JPH0460228B2 - - Google Patents

Info

Publication number
JPH0460228B2
JPH0460228B2 JP2396385A JP2396385A JPH0460228B2 JP H0460228 B2 JPH0460228 B2 JP H0460228B2 JP 2396385 A JP2396385 A JP 2396385A JP 2396385 A JP2396385 A JP 2396385A JP H0460228 B2 JPH0460228 B2 JP H0460228B2
Authority
JP
Japan
Prior art keywords
dielectric
substrate
measuring
sample
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2396385A
Other languages
Japanese (ja)
Other versions
JPS61182582A (en
Inventor
Yohei Ishikawa
Hiroaki Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2396385A priority Critical patent/JPS61182582A/en
Publication of JPS61182582A publication Critical patent/JPS61182582A/en
Publication of JPH0460228B2 publication Critical patent/JPH0460228B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、誘電体板の比誘電率を測定する方
法およびこの方法で用いる測定器具に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for measuring the relative permittivity of a dielectric plate and a measuring instrument used in this method.

(従来の技術) いま、特開昭56−57302号公報に開示されてい
るように、複数の誘電体同軸TEM共振器と、一
枚の誘電体基板にコンデンサ電極を設けたものと
を有し、各共振器の中心導体がコンデンサ電極に
接続されることにより段間結合を得ているフイル
タがある。
(Prior art) As disclosed in Japanese Unexamined Patent Publication No. 56-57302, a TEM has a plurality of dielectric coaxial TEM resonators and a capacitor electrode provided on a single dielectric substrate. There is a filter in which inter-stage coupling is obtained by connecting the center conductor of each resonator to a capacitor electrode.

このようなフイルタで用いられる誘電体基板の
採用にあつてはその比誘電率を知る必要があつ
た。
When employing a dielectric substrate for use in such a filter, it was necessary to know its relative dielectric constant.

従来は、試料基板の両面に適当な寸法形状の電
極を設てコンデンサを構成し、この静電容量を測
定することにより、比誘電率を求めていた。
Conventionally, a capacitor was constructed by providing electrodes of appropriate dimensions and shapes on both sides of a sample substrate, and the relative permittivity was determined by measuring the capacitance.

しかしこの方法だと、測定周波数が通常〜
10MHz程度までであり、実際に使われる1000MHz
近い周波数域で呈する比誘電率と異なるおそれが
ある。誘電体基板を適当な寸法に成形し電極を
形成する必要があり、破壊試験となるし、測定結
果を得るのに時間がかる。測定精度についても
1%程度の誤差がある。
However, with this method, the measurement frequency is usually ~
Up to about 10MHz, 1000MHz actually used
There is a possibility that the relative permittivity is different from that exhibited in a similar frequency range. It is necessary to mold the dielectric substrate to appropriate dimensions and form electrodes, which results in a destructive test, and it takes time to obtain measurement results. There is also an error of about 1% in measurement accuracy.

(発明が解決しようとする問題点) それゆえに、この発明の目的は、誘電体板の比
誘電率の測定を、非破壊、迅速、高精度で行なう
ことである。
(Problems to be Solved by the Invention) Therefore, an object of the present invention is to measure the dielectric constant of a dielectric plate non-destructively, quickly, and with high precision.

また、この発明の目的は、このような方法を採
用できる測定器具を提供することである。
Another object of the invention is to provide a measuring instrument that can employ such a method.

(問題点を解決するための手段) すなわち、この発明は、二つの誘電体共振器の
軸方向を揃えて対向させ、TE01δモード共振を使
用して得られた電界強度分布の停留点に試料板を
挿入して共振周波数の変化を測定することにより
比誘電率を求めることを特徴とする、誘電体板の
比誘電率測定方法である。
(Means for Solving the Problem) That is, the present invention arranges two dielectric resonators with their axes aligned and facing each other, and aligns the axial directions of two dielectric resonators with each other, and sets the stationary point of the electric field intensity distribution obtained using TE 01 δ mode resonance. This is a method for measuring the dielectric constant of a dielectric plate, which is characterized in that the dielectric constant is determined by inserting a sample plate and measuring the change in resonance frequency.

また、この発明は、二つの誘電体共振器の軸方
向を揃えて対向した状態でケース内に固定した
TE01δモード共振系、得られた電界強度分布の停
留点に試料板を位置させる手段、試料板の有無に
よる共振周波数変化を知る手段とを有することを
特徴とする、誘電体板の比誘電率測定器具であ
る。
In addition, this invention provides a method for fixing two dielectric resonators in a case with their axes aligned and facing each other.
TE 01 Relative permittivity of a dielectric plate, characterized by having a δ-mode resonance system, means for positioning a sample plate at a stopping point of the obtained electric field intensity distribution, and means for determining the change in resonance frequency depending on the presence or absence of a sample plate. It is a rate measuring instrument.

