JPH0460993A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPH0460993A
JPH0460993A JP2167210A JP16721090A JPH0460993A JP H0460993 A JPH0460993 A JP H0460993A JP 2167210 A JP2167210 A JP 2167210A JP 16721090 A JP16721090 A JP 16721090A JP H0460993 A JPH0460993 A JP H0460993A
Authority
JP
Japan
Prior art keywords
signal
power supply
supply voltage
delay
input signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2167210A
Other languages
Japanese (ja)
Inventor
Yasushi Goho
靖 五寳
Hiroshige Hirano
博茂 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP2167210A priority Critical patent/JPH0460993A/en
Publication of JPH0460993A publication Critical patent/JPH0460993A/en
Pending legal-status Critical Current

Links

Landscapes

  • Static Random-Access Memory (AREA)
  • Dram (AREA)

Abstract

PURPOSE:To reduce energy consumption by operating a second delay circuit by a power supply voltage detecting circuit so as to generate a delay signal delayed rather than the delay signal of an input signal generated by a first delay circuit when a power supply voltage is made high beyond a prescribed value. CONSTITUTION:A power supply voltage detecting circuit 1 and the first and second delay circuits are provided. The first delay circuit generates the delay signal of an input signal CAS from the outside and when the power supply voltage is made high, the second delay circuit is operated by the power supply voltage detecting circuit 1 so as to generate the delay signal to delay the input signal CAS from the outside rather than the delay signal generated by the first delay circuit. Thus, even when the power supply voltage is made high, time for accepting a column address is not prolonged, the number of times for accepting the transition of an address signal is not increased as well, and the energy consumption can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体メモリ装置に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a semiconductor memory device.

従来の技術 最近、半導体メモリ装置の利用が高まり、これらの半導
体メモリ装置の使用にあたり高電源電圧でも動作時消費
電力が少ないものが要求されている。この動作時消費電
力の一つとしてアドレス信号遷移に消費されるものがあ
り、受は付けるアドレス信号遷移を少なくすることが重
要である。第2図(A)は従来の半導体メモリ装置の回
路図、第2図(B)は第2図(A)の回路図の外部入力
信号及び内部信号の信号波形図、第2図(C)は第2図
(A)の回路図の内部信号CLにみられる外部入力信号
RASからの遅延時間ta電源電圧VCCとの関係図で
ある。RAS (ロウアドレスストローブ)、CAS(
カラムアドレスストローブ)は外部入力信号、CLはカ
ラムアドレスの受は付は制御の内部信号、Nl、N2は
ノード名、tは外部入力信号RASから内部信号CLま
での遅延時間である。動作について、第2図(A)の回
路図と第2図(B)の信号波形図を参照しながら説明す
る。
2. Description of the Related Art Recently, the use of semiconductor memory devices has increased, and when using these semiconductor memory devices, there is a demand for devices that consume less power during operation even at a high power supply voltage. One of the power consumptions during operation is that consumed by address signal transitions, and it is important to reduce the number of address signal transitions that are applied to the receiver. FIG. 2(A) is a circuit diagram of a conventional semiconductor memory device, FIG. 2(B) is a signal waveform diagram of external input signals and internal signals of the circuit diagram of FIG. 2(A), and FIG. 2(C) is a circuit diagram of a conventional semiconductor memory device. is a relationship diagram between the delay time ta from the external input signal RAS seen in the internal signal CL in the circuit diagram of FIG. 2(A) and the power supply voltage VCC. RAS (row address strobe), CAS (
Column address strobe) is an external input signal, CL is an internal control signal for column address reception, Nl and N2 are node names, and t is a delay time from external input signal RAS to internal signal CL. The operation will be explained with reference to the circuit diagram of FIG. 2(A) and the signal waveform diagram of FIG. 2(B).

