JPH0460428A - Mechanism for driving relative flat board - Google Patents

Mechanism for driving relative flat board

Info

Publication number
JPH0460428A
JPH0460428A JP17160090A JP17160090A JPH0460428A JP H0460428 A JPH0460428 A JP H0460428A JP 17160090 A JP17160090 A JP 17160090A JP 17160090 A JP17160090 A JP 17160090A JP H0460428 A JPH0460428 A JP H0460428A
Authority
JP
Japan
Prior art keywords
strain
voltage
relative plane
holding means
target value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17160090A
Other languages
Japanese (ja)
Inventor
Kaoru Nishimura
薫 西村
Masayuki Watanabe
正幸 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP17160090A priority Critical patent/JPH0460428A/en
Publication of JPH0460428A publication Critical patent/JPH0460428A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To enable high speed sweeping with a compact apparatus and also improve control voltage, linearity in a moving distance and temperature characteristics by providing a plurality of strain generating units for coupling two holding means which hold relative flat boards on a fixed side and a moving side. CONSTITUTION:When a distance between two relative flat boards 5, 6 is to be set to a target value, first a resistance value of a variable resistor VR3 is varied and set to set voltage corresponding to the target value. The set voltage is amplified 22 and output to adders 26 of control circuits of three strain generating units 15 to be input to one of input terminals of comparators 27. Strain signals from respective strain gages 10 and temperature signals are input to the other input terminal of the comparators 27 at this time. Then a difference between potentials in both terminals is amplified 28 and driving voltage is applied to an electrostrictive element 8. At this time the element 8 stretches in proportion to the approximate voltage so that each strain generating unit 15 is stretched resulting in occurrence of a strain proportional to the stretch. The strain is detected by the strain gape 10 and fed back to the main control circuit. Thus the two relative flat boards 5, 6 can be correctly moved to the target value while their parallelism maintained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ファブリベロー型干渉計など移動距離が数μ
mの光学的装置、特に相対平面板の駆動機構に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is applicable to devices with a moving distance of several μm, such as a Fabry-Bello interferometer.
The present invention relates to an optical device of m, in particular to a driving mechanism of a relative plane plate.

(従来技術) 従来この種の駆動8!横として、■相対平面板間の気圧
を変化させることにより、屈折率を変え光路長を変化さ
せるもの、■純機械的に平行移動させ条もの、■相対平
面板自体を傾けるもの、■電歪素子または磁歪素子等に
より電気的に平行移動させるもの、などが用いられ、特
に■の電気的に平行移動させる手法は、ア)高速掃引が
可能、イ)小型化が可能でありスペース長との関係が得
やすい、つ)比較的安定度が高い、工)平行度の調整も
比較的簡単にできる、などの特徴があり、電歪素子等に
よりオープン制御する方法、および静電容量式位置セン
サの出力信号をフィードバックするクローズド制御など
が多用されている。
(Prior art) Conventionally, this type of drive 8! Horizontally, ■ those that change the refractive index and change the optical path length by changing the air pressure between the relative plane plates, ■ the ones that move the parallel plane purely mechanically, ■ the ones that tilt the relative plane plates themselves, and ■ the electrostrictive ones. Electrical parallel movement using elements or magnetostrictive elements, etc. are used. In particular, the method (2) of electrically moving parallel movement is a) capable of high-speed sweeping, b) miniaturization is possible, and has a small space length. It has the following characteristics: (1) relatively high stability; and (4) parallelism adjustment is relatively easy. Closed control, which feeds back the output signal of the controller, is often used.

(発明が解決しようとする課題) 上記従来の駆動機構のうち相対平面板間の気圧を変化さ
せ屈折率を変える方法は、気体の調圧装置が大がかりと
なり、また高速で気圧を変化させることが困難なため、
高速掃引が難しい、また、相対平面板自体を傾ける方法
は、駆動方法および支持方法に高度な技術が必要であり
、剛性および固有振動数が低下するため高速掃引が困難
である。
(Problems to be Solved by the Invention) Among the conventional drive mechanisms described above, the method of changing the refractive index by changing the air pressure between relative plane plates requires a large-scale gas pressure regulating device, and it is difficult to change the air pressure at high speed. Because it is difficult,
High-speed sweeping is difficult, and the method of tilting the relative plane plate itself requires advanced techniques for driving and supporting methods, and high-speed sweeping is difficult because the rigidity and natural frequency are reduced.

