに応じた電圧を
前記電極に印加する電圧制御手段を備えることを
特徴とする書き込み用発光装置。
[Claims] 1. A phosphor deposited on a conductive film serving as an anode, a cathode disposed opposite to the phosphor and emitting an electron beam, and a connection between the phosphor and the cathode. In a light-emitting device for writing, which includes an electron flow control electrode arranged in parallel between the electron flow control electrodes and a power source that applies a DC voltage to the electron flow control electrodes, the electron flow control electrodes are arranged at predetermined intervals for writing, and the electron flow control electrodes are arranged at predetermined intervals for writing. The power supply has a plurality of apertures that guide the beam to the light emitter, and an electrode that deflects the electron beam passing through the aperture, and the power source has a power source that is connected to the writing size according to the writing size to control the gradation during writing by area gradation. A light emitting device for writing, comprising voltage control means for applying a voltage to the electrode.
JP10914884A 1984-05-29 1984-05-29 Light emitting device Granted JPS60253137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10914884A JPS60253137A (en) 1984-05-29 1984-05-29 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10914884A JPS60253137A (en) 1984-05-29 1984-05-29 Light emitting device

Publications (2)

Publication Number Publication Date
JPS60253137A JPS60253137A (en) 1985-12-13
JPH0461458B2 true JPH0461458B2 (en) 1992-09-30

Family

ID=14502830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10914884A Granted JPS60253137A (en) 1984-05-29 1984-05-29 Light emitting device

Country Status (1)

Country Link
JP (1) JPS60253137A (en)

Also Published As

Publication number Publication date
JPS60253137A (en) 1985-12-13

Similar Documents

Publication Publication Date Title
US4730203A (en) Write head for an optical printer
JP2937577B2 (en) Light source for fluorescent printer
JPH0461458B2 (en)
US4949099A (en) Fluorescent printer head using a single filamentary cathode
US4743800A (en) Array of light emitting elements for electrophotographic printer
JPS6168845A (en) Optical writing device
JP2625715B2 (en) Optical writing head
JPS636981B2 (en)
JP2770308B2 (en) Optical writing head
JPS6061273A (en) Light-emitting element array device
JPS62244668A (en) Method for driving light source for printer
JPS62119857A (en) Light source of optical printer
JPH0541493Y2 (en)
JPS6359161A (en) Driving method for writing head with vacuum florescent tube
JPS6247942A (en) Light emitting device
JPS61110960A (en) Light emitting device
JPS60212949A (en) Optical writing device
JPH06115157A (en) Optical writing head
JPS6091539A (en) Fluorescent tube for optical writing
KR20070014680A (en) Electron emission device
JPS6122543A (en) Optical writing device
JPH04336558A (en) Optical write-in device
JPS62244667A (en) Light source for printer
JPH04364968A (en) Optical writing device
JPH04334842A (en) Optical writing device