ノードN1の信号は、外部入力信号RASの遅延信号と
外部入力信号RASとの論理和の否定信号で、ノードN
2の信号は、外部入力信号CASの遅延信号と外部入力
信号CASとの論理和信号で、内部信号CLは、ノード
N1の信号とノードN2の信号との論理積の否定信号で
ある。つまり、内部信号CLは、外部入力信号RASが
論理電圧゛L“で外部入力信号CASが論理電圧”L”
のときに論理電圧“L“になり、外部入力信号RASの
立ち下がりから遅延して立ち下がり外部入力信号CAS
の立ち下がりから遅延して立ち上がる信号である。この
内部信号CLが論理電圧“L゛′である時がカラムアド
レスの受は付は期間であり、カラムアドレスの受は付は
期間中のアドレス信号遷移の回数が増すごとに消費電力
も増加する。外部入力信号RASの立ち下がりから内部
信号CLの立ち下がりまでの遅延時間tと電源電圧VC
Cとの関係を示したものが第2図(C)で遅延時間tは
電源電圧Vccが高くなるにつれて短くなり短調減少の
関係になる。
The signal at the node N1 is a negative signal of the logical sum of the delayed signal of the external input signal RAS and the external input signal RAS.
The signal No. 2 is a logical sum signal of the delayed signal of the external input signal CAS and the external input signal CAS, and the internal signal CL is a negative signal of the logical product of the signal at the node N1 and the signal at the node N2. In other words, the internal signal CL has the external input signal RAS at the logic voltage "L" and the external input signal CAS at the logic voltage "L".
, the logic voltage becomes “L” and falls with a delay from the falling edge of the external input signal RAS.
This is a signal that rises with a delay from the fall of . When this internal signal CL is at the logic voltage "L", the column address is accepted during the period, and the power consumption increases as the number of address signal transitions increases during the column address acceptance period. .Delay time t from the fall of external input signal RAS to the fall of internal signal CL and power supply voltage VC
FIG. 2(C) shows the relationship between the delay time t and the delay time t, which becomes shorter as the power supply voltage Vcc increases, resulting in a minor-key decreasing relationship.

発明が解決しようとする課題 このような従来の半導体メモリ装置では、電源電圧が高
くなると、外部入力信号RASの立ち下がりから内部信
号CLの立ち下がりまでの遅延時間が短くなり、ウラム
アドレスの受は付は期間が長くなるため、アドレス信号
遷移の受は付は回数も増すことがあり、消費電力も増加
するという問題があった。
Problems to be Solved by the Invention In such conventional semiconductor memory devices, when the power supply voltage increases, the delay time from the fall of the external input signal RAS to the fall of the internal signal CL becomes shorter, and the reception of the URAM address becomes shorter. Since the period of reception becomes longer, the number of times of reception and determination of address signal transitions may increase, which poses a problem in that power consumption also increases.

課題を解決するための手段 このような課題を解決するために、本発明は、電源電圧
検知回路、第1及び第2の遅延回路を有し、前記第1の
遅延回路が外部からの入力信号の遅延信号を発生し、電
源電圧が高くなったときに、前記電源電圧検知回路によ
り前記第2の遅延回路が作動し、前記第2の遅延回路が
外部からの入力信号の遅延信号を発生することにより、
前記第1の遅延回路による遅延信号より遅延した遅延信
号を発生させる回路を有する半導体メモリ装置とする。
Means for Solving the Problems In order to solve these problems, the present invention includes a power supply voltage detection circuit, first and second delay circuits, and the first delay circuit receives an external input signal. When the power supply voltage becomes high, the second delay circuit is activated by the power supply voltage detection circuit, and the second delay circuit generates a delayed signal of an input signal from the outside. By this,
A semiconductor memory device includes a circuit that generates a delayed signal delayed from a delayed signal by the first delay circuit.

作用 本発明の半導体メモリ装置によれば、電源電圧が高くな
ったときに電源電圧検知回路により所定の遅延回路が作
動し、電源電圧が高くなってもカラムアドレスの受は付
は時間が長くならず、アドレス信号遷移の受は付は回数
も増えず消費電力が増加しない低消費電力の半導体メモ
リ装置とすることができる。
According to the semiconductor memory device of the present invention, a predetermined delay circuit is activated by the power supply voltage detection circuit when the power supply voltage becomes high, so that even if the power supply voltage becomes high, it takes a long time to receive a column address. First, it is possible to obtain a semiconductor memory device with low power consumption, in which the number of receptions of address signal transitions does not increase, and power consumption does not increase.