さらに、純機械的に平行移動させる方法は、装置全体が
大型化するとともに精度も比較的低く調整も困難で、光
学的な位置のフィードバックや、高速掃引が不可能であ
る、などの欠点があり、電歪素子等により駆動する方法
が多用されていた。しかしこの方法でも、電歪素子の印
加電圧と変位との関係が直線でなく、また、一定電圧を
印加していても、クリープ現象により変位が変動したり
、素子自身の温度係数が大きい欠点があった。また、静
電容量式位置センサの出力信号をフィードバックする方
法は、センサ自体の直線性、温度係数も低く、特に相対
平面板間の距離が大きい場合には静電容量も小さくなり
、この欠点も大きがった。
Furthermore, the method of purely mechanical translation has drawbacks such as the overall size of the device, relatively low precision and difficult adjustment, and the inability to provide optical position feedback or high-speed sweeping. , methods of driving using electrostrictive elements, etc. have been frequently used. However, even with this method, the relationship between the applied voltage and displacement of the electrostrictive element is not linear, and even if a constant voltage is applied, the displacement may fluctuate due to the creep phenomenon, and the temperature coefficient of the element itself is large. there were. In addition, the method of feeding back the output signal of a capacitive position sensor has the disadvantage that the linearity and temperature coefficient of the sensor itself are low, and the capacitance is also small, especially when the distance between relative plane plates is large. It got bigger.

本発明は、上記のような従来技術の欠点を解消するため
に創案されたものであり、小型で高速掃引が可能であり
、しかも制御電圧と移動距離の直線性や温度特性が高く
、高精度な相対平面板の駆動amを提供することを目的
とする。
The present invention was devised to eliminate the above-mentioned drawbacks of the conventional technology, and is compact and capable of high-speed sweeping, and has high linearity and temperature characteristics of control voltage and moving distance, and has high precision. It is an object of the present invention to provide a drive am for a relative plane plate.

(課題を解決するための手段) 上記の問題点を解決するために、本発明は二枚の相対平
面板の一方を固定し、他方の相対平面板を法線方向に移
動する駆動8!椙において、上記固定側相対平面板を保
持する保持手段と、上記移動側相対平面板を保持する保
持手段と、上記二つの保持手段を連結する複数の歪み発
生部と、信号印加時に上記二つの保持手段の距離を変え
る方向に伸縮する複数の電気−歪変換素子と、上記歪み
発生部に取付けられ、上記複数の歪み発生部の歪みを検
出する複数の歪みゲージと、上記二つの相対平面板間の
距離を目標値に設定する設定信号を与える設定手段と、
上記歪ゲージの出力信号を上記電気−歪変換素子の制御
信号にフィードバックするフィードバック回路とを設け
た。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a drive 8! that fixes one of two relative plane plates and moves the other relative plane plate in the normal direction. A holding means for holding the fixed side relative flat plate, a holding means for holding the movable side relative flat plate, a plurality of strain generating parts connecting the two holding means, and a a plurality of electro-strain converting elements that expand and contract in a direction that changes the distance of the holding means; a plurality of strain gauges that are attached to the strain generating section to detect strain in the plurality of strain generating sections; and the two relative plane plates. setting means for providing a setting signal for setting the distance between the two to a target value;
A feedback circuit is provided for feeding back the output signal of the strain gauge to the control signal of the electro-strain conversion element.

