JPH0459891A - Industrial production of biocoal - Google Patents

Industrial production of biocoal

Info

Publication number
JPH0459891A
JPH0459891A JP17209990A JP17209990A JPH0459891A JP H0459891 A JPH0459891 A JP H0459891A JP 17209990 A JP17209990 A JP 17209990A JP 17209990 A JP17209990 A JP 17209990A JP H0459891 A JPH0459891 A JP H0459891A
Authority
JP
Japan
Prior art keywords
biomass
hopper
product
coal
biocoal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17209990A
Other languages
Japanese (ja)
Inventor
Hideo Murakami
英穂 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP17209990A priority Critical patent/JPH0459891A/en
Publication of JPH0459891A publication Critical patent/JPH0459891A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

PURPOSE:To perform mass-production of biocoal on an industrial scale by subjecting powdered coal and a biomass to secondary crushing under specific condition, inserting a suction pipe into a product hopper to a part near the bottom of the hopper, and instantaneously and continuously returning the dust to the production process, etc. CONSTITUTION:Powdered coal and a biomass are dried with driers 9, 8. The dried biomass is pneumatically transferred by sucking the hot air of the drier, sieved with a sieve 14 to remove small sand particles and biomass powder finer than 3mm diameter, and is charged to an impact-rod secondary crusher 15 for biomass and mixed with the powdered coal to obtain the objective biocoal. Large-diameter table feeders are used as the feeders 23, 24 under a powdered coal storage hopper 21 and a biomass powder storage hopper 22. A suction tube 34 is inserted into a product hopper 33 to a part near the bottom of the hopper and air is sucked to effect on the cooling of the formed product, collection of dust and prevention of moisture condensation. Dust and burr generated in the forming machine 29, a bucket elevator 30, the product hopper 33, etc., are instantaneously returned to the production process without temporarily storing in the hopper.

Description

【発明の詳細な説明】 本発明はバイオコールの工業的製法に係わるものである
。バイオコールは北海道立工業試験場が開発した石炭・
バイオマス系複合固型燃料である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an industrial method for producing biocoal. Biocoal is a coal developed by the Hokkaido Industrial Research Institute.
It is a biomass-based composite solid fuel.

バイオコールは着火性が良い、燃焼時のばい煙が少ない
、灰分が少ないという特性を有し、且つバインダーを用
いないで成型可能なので安価である、低品位炭や木質廃
材を利用できるので雀資源となる等の特長から、注目を
集めている断固型燃料である。
Biocoal has the characteristics of good ignitability, low smoke when burned, and low ash content. It is also inexpensive because it can be molded without using a binder. It is also an excellent resource as it can use low-grade charcoal and wood waste. It is a decisive fuel that is attracting attention due to its characteristics such as:

発展途上国では燃料として薪炭を使用するため森林破壊
が進みつつあり、環境保全の点から特に有効な新燃料と
して期待されている。
Deforestation is progressing in developing countries due to the use of firewood and charcoal as fuel, and it is expected that this new fuel will be particularly effective from the standpoint of environmental conservation.

バイオコールの製法の概要フローシートは第1図の通り
である。但し1図中の数値は標準値とする。
The outline flow sheet for the production of Biocoal is shown in Figure 1. However, the values in Figure 1 are standard values.

石炭、バイオマスを共に各適正水分量になるまで乾燥さ
せてから、それぞれ約3mm以下になるまで粉砕する。
Both coal and biomass are dried until they have appropriate moisture content, and then crushed until each has a particle size of about 3 mm or less.

その後、標準的な配合比を石炭70〜75%ニバスオマ
ス25〜30%(重量比)として混合した後、加圧成型
する。成型燃料の破壊強度は輸送。
Thereafter, after mixing at a standard blending ratio of 70 to 75% coal and 25 to 30% (weight ratio), the mixture is press-molded. The fracture strength of molded fuel is determined by transportation.

取扱時の破壊・粉化防止のため100kgf以上とする
Must be 100kgf or more to prevent destruction and powdering during handling.