(実施例) 第1図は、この発明に関する測定器具の要部を
示す図である。図において、1は金属ケース、2
は誘電体共振器、3は保持台である。ケース1は
内部に円柱状空間を有しそれと同心状に保持台3
を固定し、その上に共振器2を固定している。ケ
ース1の上面は開口している。このような構成物
の上方にも同様な構成物を向い合せに位置させ
る。11はケース1と同様の金属ケース、12は
共振器と同様の誘電体共振器、13は保持台3と
同様の保持台である。このように共振器2と12
がそれぞれの非保持台固定側同士を対向させてい
るのが特徴である。共振器2,12は、たとえば
いずれも円柱状の形状でTE01δモード共振を利用
するものとする。上側のケース11には入出力結
合手段14,15が設られており、共振周波数測
定器16に接続されている。入出力結合手段1
4,15は図示のような結合棒や、あるいは結合
ループを用いる。ケース1,11間にはギヤツプ
があり、ここに試料である誘電体基板17が挿入
されて一時的に適当な保持台(図ではシンボル的
に符号18で表わしている)で保持されるものと
する。この保持位置は、共振器2と12との中間
にある。
(Example) FIG. 1 is a diagram showing the main parts of a measuring instrument related to the present invention. In the figure, 1 is a metal case, 2
is a dielectric resonator, and 3 is a holding stand. The case 1 has a cylindrical space inside and a holding base 3 concentrically therewith.
is fixed, and the resonator 2 is fixed thereon. The top surface of the case 1 is open. Above such a structure, a similar structure is placed facing each other. 11 is a metal case similar to case 1; 12 is a dielectric resonator similar to the resonator; and 13 is a holder similar to holder 3. In this way, resonators 2 and 12
The feature is that the fixed sides of the non-holding bases are facing each other. It is assumed that the resonators 2 and 12 are both cylindrical in shape, for example, and utilize TE 01 δ mode resonance. The upper case 11 is provided with input/output coupling means 14 and 15, and is connected to a resonance frequency measuring device 16. Input/output coupling means 1
4 and 15 use connecting rods or connecting loops as shown. There is a gap between cases 1 and 11, into which a dielectric substrate 17, which is a sample, is inserted and temporarily held on a suitable holding stand (symbolically represented by numeral 18 in the figure). do. This holding position is intermediate between resonators 2 and 12.

このような構造の共振系に、基板17を挿入す
ると、共振周波数はわずかに変化するが、それは
次式であらわされる。
When the substrate 17 is inserted into a resonant system having such a structure, the resonant frequency changes slightly, which is expressed by the following equation.

−δω/ω=(ε2−ε0)∫v21・〓2dv/ε0∫|
12dv ここで、ωは、基板17を挿入る前の共振系の
共振角周波数、δωは、基板17を挿入したこと
による共振系の共振角周波数の変化量、ε0は真空
の誘電率、ε2は基板17の比誘電率εrと真空の誘
電率ε0の積、E1は基板17挿入前の電場ベクト
ル、〓2は基板17挿入後の電場ベクトル、V2
基板17の体積をそれぞれ表わす。いま、基板1
7の挿入の前後で電界分布が変化しないとすれ
ば、共振系全体にたくわえられるエネルギーと基
板17にたくわえられるエネルギーの比に(εr−
1)をかけたものが、周波数摂動比になるから共
振周波数の変化を測定することにより、基板17
の比誘電率が求められる。よりくわしくのべると
いま基準となずべき比誘電率のわかつている基板
がありその基板の周波数摂動比は共振周波数の変
化を測定することによつて求められる。いまこの
値を−δω1/ωとする。いま試料板を挿入したとき の周波数摂動比の値を−δω2/ωとすると、 ∫v21・〓2dv/∫|〓12dvは基準基板のときも試
料基板の ときも不変であるから、 δω2/δω1=εr2 -1/εr1 -1となる。
−δω/ω=(ε 2 −ε 0 )∫ v21・〓 2 dv/ε 0 ∫|
1 | 2 dv Here, ω is the resonant angular frequency of the resonant system before inserting the substrate 17, δω is the amount of change in the resonant angular frequency of the resonant system due to inserting the substrate 17, and ε 0 is the change in the resonant angular frequency of the resonant system before inserting the substrate 17. The dielectric constant, ε 2 is the product of the relative dielectric constant εr of the substrate 17 and the permittivity of vacuum ε 0 , E 1 is the electric field vector before the substrate 17 is inserted, 〓 2 is the electric field vector after the substrate 17 is inserted, V 2 is the substrate 17 represents the volume of each. Now, board 1
Assuming that the electric field distribution does not change before and after the insertion of 7, the ratio of the energy stored in the entire resonant system to the energy stored in the substrate 17 is (εr−
1) is the frequency perturbation ratio, so by measuring the change in the resonant frequency, the substrate 17
The relative permittivity of is determined. In more detail, there is a substrate whose dielectric constant is known to serve as a reference, and the frequency perturbation ratio of that substrate can be found by measuring changes in the resonance frequency. Let this value be −δω 1 /ω. Now, if the value of the frequency perturbation ratio when the sample plate is inserted is −δω 2 /ω, then ∫v 21・〓 2 dv/∫|〓 12 dv is the same for both the reference substrate and the sample substrate. Since it is unchanged, δω 2 /δω 1 = εr 2 -1 /εr 1 -1 .