(作用) 本発明の駆動機構により二つの相対平面板間の距離を目
標値に設定する場合、設定手段により複数の電気−歪変
換素子に信号が印加され、二つの保持手段の距離を変え
る方向に伸縮しようとする。
(Function) When setting the distance between two relative plane plates to a target value by the drive mechanism of the present invention, a signal is applied to a plurality of electro-strain conversion elements by the setting means, and a direction in which the distance between the two holding means is changed is applied. Attempts to expand and contract.

この伸縮は歪み発生部により吸収され、歪み発生部に歪
みが生じる。この歪みは複数の歪みゲージにより検出さ
れ、その出力信号が、フィードバック回路により個々の
電気−歪変換素子の印加信号にフィードバックされ、二
つの相対平面板は平行度を保ちつつ、目標値に正確に移
動される。
This expansion and contraction is absorbed by the strain generating section, and distortion occurs in the strain generating section. This strain is detected by multiple strain gauges, and the output signal is fed back to the applied signal of each electro-strain conversion element by a feedback circuit, so that the two relative plane plates maintain parallelism and accurately reach the target value. will be moved.

(実施例) 本発明の相対平面板の駆動機構の一実施例を第1図ない
し第3図にて説明する。第1図は相対平面板の駆動機構
本体の縦断面図、第2図はそのA−A断面図を表す。
(Embodiment) An embodiment of the relative plane plate drive mechanism of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is a longitudinal cross-sectional view of the drive mechanism main body of the relative plane plate, and FIG. 2 is a cross-sectional view taken along the line A-A.

第1図において固定側相対平面板5および移動側相対平
面板6は、それぞれホルダ4およびホルダ2に光学的歪
みを生じないよう接着等の適当な方法で固定さており、
ホルダ4およびホルダ2は、各々ねじ12およびねLi
2によりボディ1に固定されている。ボディ1は同軸な
二つの円管を薄肉な三枚の瓦状の歪発生部15で連結し
た形状であり、下の円管の上面には、第2図に示すごと
く二枚の等しい形状の扇形スペーサ7が接着されている
。扇形スペーサ7の中央部には正方形の角穴が穿設され
ており、電歪素子8が嵌合されている。
In FIG. 1, the fixed relative plane plate 5 and the movable relative plane plate 6 are fixed by an appropriate method such as adhesive so as not to cause optical distortion in the holder 4 and the holder 2, respectively.
Holder 4 and holder 2 each have a screw 12 and a screw Li.
2 is fixed to the body 1. The body 1 has a shape in which two coaxial circular tubes are connected by three thin-walled tile-shaped strain generating parts 15, and the upper surface of the lower circular tube has two equally shaped plates as shown in Fig. 2. A fan-shaped spacer 7 is glued. A square hole is bored in the center of the fan-shaped spacer 7, into which the electrostrictive element 8 is fitted.

電歪索子8の他端は電歪素子8の断面よりやや大きいス
ペーサ9が接着され、設定ねじ11により電歪素子8の
軸方向に与圧を加えている。歪発生部15の外面に歪ゲ
ージ10と熱電対等の温度センサ14が取付けられてい
る。また、歪発生部15を保護するために、カバー3が
設けられている。
A spacer 9, which is slightly larger than the cross section of the electrostrictive element 8, is bonded to the other end of the electrostrictive cable 8, and pressurization is applied to the electrostrictive element 8 in the axial direction by a setting screw 11. A strain gauge 10 and a temperature sensor 14 such as a thermocouple are attached to the outer surface of the strain generating section 15. Further, a cover 3 is provided to protect the strain generating section 15.

また、第3図に主として一つの歪発生部15に関する制
御回路の概略を示す、破線で囲まれた部分は設定回路4
0である0本回路の構成と共にその作用について説明す
ると、固定抵抗R1,R2゜R3は歪ゲージ10と共に
平衡ブリッジを楕成し、可変抵抗VRIによりあらがし
め零点調整された歪みゲージ10からの出力信号は増幅
器3oにより増幅される。また温度センサ14からの出
力信号は増幅器21により増幅される。なお、増幅器2
1の増幅率は可変抵抗VR2により調節される。
Further, FIG. 3 shows an outline of a control circuit mainly related to one distortion generating section 15, and the part surrounded by a broken line is a setting circuit 4.
To explain the structure and operation of the circuit, the fixed resistors R1, R2°R3 form a balanced bridge together with the strain gauge 10, and the resistance from the strain gauge 10 whose zero point is adjusted by the variable resistor VRI is explained. The output signal is amplified by amplifier 3o. Further, the output signal from the temperature sensor 14 is amplified by the amplifier 21. In addition, amplifier 2
The amplification factor of 1 is adjusted by variable resistor VR2.