実施例 以下、本発明を実施例によって説明する。第1図(A)
は本発明の半導体メモリ装置の一実施例の回路図、第1
図(B)は第1図(A)の回路図のノード名N3の電圧
と電源電圧Vccとの関係図、第1図(C)は第1図(
A)の回路図の外部入力信号及び内部信号の信号波形図
、第1図(D)は第1図(A)の回路図の内部信号CL
にみられる外部入力信号R’ASからの遅延時間tと電
源電圧VCCとの関係図である。なお、図中の符号で、
RAS(ロウアドレスストローブ)、CAS (カラム
アドレスストローブ)は外部入力信号、CLはカラムア
ドレスの受は付は制御の内部信号、1は電源電圧検知回
路、Nl、N2.N3はノード名、tは外部入力信号R
ASから内部信号CLまでの遅延時間を表している。動
作について、第1図(A)の回路図、第1図(B)のノ
ード名N3の電圧と電源電圧VCCとの関係図、第1図
(C)の信号波形図を参照しながら説明する。ノードN
1の信号は、外部入力信号RASの遅延信号と外部入力
信号RASとの論理和の否定信号で、前記外部入力信号
RASの遅延信号の遅延時間は電源電圧検知回路1から
出力されるノードN3の論理電圧レベルによってかわり
、電源電圧VCCが低く、ノードN3の論理電圧が“L
”であるときは作動する遅延用否定回路の段数が少なく
、遅延時間は短い。電源電圧VCCが高(なり、ノード
N3の論理電圧がI−1”であるときは作動する遅延用
否定回路の段数が多く遅延時間は長くなり、ノードN1
の信号の立ち上がりがより遅延する。ノードN2の信号
は、外部入力信号CASの遅延信号と外部入力信号CA
Sとの論理和信号で、内部信号CLは、ノードN1の信
号とノードN2の信号との論理積の否定信号である。つ
まり、内部信号CLは、外部入力信号RASが論理電圧
“L”で外部入力信号CASが論理電圧゛L”のときに
論理電圧”°L゛。
EXAMPLES Hereinafter, the present invention will be explained by examples. Figure 1 (A)
1 is a circuit diagram of an embodiment of the semiconductor memory device of the present invention.
Figure 1(B) is a relationship diagram between the voltage of node name N3 in the circuit diagram of Figure 1(A) and the power supply voltage Vcc, and Figure 1(C) is a diagram of the relationship between the voltage of node name N3 in the circuit diagram of Figure 1(A) and the power supply voltage Vcc.
Figure 1 (D) is a signal waveform diagram of the external input signal and internal signal in the circuit diagram of A), and the internal signal CL of the circuit diagram of Figure 1 (A).
FIG. 2 is a diagram showing the relationship between the delay time t from the external input signal R'AS and the power supply voltage VCC as seen in FIG. In addition, the symbols in the figure are
RAS (row address strobe) and CAS (column address strobe) are external input signals, CL is an internal control signal for column address reception, 1 is a power supply voltage detection circuit, Nl, N2 . N3 is the node name, t is the external input signal R
It represents the delay time from AS to internal signal CL. The operation will be explained with reference to the circuit diagram in FIG. 1(A), the relationship diagram between the voltage of node name N3 and power supply voltage VCC in FIG. 1(B), and the signal waveform diagram in FIG. 1(C). . Node N
The signal 1 is a negative signal of the logical sum of the delayed signal of the external input signal RAS and the external input signal RAS, and the delay time of the delayed signal of the external input signal RAS is equal to Depending on the logic voltage level, the power supply voltage VCC is low and the logic voltage of node N3 is “L”.
``, the number of stages of the delay NOT circuit that operates is small, and the delay time is short.When the power supply voltage VCC is high (and the logic voltage of node N3 is I-1'', the number of stages of the delay NOT circuit that operates is short. Since the number of stages is large and the delay time is long, node N1
The rise of the signal is delayed. The signal at node N2 is a delayed signal of external input signal CAS and external input signal CA.
The internal signal CL is a logical sum signal with S, and is a negative signal of the logical product of the signal at the node N1 and the signal at the node N2. That is, the internal signal CL is a logic voltage "°L" when the external input signal RAS is a logic voltage "L" and the external input signal CAS is a logic voltage "L".