以上が、製法の概要であるが、工業的量産の見地からは
以下の点が重要となってくる。バイオコールの原料はそ
れぞれ、基本的には、そのままで燃料となし得る石炭及
びバイオマスであり、それらに乾燥、粉砕混倉、加圧成
型という処理を施して、複素固型燃料とするのであるか
ら、前述のような多くの特長を有する点を勘案するにし
ても、生産効率を上げ、その製造コストを極力低く押さ
える必要がある二とである。又1発熱量が大きく具なる
二原料を用いて、如何に設定した一定の発熱量を有する
成型燃料を量産するかということである。
The above is an overview of the manufacturing method, but from the standpoint of industrial mass production, the following points are important. The raw materials for biocoal are basically coal and biomass that can be used as fuel as they are, and they are processed to dry, crush, and pressurize to form a complex solid fuel. Even taking into account the many features mentioned above, there is a need to increase production efficiency and keep manufacturing costs as low as possible. Another issue is how to mass-produce molded fuel having a predetermined calorific value using two raw materials with a large calorific value.

又、バインダーを用いないで、如何に一定以上の破壊強
度を有する成型燃料を安定的に量産するかということで
ある。
Another issue is how to stably mass-produce molded fuel having a breaking strength above a certain level without using a binder.

上述の件に関して、発明者は、初めて且つ唯一のバイオ
コール商業的製造工場の操業経験を通じて。
Regarding the above matter, the inventor through his experience in operating the first and only biocoal commercial manufacturing plant.

以下に列記する諸点に問題がある事を見い出した。We found that there were problems with the points listed below.

第一に、原料の乾燥にかかるエネルギー量が大きく、製
造コストの上昇の一因となっている点である。
First, the amount of energy required to dry the raw materials is large, which is a factor in increasing manufacturing costs.

第二に、乾燥バイオマス粉を全量、バイオマス二次粉砕
機に投入する方法では、バイオマス粉中に混入している
小砂により、バイオマス二次粉砕機のカッターの摩耗が
激しく、補修のための操業停止損失が大きくなり、かつ
補修費額が大で製造コストに大きく影響する。
Second, with the method of feeding the entire amount of dry biomass powder into the secondary biomass pulverizer, the small sand mixed in the biomass powder causes severe wear on the cutter of the secondary biomass pulverizer, resulting in the suspension of operation for repairs. Losses will be large, and repair costs will be large, which will greatly affect manufacturing costs.

第三に、バイオマス二次粉砕機として、−船釣なカッタ
ー式ハンマクラッシャを用いるとバイオマス繊維を切断
して粉砕するので、バイオマス繊維のアスペクト比(細
長比)が小となり、バイオコールの破壊強度が低下して
しまう。
Thirdly, if a cutter-type hammer crusher (on a boat) is used as a secondary biomass crusher, the biomass fibers are cut and crushed, so the aspect ratio (slenderness ratio) of the biomass fibers becomes small, which reduces the breaking strength of biocoal. will decrease.

バイオコールはバインターを用いないで成型するので、
バイオマス繊維の絡み合いが破壊強度の向上に果す役割
は大きく、この点に於いて、バイオマス繊維を切断し短
かくする粉砕方式は好ましい方式でない。
Biocoal is molded without using binder, so
The entanglement of biomass fibers plays a large role in improving the breaking strength, and in this respect, a pulverization method that cuts the biomass fibers to shorten them is not a preferable method.

第四に1石炭、バイオマスは粉砕後、各貯留ホッパーに
入れ、配合比に従って、それぞれ切り出され、次工程に
送られるが、この際、−船釣なスクリューフィーダでは
、ホッパー内ブリッジ発生による不連続排出により、配
合比に狂いが生じ、成型燃料の品質(発熱量、破壊強度
)に変動が生じてしまうという欠点がある。
Fourthly, after the coal and biomass are crushed, they are placed in each storage hopper, cut out according to the mixing ratio, and sent to the next process. Discharge has the disadvantage that the blending ratio is disturbed and the quality (calorific value, breaking strength) of the molded fuel varies.

第五に、成型後に製品ホッパーに入れられたバイオコー
ルからは、成型熱により水蒸気が発散されるが、それが
ホッパー壁面に結露し、バイオコールを濡らして形状を
崩したり、破壊強度を小さくしてしまうという欠点があ
り、特に寒冷期に著しい。
Fifth, water vapor is released from the biocoal placed in the product hopper after molding due to the heat of molding, but this condenses on the hopper wall and wets the biocoal, causing it to lose its shape and reduce its breaking strength. The disadvantage is that it tends to get wet, especially in the cold season.

第六に、成型機、バケットエレベータ−1製品ホッパー
、袋詰機から発生する粉塵、バリを集塵し、ホッパーに
回収して貯留し、時期を見計って工程に再投入する方法
では、これらの大量混入により、成型燃料の品質に変動
が生じるという欠点がある。
Sixth, in the method of collecting dust and burrs generated from the molding machine, bucket elevator-1 product hopper, and bagging machine, collecting and storing them in the hopper, and re-inputting them into the process at the appropriate time, The disadvantage is that the quality of the molded fuel varies due to the large amount of mixed in.