可変抵抗VR3により三つの歪発生部15の変位が同時
に設定されるべく、その設定電圧が増幅器22を介して
他の二つの歪発生部15に送られる。
In order to simultaneously set the displacements of the three distortion generating sections 15 by the variable resistor VR3, the set voltage is sent to the other two distortion generating sections 15 via the amplifier 22.

可変抵抗VR4,VR5,VR6により個々の歪発生部
の変位が調整されるべく、その設定電圧が増幅器23.
24.25を介してそれぞれ第1、第2、第3の歪発生
部15の制御回路に送られる。
In order to adjust the displacement of each distortion generating section by the variable resistors VR4, VR5, VR6, the set voltage is applied to the amplifier 23.
24 and 25 to the control circuits of the first, second, and third distortion generating sections 15, respectively.

切替えスイッチSがaの位置の場合、加算器26は三つ
の歪発生部の変位を同時に設定する可変抵抗VR3から
の設定電圧と、第1の歪発生部の変位のみを設定する可
変抵抗VR4からの設定電圧を加算する。比較器27は
増幅器20から出力された温度センサ14からの出力信
号が重畳された変位信号と、加算器26から出力された
設定信号が比較され、その差出力が増幅器28に出力さ
れる。増幅器28は比較器27からの差出力を、電歪素
子8を駆動するのに十分な電圧に増幅して、電歪素子8
を駆動する。また、本回路は本駆動機楕を透過後の光束
の強度を検出するフォトダイオド29と発信器30を有
しており、切替えスイッチSをCの位置にすることで、
この光学センサからの出力を設定信号として比較器27
に入力することもでき、スイッチSをbの位置にするこ
とで、上記手動設定信号に発信器30からの交番信号を
重畳することにより高速掃引を行うこともできる。
When the selector switch S is in position a, the adder 26 receives the set voltage from the variable resistor VR3 that simultaneously sets the displacement of the three distortion generating sections, and the set voltage from the variable resistor VR4 that sets only the displacement of the first distortion generating section. Add the set voltage of The comparator 27 compares the displacement signal outputted from the amplifier 20 on which the output signal from the temperature sensor 14 is superimposed, and the setting signal outputted from the adder 26, and outputs the difference output to the amplifier 28. The amplifier 28 amplifies the difference output from the comparator 27 to a voltage sufficient to drive the electrostrictive element 8.
to drive. In addition, this circuit has a photodiode 29 and a transmitter 30 that detect the intensity of the luminous flux after passing through the main driver ellipse, and by setting the changeover switch S to the position C,
A comparator 27 uses the output from this optical sensor as a setting signal.
By setting the switch S to position b, a high-speed sweep can be performed by superimposing an alternating signal from the transmitter 30 on the manual setting signal.