ここで、εr1は基準基板の比誘電率、εr2は試料
基板の比誘電率である。
Here, ε r1 is the relative permittivity of the reference substrate, and ε r2 is the relative permittivity of the sample substrate.

このような比誘電率測定法は、製品毎のバラツ
キを管理するときに好適なものといえる。つまり
必要とする比誘電率の許容幅が定められていると
き、この許容幅を共振周波数の変化許容幅におき
かえておき、試料を挿入したときにこの変化許容
幅内の共振周波数変化を示すものだけ選ぶといつ
た作業方法をとることができ能率がよい。
Such a dielectric constant measurement method can be said to be suitable for managing variations among products. In other words, when the required allowable range of dielectric constant is determined, this allowable range is replaced with the allowable change range of the resonant frequency, and when a sample is inserted, the resonant frequency changes within this allowable change range. If you choose just the right method, you can use a more efficient work method.

なお、試料の誘電率は、上述のようにして求め
た比誘電率に真空の誘電率をかけることによつて
求められる。
Note that the dielectric constant of the sample is determined by multiplying the dielectric constant determined as described above by the dielectric constant of vacuum.

また、試料の誘電体損失(tanδ)も、上述の測
定器具を用いて測定することが可能であり、それ
は次式による。
Further, the dielectric loss (tan δ) of the sample can also be measured using the above-mentioned measuring instrument, and is determined by the following equation.

tanδ=(1/Q0 1−1/Q0)ω/δω ここで、Q0は試料挿入前の共振系の無負荷Q,
Q0 1は試料挿入後の共振系の無負Qである。
tanδ=(1/Q 0 1 −1/Q 0 )ω/δω Here, Q 0 is the unloaded Q of the resonant system before inserting the sample,
Q 0 1 is the non-negative Q of the resonant system after inserting the sample.

このようにして試料の誘電率ε2と誘電体損失
tanδが求められると、複素誘電率εはε=ε2(1
−jtanδ)から求められることになる。
In this way, the dielectric constant ε 2 and dielectric loss of the sample are
Once tanδ is determined, the complex permittivity ε is ε=ε 2 (1
−jtanδ).

なお、上述の測定器具を用いると、TE01δモー
ドにおける各共振器2,12の軸方向の電界強度
の強さは第2図に示すとおり共振器2,12間の
ギヤツプ部分では軸方向で変化しないから挿入位
置のバラツキによる測定誤差が少ないという利点
がある。
In addition, when using the above-mentioned measuring instrument, the strength of the electric field strength in the axial direction of each resonator 2 and 12 in the TE 01 δ mode is as shown in Fig. 2 in the gap part between the resonators 2 and 12. Since it does not change, it has the advantage that there is little measurement error due to variations in the insertion position.

(効 果) 以上の実施例からもあきらかなようにこの発明
によると、誘電体板の比誘電率εr(必要に応じ誘
電率ε2や複素誘電率εも)が非破壊、高速で測定
できる。
(Effects) As is clear from the above examples, according to the present invention, the relative permittivity εr (as well as the permittivity ε2 and complex permittivity ε, if necessary) of a dielectric plate can be measured non-destructively and at high speed. .

また、この発明によると、誘電体板のマイクロ
波領域での比誘電率を正確に測定することができ
る。
Further, according to the present invention, it is possible to accurately measure the dielectric constant of a dielectric plate in the microwave region.

さらに、この発明によると、再現性の良い、す
なわち測定誤差の小さい測定ができる。
Furthermore, according to the present invention, it is possible to perform measurements with good reproducibility, that is, with small measurement errors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に関する測定器具の要部を示
す図、第2図は電界分布を示す図。 1,11は金属ケース、2,12は誘電体共振
器、17は誘電体基板。
FIG. 1 is a diagram showing the main parts of a measuring instrument related to the present invention, and FIG. 2 is a diagram showing the electric field distribution. 1 and 11 are metal cases, 2 and 12 are dielectric resonators, and 17 is a dielectric substrate.