本発明はバイオコールを工業的に量産する場合に生じる
以上の問題を解決したものであり、バイオコールという
新複合個型燃料の特性に合致した工業的製法を提供しよ
うとするものである。
The present invention solves the problems that arise when industrially mass producing biocoal, and aims to provide an industrial production method that meets the characteristics of a new composite individual fuel called biocoal.

第2図は本発明の製造法の機器フローシートの一例であ
り、以下5図面に従って説明する。
FIG. 2 is an example of an equipment flow sheet for the manufacturing method of the present invention, which will be described below with reference to the five drawings.

原料石炭(l)、原料バイオマス(2)を各原料相から
パケットローダ−(3)により取り出し。
Raw coal (l) and raw material biomass (2) are taken out from each raw material phase by a packet loader (3).

それぞれ、石炭受入ホッパー(5)、バイオマス受人ホ
ッパー(4)に投入する。原料バイオマス(2)は第一
次粗砕処理を施されているものとする。ホッパーに投入
された原料石炭(1)、原料バイオマス(2)をそれぞ
れ1石炭は石炭フィードコンベア(7)を通じて石炭ド
ライヤ(9)へ。
The coal is charged into a coal receiving hopper (5) and a biomass receiving hopper (4), respectively. It is assumed that the raw material biomass (2) has been subjected to primary crushing treatment. One coal each of raw material coal (1) and raw material biomass (2) input into the hopper is sent to a coal dryer (9) through a coal feed conveyor (7).

及び、バイオマスはバイオマスフィードコンベア(6)
を通じてバイオマスドライヤ(8)へ投入する。各ドラ
イヤには熱風発生炉(12)で発生される熱風を導き、
各原料の乾燥処理を行なう、適正水分量まで乾燥させた
石炭を石炭排出スクリューコンベア(10)で排出した
後、石炭粉砕機(11)に投入し、粒径3wa以下に粉
砕する。粉砕した粉炭を粉炭輸送ファン(18)で空気
輸送し、サイクロン(17)で回収した後、粉炭貯留ホ
ッパー(21)に入れる。同様に、適正水分量まで乾燥
させたバイオマス粉をバイオマスドライヤ排風ファン(
16)で空気輸送し、サイクロン(13)で回収した後
、篩分機(14)を通過させ、バイオマス二次粉砕機(
15)に投入し、粒径3mm以下に粉砕する。バイオマ
ス二次粉砕機(15)には衝動柱式クラッシャを採用す
る。
And biomass is biomass feed conveyor (6)
through the biomass dryer (8). The hot air generated by the hot air generating furnace (12) is guided to each dryer.
After drying each raw material to an appropriate moisture content, the coal is discharged by a coal discharge screw conveyor (10), and then fed into a coal pulverizer (11) and pulverized to a particle size of 3 wa or less. The pulverized pulverized coal is air-transported by a pulverized coal transport fan (18), collected by a cyclone (17), and then placed in a pulverized coal storage hopper (21). Similarly, biomass powder that has been dried to the appropriate moisture content is dried using a biomass dryer exhaust fan (
After being pneumatically transported in a cyclone (13) and collected in a cyclone (13), the biomass is passed through a sieve (14), and then a secondary biomass crusher (
15) and pulverized to a particle size of 3 mm or less. An impulse column crusher is adopted as the biomass secondary crusher (15).

粉砕したバイオマス粉をバイオマス粉輸送ファン(20
)で空気輸送し、サイクロン(19)で回収した後。
The crushed biomass powder is transported by a biomass powder transport fan (20
) and collected by a cyclone (19).