次に本発明の駆動機構の動作を説明すると、2枚の相対
平面板間の距離をある目標値に設定する場合、まず可変
抵抗VR3の抵抗値を変化させ、その目標値に対応する
設定電圧に設定する。この設定電圧は増幅器22により
増幅され、3つの歪発生部15の制御回路の加算器26
へ出力され、各歪発生部の比較器27の入力端子の一方
に入力される。この時各々の歪みゲージ10からの歪信
号および温度センサ14からの温度信号が比較器27の
入力端子の他方に入力される。これより両端子間の電位
差が駆動増幅機28により増幅され、電歪素子8に駆動
電圧が印加される。この時、電歪素子8はほぼ電圧に比
例してのびる方向に力を発生する。この力により各歪発
生部15は伸ばされて、その伸びに比例した歪が発生す
る。この歪を各歪発生部15に取付けられた歪みゲージ
10で検出し、本制御回路にフィードバックする。この
ようにして、比較器27の入力端子間の電位差が零にな
るまで電歪素子8に電圧が印加され、移動側相対平面板
が法線方向に移動する。
Next, to explain the operation of the drive mechanism of the present invention, when setting the distance between two relative plane plates to a certain target value, first change the resistance value of the variable resistor VR3, and then apply the set voltage corresponding to the target value. Set to . This set voltage is amplified by the amplifier 22, and the adder 26 of the control circuit of the three distortion generating sections 15
and is input to one of the input terminals of the comparator 27 of each distortion generating section. At this time, the strain signal from each strain gauge 10 and the temperature signal from the temperature sensor 14 are input to the other input terminal of the comparator 27. Thereby, the potential difference between both terminals is amplified by the drive amplifier 28, and a drive voltage is applied to the electrostrictive element 8. At this time, the electrostrictive element 8 generates a force in an extending direction substantially in proportion to the voltage. Each strain generating section 15 is stretched by this force, and a strain proportional to the stretch is generated. This strain is detected by strain gauges 10 attached to each strain generating section 15 and fed back to the main control circuit. In this way, a voltage is applied to the electrostrictive element 8 until the potential difference between the input terminals of the comparator 27 becomes zero, and the moving side relative plane plate moves in the normal direction.

ところが、各歪発生部15の電歪素子8、回路素子、歪
ゲージ10、温度センサ14の特性は異なるので、2枚
の相対平面板が平行を保ったまま移動するとは限らない
、その場合、本エタロン駆動v1楕を透過後の光路を検
出しながら可変抵抗VR4,VR5,VR6の抵抗値を
変化させ、各歪発生部15の加算器26に入力される設
定電圧を変化させる。これにより各歪発生部15を単独
に移動させることができ、2枚の相対平面板を平行に保
つことができる。
However, since the characteristics of the electrostrictive element 8, circuit element, strain gauge 10, and temperature sensor 14 of each strain generating section 15 are different, the two relative plane plates do not necessarily move while remaining parallel. While detecting the optical path after passing through the etalon drive v1 ellipse, the resistance values of the variable resistors VR4, VR5, and VR6 are changed, and the set voltage input to the adder 26 of each distortion generating section 15 is changed. As a result, each strain generating section 15 can be moved independently, and the two relative plane plates can be kept parallel.

なお、設定回路40は第3図の回路に限らず、第4図に
示す実施例のようにフォトダイオード29および発振器
31からの信号を入力した場合の相対平面板間の平行度
を保つために、個別に電圧調整部VR7およびVH2を
設けてもよい、また、第5図に示す実施例のように各歪
発生部の電圧調整部を歪ゲージの信号ラインに入れても
よい、さらに、最初の実施例およびその他の実施例の組
合わせも可能である。また、上記実施例ではアナログ素
子を用いて回路を制御したが、CPU等を用いてディジ
タル的に制御してもよい、また、上記実施例では電気−
歪変換素子として電歪素子を用いた場合を説明したが、
磁歪素子を用いることもできる。
Note that the setting circuit 40 is not limited to the circuit shown in FIG. 3, but can also be used to maintain parallelism between the relative plane plates when signals from the photodiode 29 and the oscillator 31 are inputted, as in the embodiment shown in FIG. , the voltage regulators VR7 and VH2 may be provided individually, or the voltage regulators of each strain generator may be connected to the signal line of the strain gauge as in the embodiment shown in FIG. Combinations of this embodiment and other embodiments are also possible. Further, in the above embodiment, the circuit was controlled using an analog element, but it may also be controlled digitally using a CPU or the like.
Although we have explained the case where an electrostrictive element is used as a strain conversion element,
A magnetostrictive element can also be used.