Claims (1)

【特許請求の範囲】 1 二つの誘電体共振器の軸方向を揃えて対向さ
せ、TE01δモード共振を使用して得られた電界強
度分布の停留点に試料板を挿入して共振周波数の
変化を測定することにより比誘電率を求めること
を特徴とする、誘電体板の比誘電率測定方法。 2 二つの誘電体共振器の軸方向を揃えて対向し
た状態でケース内に固定したTE01δモード共振
系、得られた電界強度分布の停留点に試料板を位
置させる手段、試料板の有無による共振周波数変
化を知る手段とを有することを特徴とする、誘電
体板の比誘電率測定器具。
[Claims] 1. Two dielectric resonators are placed facing each other with their axes aligned, and a sample plate is inserted into the stationary point of the electric field strength distribution obtained using TE 01 δ mode resonance to determine the resonant frequency. A method for measuring the relative permittivity of a dielectric plate, characterized by determining the relative permittivity by measuring changes. 2 TE 01 δ mode resonance system fixed in the case with two dielectric resonators aligned and facing each other, means for positioning the sample plate at the stopping point of the obtained electric field strength distribution, presence or absence of the sample plate 1. A device for measuring the relative dielectric constant of a dielectric plate, characterized in that it has a means for determining a change in resonance frequency due to the change in resonance frequency.
JP2396385A 1985-02-08 1985-02-08 Method and instrument for measuring dielectric constant of dielectric plate Granted JPS61182582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2396385A JPS61182582A (en) 1985-02-08 1985-02-08 Method and instrument for measuring dielectric constant of dielectric plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2396385A JPS61182582A (en) 1985-02-08 1985-02-08 Method and instrument for measuring dielectric constant of dielectric plate

Publications (2)

Publication Number Publication Date
JPS61182582A JPS61182582A (en) 1986-08-15
JPH0460228B2 true JPH0460228B2 (en) 1992-09-25

Family

ID=12125202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2396385A Granted JPS61182582A (en) 1985-02-08 1985-02-08 Method and instrument for measuring dielectric constant of dielectric plate

Country Status (1)

Country Link
JP (1) JPS61182582A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4599251B2 (en) * 2005-08-26 2010-12-15 東光株式会社 Dielectric constant measurement jig for dielectric substrate
DE102009005468B4 (en) * 2009-01-21 2019-03-28 Rohde & Schwarz Gmbh & Co. Kg Method and device for determining the microwave surface resistance
CN104820136B (en) * 2015-04-17 2017-01-11 江苏大学 Device and method for rapidly measuring dielectric constant of crop leaf
JP7113427B2 (en) * 2018-09-26 2022-08-05 横河電機株式会社 Measuring device and measuring method

Also Published As

Publication number Publication date
JPS61182582A (en) 1986-08-15

Similar Documents

Publication Publication Date Title
Sheen Study of microwave dielectric properties measurements by various resonance techniques
US3400331A (en) Gaging device including a probe having a plurality of concentric and coextensive electrodes
US5583432A (en) Electrical method and apparatus for non-contact determination of physical and/or chemical properties of a sample, particularly of blood
US9287606B2 (en) Dual-mode microwave resonator device and method of electron spin resonance measurement
US3028548A (en) Measurement of capacitivity of materials
Wiegers et al. Comparison of some glass thermometers at low temperatures in a high magnetic field
JPH0460228B2 (en)
Broadhurst et al. Two-terminal dielectric measurements up to 6× 108 Hz
Bussey et al. International comparison of dielectric measurements
Dube et al. Dielectric Measurements on High‐Q Ceramics in the Microwave Region
Horsley et al. Measurement of dispersion and interaction impedance characteristics of slow-wave structures by resonance methods
Fiedziuszko et al. Dielectric resonator used as a probe for high T/sub c/superconductor measurements
Cadez et al. Measuring high mechanical quality factors of bodies made of bare insulating materials
JP3289398B2 (en) Method and apparatus for measuring relative permittivity of dielectric plate
JP2501545Y2 (en) Dielectric substrate measuring device
JP3580695B2 (en) Method for measuring dielectric constant and magnetic permeability
US20230152360A1 (en) Device and method for measuring microwave surface resistance of dielectric conductor deposition interface
SU1737327A1 (en) Device for measuring parameters of dielectrics at superhigh frequencies
JP2504986Y2 (en) Dielectric substrate measuring device
SU578603A1 (en) Thref-electrode sensor
SU868662A1 (en) Method of measuring magnetic permeability of ferromagnetic liquid materials
US3437922A (en) Microwave dimensional measuring apparatus and method
CN2205554Y (en) Multifunction radio-frequency capacity water measurer
Andreev et al. Measurement of the dielectric properties of paratellurite at microwaves using a biconical resonator
RU1529873C (en) Method and apparatus for gaging thickness of hollow non-magnetic articles with difficult access into cavity

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term