バイオマス粉貯留ホッパー(22)に入れる。粉炭貯留
ホッパー(21) 、バイオマス粉貯留ホッパー(22
)の各底部に径の大きいテーブルフィーダを採用した粉
炭フィーダ(23)及び、バイオマス粉フィーダ(24
)により各粉体を配合比に従って切り出し、搬送スクリ
ューコンベア(25)、搬送フライトコンベア(26)
、搬送投入コンベア(27)を通じて、混合機(28)
に投入する。混合機(28)で粉炭とバイオマス粉を均
買に混合した後、成型機(29)で加圧成型し、固型燃
料とする。成型燃料をバケットエレベータ(30)でト
ロンメル(31)に導き、成型の際のバリ取りを行なう
0分離したバリは再び混合機(28)に投入する。バリ
取りを行った成型燃料は製品コンベア(32)により、
製品ホッパー(33)に入れる。製品ホッパー(33)
内の、成型熱により発熱した成型燃料の冷却は、ホッパ
ー内に吸引管(34)をホッパー底面に近い位置まで挿
入しておき、製品冷却ブロア(35)で空気を吸引する
ことで行う。
Place it in the biomass powder storage hopper (22). Powdered coal storage hopper (21), biomass powder storage hopper (22)
) and the biomass powder feeder (24), which uses a table feeder with a large diameter at the bottom of the powder coal feeder (23).
), each powder is cut out according to the blending ratio, and transferred to a conveying screw conveyor (25) and a conveying flight conveyor (26).
, through the feeding conveyor (27), the mixer (28)
put it in. After pulverized coal and biomass powder are uniformly mixed in a mixer (28), they are pressurized and molded in a molding machine (29) to form a solid fuel. Molding fuel is led to a trommel (31) by a bucket elevator (30), and the separated burrs are fed into the mixer (28) again for deburring during molding. The deburred molded fuel is transferred to the product conveyor (32).
Place into product hopper (33). Product hopper (33)
The molding fuel generated by molding heat is cooled by inserting a suction pipe (34) into the hopper to a position close to the bottom of the hopper and sucking air with a product cooling blower (35).

その際、空気の導入はホッパー上面から行うので、流入
した空気は吸引管(34)に達するまでに、成型燃料間
を通過しながら熱を奪い、冷却すると同時に、成型燃料
から発散される水蒸気も吸引する。
At this time, since air is introduced from the top of the hopper, the incoming air passes through the molded fuel, absorbing heat and cooling it before reaching the suction pipe (34), and at the same time also absorbs water vapor emitted from the molded fuel. Suction.

製品ホッパー(33)の底部に設けた振動フィーダ(3
6)により冷却後の成型燃料を計量袋詰機(38)に供
給する。振動フィーダ(36)を成型燃料が通過する際
、さらに分離したバリを落下させる構造とする。バリ受
入ホッパー(37)に落下したバリは、バリ輸送ブロア
(42)で空気輸送し、サイクロン(41)で回収した
後、即時に工程に戻す、同様に、成型機(29)、バケ
ットエレベータ(30)、製品ホッパー(33) 、計
量袋詰機(38)で発生した粉塵は集塵ファン(39)
で空気輸送し、サイクロン(40)で回収した後、即時
に工程に戻す。
A vibrating feeder (3) installed at the bottom of the product hopper (33)
6), the cooled molded fuel is supplied to the measuring and bagging machine (38). When the molding fuel passes through the vibrating feeder (36), the structure is such that separated burrs are further dropped. The burrs that have fallen into the burr receiving hopper (37) are pneumatically transported by the burr transport blower (42), collected by the cyclone (41), and immediately returned to the process. 30), the product hopper (33), the dust generated by the weighing and bagging machine (38) is collected by the dust collection fan (39)
After being pneumatically transported and collected by a cyclone (40), it is immediately returned to the process.

本発明のバイオコールの工業的製法は以上の通りであり
、バイオコールという新複合固型燃料の特性に合致した
以下のような秀れた特長を有する。
The industrial method for producing biocoal of the present invention is as described above, and has the following excellent features that match the characteristics of a new composite solid fuel called biocoal.

第−点として、乾燥工程に多大のエネルギーを要する問
題に関しては、乾燥工程の効率を上げることにより、省
エネルギー化を行った。
As a third point, regarding the problem that the drying process requires a large amount of energy, energy saving was achieved by increasing the efficiency of the drying process.

即ち、石炭ドライヤ(9)で乾燥後、粉砕した粉炭、及
びバイオマスドライヤ(8)で乾燥したバイオマスを空
気輸送する際に、直接、各ドライヤの熱風を吸引させる
ことにより、気流乾燥効果を加えたことである。このこ
とにより、乾燥効率が向上し、省エネルギー上、極めて
有益であると共に、均一に乾燥されるという利点がある
That is, when the pulverized pulverized coal is dried in the coal dryer (9) and the biomass dried in the biomass dryer (8) is transported by air, the hot air from each dryer is directly sucked, thereby adding an air flow drying effect. That's true. This improves drying efficiency, which is extremely beneficial in terms of energy saving, and has the advantage of uniform drying.