になり、外部入力信号RASの立ち下がりから遅延して
立ち下がり、外部入力信号CASの立ち下がりから遅延
して立ち上がる信号である。外部入力信号RASの立ち
下がりから内部信号CLの立ち下がりまでの遅延時間t
と電源電圧VCCとの関係を示したものが第2図(D)
で遅延時間tは電源電圧VCCが高(なるにつれて短く
なるが、電源電圧VCCが5.OVのところで遅延時間
tは不連続に長くなる。このように、広い電源電圧範囲
で遅延時間tの変化の少ない内部信号CLを発生ずる回
路としている。この内部信号CLが論理電圧”°L“で
ある時がカラムアドレスの受は付は期間であり、カラム
アドレスの受は付は期間中のアドレス信号遷移の回数が
増すごとに消費電力も増加するが、本発明では、電源電
圧が高くなってもカラムアドレスの受は付は期間が長く
ならず、アドレス信号遷移の受は付は回数も増えず、消
費電力が増加しない低消費電力の半導体メモリ装置を実
現している。
This is a signal that falls with a delay from the fall of the external input signal RAS, and rises with a delay from the fall of the external input signal CAS. Delay time t from the fall of external input signal RAS to the fall of internal signal CL
Figure 2 (D) shows the relationship between and power supply voltage VCC.
The delay time t becomes shorter as the power supply voltage VCC becomes higher, but the delay time t becomes discontinuously longer when the power supply voltage VCC reaches 5.0V.In this way, the delay time t changes over a wide power supply voltage range. The circuit is designed to generate an internal signal CL with a small amount of noise.When this internal signal CL is at the logic voltage "°L", the column address reception is during the period, and the column address reception is the address signal during the period. Power consumption also increases as the number of transitions increases, but in the present invention, even if the power supply voltage increases, the period for accepting and attaching column addresses does not increase, and the number of times that accepting and attaching address signal transitions does not increase. , a low power consumption semiconductor memory device that does not increase power consumption has been realized.

発明の効果 以」二説明したように、本発明によると、高電源電圧で
も動作時消費電力が少ない半導体メモリ装置が供給でき
るという大きな効果が得られる。
Advantages of the Invention As described above, the present invention has the great effect of providing a semiconductor memory device that consumes less power during operation even at a high power supply voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は本発明の半導体メモリ装置の一実施例の
回路図、第1図(B)は第1図(A>の回路図のノード
名N3の電圧と電源電圧VCCとの関係図、第1図(C
)は第1図(A)の回路図の外部入力信号及び内部信号
の信号波形図、第1図(D>は第1図(A)の回路図の
外部入力信号RASから内部信号CLまでの遅延時間t
と電源電圧VCCとの関係図にある。第2図(A)は従
来の半導体メモリ装置の一実施例の回路図、第2図(B
)は第2図(A)の回路図の外部入力信号及び内部信号
の信号波形図、第2図(C)は第2図(A>の回路図の
内部信号CL外部入力信号RASからの遅延時間ta電
源電圧VCCとの関係図である。 RAS(ロウアドレスストローブ)、CAS(カラムア
ドレスストローブ)・・・・・・外部入力信号、CL・
・・・・・内部信号、1・・・・・・電源電圧検知回路
、Nl、N2.N3・・・・・・ノード名、t・・・・
・・外部入力信号RASから内部信号CLまでの遅延時
間。 代理人の氏名 弁理士 粟野重孝 ほか1名塚 ←娩岩芝P
FIG. 1(A) is a circuit diagram of an embodiment of the semiconductor memory device of the present invention, and FIG. 1(B) is the relationship between the voltage of node name N3 in the circuit diagram of FIG. 1(A>) and the power supply voltage VCC. Figure, Figure 1 (C
) is the signal waveform diagram of the external input signal and internal signal in the circuit diagram of Figure 1 (A), and Figure 1 (D> is the signal waveform diagram of the external input signal RAS to the internal signal CL in the circuit diagram of Figure 1 (A)). delay time t
The diagram shows the relationship between VCC and power supply voltage VCC. FIG. 2(A) is a circuit diagram of an embodiment of a conventional semiconductor memory device, and FIG. 2(B) is a circuit diagram of an embodiment of a conventional semiconductor memory device.
) is a signal waveform diagram of the external input signal and internal signal in the circuit diagram of Figure 2 (A), and Figure 2 (C) is the delay from the internal signal CL external input signal RAS in the circuit diagram of Figure 2 (A>). It is a relationship diagram between time ta and power supply voltage VCC.RAS (row address strobe), CAS (column address strobe)...External input signal, CL.
...Internal signal, 1...Power supply voltage detection circuit, Nl, N2. N3...Node name, t...
...Delay time from external input signal RAS to internal signal CL. Name of agent: Patent attorney Shigetaka Awano and 1 other person Tsuka ← Kaiiwa Shiba P