なお本実施例では、相対平面板の支持部材の温度信号を
フィードバックしているので温度特性がさらに向上し、
光学的センサよりの信号を設定信号とすることにより、
さらに高精度な位置制御が可能である。
In addition, in this example, since the temperature signal of the support member of the relative plane plate is fed back, the temperature characteristics are further improved.
By using the signal from the optical sensor as the setting signal,
Furthermore, highly accurate position control is possible.

また上記の実施例は、電歪素子に電圧を印加したときに
電歪素子が伸び、2枚の相対平面板の間隔が大きくなる
構造であるが、逆に電歪素子に電圧を印加したときに、
2枚の相対平面板の間隔が小さくなる構造にしてもよい
Furthermore, in the above embodiment, when a voltage is applied to the electrostrictive element, the electrostrictive element expands, and the gap between the two relative plane plates becomes large.However, conversely, when a voltage is applied to the electrostrictive element, To,
A structure may be adopted in which the distance between the two relative plane plates is reduced.

(発明の効果) 本発明のエタロン駆動機構によれば次のような効果を奏
する。
(Effects of the Invention) The etalon drive mechanism of the present invention provides the following effects.

イ)相対平面板の変位を歪みゲージで検出するため、感
度、直線性、温度特性が向上する。
b) Sensitivity, linearity, and temperature characteristics are improved because the displacement of the relative plane plate is detected using a strain gauge.

口)電気−歪変換素子を固定し、歪発生部に生じる歪み
を検出するため、印加電圧−歪の非直線性、クリーブ現
象、温度係数の悪さなど悪影響がなくなる。
Since the electro-strain conversion element is fixed and the strain generated in the strain generation part is detected, adverse effects such as applied voltage-strain nonlinearity, cleave phenomenon, and poor temperature coefficient are eliminated.

ハ)複数の電気−歪変換素子を単独で制御できるため、
平行度の調節が容易にできる。
c) Since multiple electro-strain conversion elements can be controlled independently,
Parallelism can be easily adjusted.

二)構造が簡素化され、小形化が可能になる。2) The structure is simplified and miniaturization is possible.

ホ)駆動源が電気−歪変換素子であるため高速掃引が可
能になる。
e) Since the driving source is an electro-strictive conversion element, high-speed sweeping is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は、本発明のエタロン駆動機構の一
実施例に係り、第1図は縦断面図、第2図は第1図にお
けるA−A横断面図、第3図は制御回路の概略図、第4
図および第5図は第3図の制御回路内の他の設定回路を
示す図である。 2.4:ホルダ 5:固定側相対平面板 6コ移動側相対平面板  8:電歪素子10:歪ゲージ
  15:歪発生部 VR3,VR4,VR5,VR6:可変抵抗29:フォ
トダイオード 特許出願人 株式会社 島津−1fr、−4−!i代理
人  弁理士 武石端彦−イ也?i名1じ弓H−rl 吊1日 第づ図 第5121
1 to 3 relate to an embodiment of the etalon drive mechanism of the present invention, in which FIG. 1 is a longitudinal sectional view, FIG. 2 is a cross-sectional view taken along line A-A in FIG. 1, and FIG. 3 is a control Schematic diagram of the circuit, 4th
5 and 5 are diagrams showing other setting circuits within the control circuit of FIG. 3. 2.4: Holder 5: Fixed side relative flat plate 6 Moving side relative flat plate 8: Electrostrictive element 10: Strain gauge 15: Strain generating section VR3, VR4, VR5, VR6: Variable resistor 29: Photodiode Patent applicant Shimadzu Corporation -1fr, -4-! i Agent Patent Attorney Hajiko Takeishi - Iya? i Name 1ji Bow H-rl Hanging 1st Day Figure No. 5121

Claims (1)