乾燥の不均一により、水分量が規定値以上の原料が混入
すると、成型後のスプリングバックが大きくなり、破壊
強度が低い製品ができるが、この点に於いても解決され
る。
If raw materials with a water content higher than a specified value are mixed in due to uneven drying, springback after molding will increase, resulting in a product with low breaking strength, but this problem can also be solved.

第二点として、バイオマス二次粉砕機(15)の摩耗の
問題に関して、は、バイオマスドライヤ(8)で乾燥し
たバイオマスをバイオマスドライヤ(15)に投入する
前に篩分機(14)に通し、混入している小砂や既に粒
径3mm以下になっているバイオマス粉をバイパスさせ
るように、ラインを変更したことである。このことによ
り、バイオマス二次粉砕機(15)の摩耗は極めて小さ
くなり、操業停止損失。
As a second point, regarding the problem of wear of the biomass secondary crusher (15), before inputting the biomass dried in the biomass dryer (8) to the biomass dryer (15), the biomass is passed through a sieve machine (14) to prevent contamination. The line was changed so that it bypasses the small sand and biomass powder that is already less than 3mm in size. As a result, the wear of the biomass secondary crusher (15) is extremely small, resulting in no loss of operation.

補修費による製品コストの上昇を抑えることができる。It is possible to suppress increases in product costs due to repair costs.

又、第一次粗砕処理によって既に粒径3mm以下になっ
ているバイオマス粉をバイパスさせることにより、バイ
オマス二次粉砕機(15)の消費電力が小さくなり、省
エネルギー上の効果も大きい。
Furthermore, by bypassing the biomass powder whose particle size has already been reduced to 3 mm or less by the primary crushing process, the power consumption of the secondary biomass crusher (15) is reduced, and the energy saving effect is also significant.

第三点として、バイオマス二次粉砕機(15)に衝撃柱
式クラッシャを採用している点にある。
The third point is that an impact column type crusher is adopted as the biomass secondary crusher (15).

前述のように、バイオコールはバインダーを用いないで
成型するので、成型燃料の強度はバイオマス繊維の絡み
合いに依るところが大きい、従って、粉砕されたバイオ
マス粉の粒子形状に於いて、アスペクト比(細長比)が
重要であり、それが大きい程、強度の大きい成型燃料が
できるという特徴がある。その点に於いて、衝撃柱式ク
ラッシャは叩解方式であるので、粉砕過程で、アスペク
ト比を大きくする効果があると共に繊維を細断しないの
で成型燃料の破壊強度を向上する二とができるという特
長がある。
As mentioned above, since biocoal is molded without using a binder, the strength of the molded fuel largely depends on the entanglement of the biomass fibers. Therefore, in the particle shape of the pulverized biomass powder, the aspect ratio ) is important, and the larger it is, the stronger the formed fuel can be. In this respect, since the impact column type crusher uses a crushing method, it has the effect of increasing the aspect ratio during the crushing process, and it does not shred the fibers, so it has the two advantages of improving the fracture strength of the molded fuel. There is.

第四点として、粉炭貯留ホッパー(21)、バイオマス
粉貯留ホッパー(22)から、配合比に従った切り出し
を行わせる粉炭フィーダ(23)、バイオマス粉フィー
ダ(24)として、共に大径のテーブルフィーダを採用
して、供給の定量性と安定性を計ったことである。大径
のテーブルフィーダを採用することにより、各貯留ホッ
パーの下部排−出部は大径化し、従って、ホッパー斜面
角度を大きくとることができるので、ホッパーブリッジ
の発生を防止することができる。バイオコールは発熱量
が異なる複数の原料からなる複合固型燃料であり、ホッ
パーブリッジの発生により供給が不連続になり、配合比
が安定していないと、成型燃料の発熱量に変動が生じた
り、破壊強度が低下したりして商品としての問題が多い
、従って、バイオコール製造に於いて、配合比の正確性
、安定性を確保することは製品品質の点から極めて重要
である。
Fourthly, a table feeder with a large diameter is used as a powder coal feeder (23) and a biomass powder feeder (24) that cut out the powder coal storage hopper (21) and biomass powder storage hopper (22) according to the blending ratio. was adopted to measure the quantitativeness and stability of supply. By employing a large-diameter table feeder, the diameter of the lower discharge portion of each storage hopper is increased, and the hopper slope angle can therefore be increased, thereby preventing the occurrence of hopper bridges. Biocoal is a composite solid fuel consisting of multiple raw materials with different calorific values, and if the supply is discontinuous due to the occurrence of hopper bridges and the blending ratio is not stable, the calorific value of the molded fuel may fluctuate. There are many problems as a commercial product, such as a decrease in breaking strength.Therefore, in the production of biocoal, it is extremely important to ensure the accuracy and stability of the blending ratio from the viewpoint of product quality.