Claims (1)

【特許請求の範囲】[Claims] 電源電圧検知回路、第1及び第2の遅延回路を有し、前
記第1の遅延回路で外部からの入力信号の遅延信号を発
生し、電源電圧が所定値をこえた高くなったときに、前
記電源電圧検知回路により前記第2の遅延回路が作動し
、これにより、前記第1の遅延回路による入力信号の遅
延信号より遅延した遅延信号を発生させる回路を有する
ことを特徴とする半導体メモリ装置。
It has a power supply voltage detection circuit, first and second delay circuits, the first delay circuit generates a delayed signal of an input signal from the outside, and when the power supply voltage becomes higher than a predetermined value, A semiconductor memory device comprising: a circuit in which the second delay circuit is activated by the power supply voltage detection circuit, thereby generating a delayed signal delayed from a delayed signal of an input signal by the first delay circuit. .
JP2167210A 1990-06-25 1990-06-25 Semiconductor memory device Pending JPH0460993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2167210A JPH0460993A (en) 1990-06-25 1990-06-25 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2167210A JPH0460993A (en) 1990-06-25 1990-06-25 Semiconductor memory device

Publications (1)

Publication Number Publication Date
JPH0460993A true JPH0460993A (en) 1992-02-26

Family

ID=15845467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2167210A Pending JPH0460993A (en) 1990-06-25 1990-06-25 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPH0460993A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100845784B1 (en) * 2006-12-08 2008-07-14 주식회사 하이닉스반도체 Delay Apparatus for Delay Locked Loop

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100845784B1 (en) * 2006-12-08 2008-07-14 주식회사 하이닉스반도체 Delay Apparatus for Delay Locked Loop
US7710178B2 (en) 2006-12-08 2010-05-04 Hynix Semiconductor Inc. Delay apparatus for delay locked loop

Similar Documents

Publication Publication Date Title
US6812799B2 (en) Synchronous mirror delay (SMD) circuit and method including a ring oscillator for timing coarse and fine delay intervals
US9082505B2 (en) Method for triggering a delay-locked loop (DLL) update operation or an impedance calibration operation in a dynamic random access memory device
JP3023238B2 (en) Power-on reset system and semiconductor memory device provided with the power-on reset system
US20040036515A1 (en) Method and circuit for adjusting the timing of output data based on an operational mode of output drivers
US6573754B2 (en) Circuit configuration for enabling a clock signal in a manner dependent on an enable signal
JPH06259967A (en) Address transition detector for semiconductor memory device
JPH07192470A (en) Output circuit for semiconductor memory
JP4263818B2 (en) Semiconductor integrated circuit
JPH10177058A (en) Integrated circuit having speed detector
JPH11353877A (en) Synchronous dram semiconductor device
US6765432B2 (en) Semiconductor device with a low-power operation mode
KR20040022557A (en) Device for controlling high voltage
US6337814B1 (en) Semiconductor memory device having reference potential generating circuit
JPH0460993A (en) Semiconductor memory device
US5940330A (en) Synchronous memory device having a plurality of clock input buffers
US6002637A (en) Input buffer circuit
JP2001237684A (en) Power-on reset circuit
JPH07131308A (en) Clock skew suppressing circuit
JPH09213073A (en) Semiconductor integrated circuit
JPH01276486A (en) Semiconductor storage device
JP3266111B2 (en) Clock input buffer circuit
JP2621635B2 (en) Semiconductor memory
JPH0618634A (en) Semiconductor memory circuit
TW202242606A (en) Micro-controller, operating system and control method thereof
US6404699B1 (en) Integrated circuit having a command decoder