【特許請求の範囲】[Claims] 二枚の相対平面板を固定し、他方の相対平面板を法線方
向に移動する駆動機構において、上記固定側相対平面板
を保持する保持手段と、上記移動側相対平面板を保持す
る保持手段と、上記二つの保持手段を連結する複数の歪
み発生部と、上記二つの保持手段間に配置され、信号印
加時に上記二つの保持手段の距離を変える方向に伸縮す
る複数の電気−歪変換素子と、上記複数の歪み発生部に
取付けられ、上記歪み発生部の歪みを検出する複数の歪
みゲージと、上記二つの相対平面板間の距離を目標値に
設定する設定手段と、上記歪ゲージの出力信号を上記電
気−歪変換素子の制御信号にフィードバックするフィー
ドバック回路とを有することを特徴とする相対平面板の
駆動機構。
In a drive mechanism that fixes two relative plane plates and moves the other relative plane plate in the normal direction, holding means holds the fixed side relative plane plate and holding means holds the movable side relative plane plate. , a plurality of strain generating parts connecting the two holding means, and a plurality of electro-strain conversion elements arranged between the two holding means and expanding and contracting in a direction that changes the distance between the two holding means when a signal is applied. a plurality of strain gauges attached to the plurality of strain generating parts to detect strain in the strain generating parts; a setting means for setting a distance between the two relative plane plates to a target value; A driving mechanism for a relative flat plate, comprising a feedback circuit that feeds back an output signal to a control signal for the electro-strain conversion element.
JP17160090A 1990-06-28 1990-06-28 Mechanism for driving relative flat board Pending JPH0460428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17160090A JPH0460428A (en) 1990-06-28 1990-06-28 Mechanism for driving relative flat board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17160090A JPH0460428A (en) 1990-06-28 1990-06-28 Mechanism for driving relative flat board

Publications (1)

Publication Number Publication Date
JPH0460428A true JPH0460428A (en) 1992-02-26

Family

ID=15926176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17160090A Pending JPH0460428A (en) 1990-06-28 1990-06-28 Mechanism for driving relative flat board

Country Status (1)

Country Link
JP (1) JPH0460428A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127445A (en) * 2005-11-01 2007-05-24 Olympus Corp Etalon device and method of manufacturing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02136722A (en) * 1988-11-17 1990-05-25 Hitachi Zosen Corp High speed light frequency modulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02136722A (en) * 1988-11-17 1990-05-25 Hitachi Zosen Corp High speed light frequency modulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127445A (en) * 2005-11-01 2007-05-24 Olympus Corp Etalon device and method of manufacturing same

Similar Documents

Publication Publication Date Title
EP0556041B1 (en) Compact laser probe for profilometry
JP5489538B2 (en) Force sensor
US4876524A (en) Six-axis joystick control
CN111510019B (en) Two-dimensional rapid deflection adjusting device and method with sensing signal leveling function
CN107393599A (en) Integrate the quick deflection platform of two dimension and method of sensing unit and confinement element
JPS60147682A (en) Minute motion operating device
EP0983481A2 (en) Two piece mirror arrangement for interferometrically controlled stage
JPH0460428A (en) Mechanism for driving relative flat board
CN106950673B (en) Unbalanced optical fiber Michelson interferometer arm length adjusting device
EP0702205A2 (en) Interferometer
JP4901533B2 (en) Force sensor, load detection device, and shape measurement device
CN103712553A (en) Interference method with phase method and vertical scanning method compatible
JP5218257B2 (en) Drive device
EP0013179A1 (en) Light processing apparatus
JPH03293565A (en) Pwm electrostatic servo type accelerometer
CN207689751U (en) A kind of quick beat speculum of two dimension
CN117781851B (en) Multistage correction method for closed-loop piezoelectric driving phase shifter
JPH06241899A (en) Etalon driving mechanism
JPH04140690A (en) Stage micromotion mechanism
CN110375642B (en) Piezoelectric ceramic control device for interferometer and control method thereof
JPH06241898A (en) Etalon driving mechanism
Takeshita et al. Development of a piezo-driven mechanical stage integrated microdisplacement sensor for calibration of displacements
JP3707700B2 (en) Optical position detector
KR20150076086A (en) Precision return actuator
SU1520484A1 (en) Actuating mechanism for linear displacement