第五点として、製品ホッパー(33)内に於ける成型燃
料の結露による品質劣化の問題をホッパー内に吸引管(
34)をホッパー底面に近い位置まで挿入し、吸引させ
ることで解決したことである。二のことにより、成型燃
料から発散される水蒸気及び粉塵を吸引させると共に冷
却も同時に行わせるので、省エネルギー上からも極めて
有効である。
The fifth point is to solve the problem of quality deterioration due to condensation of molded fuel in the product hopper (33).
The problem was solved by inserting the hopper (34) to a position close to the bottom of the hopper and suctioning it. Due to the second feature, water vapor and dust emitted from the molded fuel are sucked in and cooling is performed at the same time, which is extremely effective in terms of energy saving.

又、製品ホッパー(33)は自重による成型燃料の圧壊
の問題や、冷却効率、出荷作業の容易性から、小・中容
量のホッパーを複数基設置した方が好ましい。
Further, it is preferable to install a plurality of small or medium capacity hoppers for the product hopper (33) in order to avoid the problem of crushing of the molded fuel due to its own weight, cooling efficiency, and ease of shipping work.

第六点として、成型機(29)、バケットエレベータ−
(30)、製品ホッパー(33)、計量袋詰機(38)
で発生する粉塵、バリを集塵した後、ホッパーに貯留せ
ず、即時に、工程に少量ずつ連続的に戻すようにしたこ
とである1、このことにより、配合比の変化等による成
型燃料の品質に与える悪影響を最小にできるという特長
がある。
The sixth point is the molding machine (29), bucket elevator.
(30), product hopper (33), weighing bagging machine (38)
After collecting the dust and burrs generated during the process, they are immediately returned to the process in small quantities without being stored in a hopper. It has the advantage of minimizing negative effects on quality.

本発明は以上のように、バイオコールという新複合固型
燃料の特性に配慮し、適合した製造ラインにすることに
より、製品品質を高水準に維持しながら量産し得る工業
的製法を確立したものであり、極めて意義深いものと言
えよう、又、本製法は製造ラインの當エネルギー化に配
慮し、製造コストを引き下げることが可能となったので
、バイオコールに商品競争力を付与する上でも有益と言
えよう。
As described above, the present invention has established an industrial manufacturing method that can be mass-produced while maintaining a high level of product quality by taking into account the characteristics of a new composite solid fuel called biocoal and creating an adapted manufacturing line. This can be said to be extremely significant, and since this manufacturing method takes into account the use of energy in the production line and makes it possible to reduce production costs, it is also beneficial in giving biocoal product competitiveness. I can say that.

4、4,

【図面の簡単な説明】[Brief explanation of drawings]

第1図はバイオコールの製法の概要フローシートである
。 第2図は本発明の製法の機器フローシートの一例である
。 (1): 原料石炭 (2) : 原料バイオマス (3) : パケットローダ− (4): バイオマス受入ホッパー (5)二 石炭受入ホッパー (6) : バイオマスフィードコンベア(7) 二 
石炭フィードコンベア (8): バイオマスドライヤ (9)二 石炭ドライヤ (10)  :  石炭排出スクリューコンベア(11
)  :  石炭粉砕機 (菫2):  熱IIL発生炉 (13ン : サイクロン (14)  :  篩分機 (15)  :  バイオマスニ次粉砕機(16)  
: (17)  : (18)  : (19)  : (20)  : (21)  : (22)  : (23)  : (24)  : (25)  : (26)  : (27)  : (28)二 (29)  : (30)  : (31)  : (32)  : (33)  : (34)  : (35)  : バイオマスドライヤ排風ファン サイクロン 粉炭輸送ファン サイクロン バイオマス粉輸送ファン 粉炭貯留ホッパー バイオマス粉貯留ホッパー 粉炭フィーダ バイオマス粉フィーダ 搬送スクリューコンベア 搬送フライトコンベア 搬送投入コンベア 混合機 成型機 バケットエレベータ トロンメル 製品コンベア 製品ホッパー 吸引管 製品冷却ブロア (36)  : (37)  : (38)  : (39)  : (40)  : (41)  : (42)  : (43)  : 振動フィーダ バリ受入ホッパー 計量袋詰機 集塵ファン サイクロン サイクロン バリ輸送ブロア 煙突
Figure 1 is an overview flow sheet of the production method for Biocoal. FIG. 2 is an example of an equipment flow sheet for the manufacturing method of the present invention. (1): Raw material coal (2): Raw material biomass (3): Packet loader (4): Biomass receiving hopper (5) 2 Coal receiving hopper (6): Biomass feed conveyor (7) 2
Coal feed conveyor (8): Biomass dryer (9) 2 Coal dryer (10): Coal discharge screw conveyor (11)
): Coal crusher (Sumi 2): Thermal IIL generator (13): Cyclone (14): Sieve machine (15): Biomass secondary crusher (16)
: (17) : (18) : (19) : (20) : (21) : (22) : (23) : (24) : (25) : (26) : (27) : (28) Two ( 29) : (30) : (31) : (32) : (33) : (34) : (35) : Biomass dryer exhaust fan cyclone pulverized coal transport fan cyclone biomass powder transport fan pulverized coal storage hopper biomass powder storage hopper pulverized coal feeder Biomass powder feeder transport screw conveyor transport flight conveyor transport input conveyor mixer molding machine bucket elevator trommel product conveyor product hopper suction tube product cooling blower (36) : (37) : (38) : (39) : (40) : (41 ) : (42) : (43) : Vibrating feeder Burr receiving hopper Weighing bagging machine Dust collection fan Cyclone Cyclone Burr transport blower Chimney

Claims (1)

【特許請求の範囲】  第2図の機器フローシートに於いて [1]石炭ドライヤ(9)で乾燥後、粉砕した粉炭、及
び、バイオマスドライヤ(8)で乾燥したバイオマスを
次工程へ空気輸送する際に、直接、各ドライヤの熱風を
吸引させて行うこと。 [2]バイオマスドライヤ(8)で乾燥したバイオマス
をバイオマス二次粉砕機(15)に投入する前に篩分機
(14)に通し、混入した小砂及び粒径3mm以下のバ
イオマス粉をバイパスさせること。 [3]バイオマス二次粉砕機(15)に衝撃柱式クラッ
シャを用いること。 [4]粉炭貯留ホッパー(21)、バイオマス粉貯留ホ
ッパー(22)の下部に設ける粉炭フィーダ(23)、
バイオマス粉フィーダ(24)に共に大径のテーブルフ
ィーダを採用すること。 [5]製品ホッパー(33)内に吸引管(34)をホッ
パー底面に近い位置まで挿入し、吸引させることで、成
型後の製品の冷却、粉塵の収集、及び、ホッパー内の結
露の防止を行なわせること。 [6]成型機(29)、バケットエレベータ(30)、
製品ホッパー(33)、計量袋詰機(38)で発生する
粉塵、バリを集塵した後、ホッパーに貯留せず、即時に
工程に連続的に戻すようにすること。 以上の特徴を有するバイオコールの工業的製法。
[Claims] In the equipment flow sheet of FIG. 2, [1] After drying in a coal dryer (9), the pulverized coal and the biomass dried in a biomass dryer (8) are pneumatically transported to the next process. When drying, do this by directly sucking the hot air from each dryer. [2] Before feeding the biomass dried in the biomass dryer (8) to the biomass secondary crusher (15), it is passed through a sieve (14) to bypass mixed small sand and biomass powder with a particle size of 3 mm or less. [3] Use an impact column crusher for the biomass secondary crusher (15). [4] A powdered coal storage hopper (21), a powdered coal feeder (23) provided at the bottom of the biomass powder storage hopper (22),
A large-diameter table feeder should be used for both the biomass powder feeder (24). [5] Insert the suction pipe (34) into the product hopper (33) to a position close to the bottom of the hopper and apply suction to cool the product after molding, collect dust, and prevent condensation inside the hopper. to make something happen. [6] Molding machine (29), bucket elevator (30),
After collecting dust and burrs generated in a product hopper (33) and a weighing and bagging machine (38), the dust and burrs are immediately and continuously returned to the process without being stored in the hopper. An industrial method for producing biocoal having the above characteristics.
JP17209990A 1990-06-28 1990-06-28 Industrial production of biocoal Pending JPH0459891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17209990A JPH0459891A (en) 1990-06-28 1990-06-28 Industrial production of biocoal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17209990A JPH0459891A (en) 1990-06-28 1990-06-28 Industrial production of biocoal

Publications (1)

Publication Number Publication Date
JPH0459891A true JPH0459891A (en) 1992-02-26

Family

ID=15935526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17209990A Pending JPH0459891A (en) 1990-06-28 1990-06-28 Industrial production of biocoal

Country Status (1)

Country Link
JP (1) JPH0459891A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293576A (en) * 1992-09-30 1994-10-21 Agency Of Ind Science & Technol Porous silica-carbon composite body and its production
KR100405196B1 (en) * 2001-06-07 2003-11-14 최정원 Cooling apparatus and method for charcoal
WO2006078023A1 (en) * 2005-01-24 2006-07-27 Osaka Industrial Promotion Organization Solid biomass and method for production thereof
JP2008215710A (en) * 2007-03-05 2008-09-18 Tokyo Electric Power Co Inc:The Solid biomass fuel supply device
CN102559319A (en) * 2011-12-22 2012-07-11 中信重工机械股份有限公司 Integral process and device for crushing, drying, forming and upgrading lignite containing moisture
WO2017138422A1 (en) * 2016-02-09 2017-08-17 宇部興産株式会社 Method for manufacturing coal molded fuel
JP2017156010A (en) * 2016-03-02 2017-09-07 株式会社タクマ Fuel supply system and power generator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108097A (en) * 1986-10-23 1988-05-12 Nippon Kankyo Asesumento Center:Kk Production of briquette

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108097A (en) * 1986-10-23 1988-05-12 Nippon Kankyo Asesumento Center:Kk Production of briquette

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293576A (en) * 1992-09-30 1994-10-21 Agency Of Ind Science & Technol Porous silica-carbon composite body and its production
KR100405196B1 (en) * 2001-06-07 2003-11-14 최정원 Cooling apparatus and method for charcoal
WO2006078023A1 (en) * 2005-01-24 2006-07-27 Osaka Industrial Promotion Organization Solid biomass and method for production thereof
US8211274B2 (en) 2005-01-24 2012-07-03 Kinki University Solidified biomass and production method thereof
JP2008215710A (en) * 2007-03-05 2008-09-18 Tokyo Electric Power Co Inc:The Solid biomass fuel supply device
CN102559319A (en) * 2011-12-22 2012-07-11 中信重工机械股份有限公司 Integral process and device for crushing, drying, forming and upgrading lignite containing moisture
WO2017138422A1 (en) * 2016-02-09 2017-08-17 宇部興産株式会社 Method for manufacturing coal molded fuel
JPWO2017138422A1 (en) * 2016-02-09 2018-11-29 宇部興産株式会社 Coal molding fuel manufacturing method
JP2017156010A (en) * 2016-03-02 2017-09-07 株式会社タクマ Fuel supply system and power generator

Similar Documents

Publication Publication Date Title
CN101705131B (en) Raw coal upgrading device and method with combination of drying and dry separation
CN101705132B (en) Drying and dry separation combination device as well as dry separation and drying combination device
EP2318488B1 (en) Method for processing a mixture of cellulose/plastic waste particles to form a fuel
US20160169581A1 (en) Biomass-processing device and method
CN1312260C (en) Environment-protecting granular wooden fuel and its production process
US20050288382A1 (en) Method and system for storing carpet fines
CN102839032B (en) Dry separation and drying combined device
CN101870897A (en) Process for carrying out strengthening circulation, stage grinding and quality improvement on lignite by utilizing superheated steam and system thereof
CN102776048A (en) Preparation process for granular fuels
CN101983942B (en) Drying and quality improvement apparatus for slime and sludge and technology thereof
JP6302193B2 (en) A method for drying raw wood for manufacturing wood pellets and a wood pellet manufacturing apparatus including a drying process to which this drying method is applied
CN201593043U (en) Drying and dry-separation combining device
JPH0459891A (en) Industrial production of biocoal
CN215490930U (en) Coal fired power plant solid waste and wastewater cooperative treatment system
CN201558751U (en) Drying and dry separation combination raw coal quality improvement device
JP2003268394A (en) Wooden fuel and its production process
JP2004292787A (en) Method for producing plant pellet, apparatus for the same, and method for producing plant mixed fuel
JP2008208360A (en) Solid fuel and method for preparing the same
CN105713698B (en) A kind of method of afforestation Castoff material energizing
CN201753345U (en) Superheated steam reinforced circulation graded crushing upgrading system for lignite
JP2011144248A (en) Method for producing bamboo pellet fuel
CN107267248B (en) Biomass briquette fuel continuous production line
WO2020034298A1 (en) Combined cement grinding system and method applicable to high-moisture materials
CN210689145U (en) Gasification ash drying device of four-nozzle water-gas entrained-flow bed
JP2006281114A (en) Waste treatment method and treatment apparatus