JPH0458165B2 - - Google Patents

Info

Publication number
JPH0458165B2
JPH0458165B2 JP26183787A JP26183787A JPH0458165B2 JP H0458165 B2 JPH0458165 B2 JP H0458165B2 JP 26183787 A JP26183787 A JP 26183787A JP 26183787 A JP26183787 A JP 26183787A JP H0458165 B2 JPH0458165 B2 JP H0458165B2
Authority
JP
Japan
Prior art keywords
film
polymer film
conductive polymer
dielectric oxide
anode lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP26183787A
Other languages
Japanese (ja)
Other versions
JPH01105523A (en
Inventor
Michuki Kono
Minoru Fukuda
Isao Isa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP26183787A priority Critical patent/JPH01105523A/en
Publication of JPH01105523A publication Critical patent/JPH01105523A/en
Publication of JPH0458165B2 publication Critical patent/JPH0458165B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は導電性高分子を固体電解質として用い
たコンデンサに関する。 (従来の技術) 先に本発明者らは皮膜形成性金属に誘電体酸化
皮膜を形成し、この誘電体酸化皮膜上に化学酸化
重合導電性高分子膜を形成し、更にこの上に導電
性高分子の電解重合膜を形成せしめた構造の固体
電解コンデンサを提案した(特願昭62−4053)。
更に上記固体電解コンデンサの製造について、電
解重合の効率化を計るための方法として、化学酸
化重合導電性高分子膜に導電体を接触あるいは1
mm以内の距離に配置して電解重合を行なう方法を
提案した(特願昭62−187739)。上記コンデンサ
は静電容量が大きくかつ電気的特性、温度特性の
優れた固体電解コンデンサであるが、その構造に
ついては未だ改良の余地があつた。 (発明が解決しようとする問題点) すなわち、前記したような導電体を接触させて
電解重合を行なつた場合、誘電体酸化皮膜が薄い
場合や、機械的に脆い場合には、導電体が誘電体
酸化皮膜を損傷し、著しくコンデンサ特性を劣化
させる場合があつた。 (問題点を解決するための手段) 本発明者らは上記問題点を解決するため種々検
討した結果、固体電解コンデンサにおいて、一部
もしくは全部が皮膜形成性金属からなる陽極リー
ドを取り付けた皮膜形成性金属と、該陽極リード
の一部に形成された誘電体酸化皮膜と、該陽極リ
ード上に形成された誘電体酸化皮膜の一部を被覆
する絶縁性高分子膜と、該絶縁性高分子膜の一部
表面および皮膜形成性金属の誘電体酸化皮膜上に
形成されたピロール、チオフエン、アニリンまた
はフランの化学酸化重合導電性高分子膜と、該化
学酸化重合導電性高分子膜上に形成されたピロー
ル、チオフエン、アニリンまたはフランの電解酸
化重合導電性高分子膜とからなる構造にすること
により、前記問題点を解決できることを見出し
た。 次に本発明を図面により更に詳しく説明する。
第1図は皮膜形成性金属としてタンタルを用い、
この微粉を焼結し、中心部よりタンタル線により
陽極リードを取り付けたコンデンサの概略断面図
である。タンタルよりなる皮膜形成性金属1とタ
ンタル線よりなる陽極リード7の一部に、陽極酸
化により誘電体酸化皮膜2を形成せしめる。次に
陽極リード7を、絶縁性高分子を塗布等の方法に
より絶縁性高分子膜3で被覆する。被覆する範囲
は、陽極リード7の誘電体酸化皮膜2が形成され
ている部分以外まで行なつても支障ない。次に該
絶縁性高分子膜3および誘電体酸化皮膜2を酸化
剤および酸化剤を含む溶液に浸漬し、更に導性高
分子膜3表面及び誘電体酸化皮膜2上に化学酸化
重合導電性高分子膜4を形成せしめる。化学酸化
重合導電性高分子膜4を形成せしめる範囲は絶縁
性高分子膜3よりも下になるようにする。次いで
絶縁性高分子膜3上に形成した化学酸化重合導電
性高分子膜4に導電体6を接触させ、支持電解質
及び導電性高分子単量体を含む電解液に浸漬し、
該導電体6を陽極として電解酸化重合することに
より電解酸化重合導電性高分子膜5を形成せしめ
る。この電解酸化重合において、絶縁性高分子膜
3が無いと導電体6により誘電体酸化皮膜2が損
傷し、できあがつたコンデンサの漏れ電流が大き
くなることがある。 第2図は捲回型コンデンサのリード取り付け部
付近の概略断面図である。アルミニウム箔よりな
る皮膜形成性金属1にアルミニウム製リードボス
8を介して陽極リード7が取り付けられている。
リードボス8の一部及び皮膜形成性金属1の全面
に誘電体酸化皮膜2が形成され、リードボスと陽
極リード7の一部は絶縁性高分子膜3により被覆
されている。更に絶縁性高分子膜3の一部及び誘
電体酸化皮膜2上には化学酸化重合導電性高分子
膜4が形成され、更にその上に電解酸化重合導電
性高分子膜5が形成されている。 本発明に用いる絶縁性高分子は塩化ビニル、ポ
リエチレンテレフタレート、シリコーン樹脂、エ
ポキシ樹脂、フツ化ビニリデン、ポリイミド、ポ
リエーテルイミド、ポリアミドイミド、ポリエチ
レン、ポリプロピレン等種々のものを使用するこ
とができ、これらの高分子を適当な溶媒に溶解し
て塗布後乾燥させ硬化させるか、熱溶融して塗布
し冷却して硬化させるか、あるいは硬化剤と混合
して塗布するなどの方法により用いる。 本発明に用いる皮膜形成性金属は、アルミニウ
ムまたはタンタル等の箔または焼結体であり、例
えば箔を用いる場合には捲回型あるいは平板状と
することができる。また捲回型の場合には必ずし
も陽極箔および/またはセパレータ紙を必要とし
ない。 本発明の化学酸化重合導電性高分子膜は、ピロ
ール、チオフエン、アニリンまたはフランを酸化
剤により重合させたものであるが、好ましくはピ
ロール重合体を用いる。また該酸化剤としては、
ヨウ素、臭素などのハロゲン、五フツ化ヒ素、五
フツ化リンなどの金属ハロゲン化物、硫酸、硝酸
などのプロトン酸、過硫酸ナトリウム、過硫酸カ
リウム、過硫酸アンモニウムなどの過硫酸塩、過
酸化水素、過酢酸などの過酸化物などを用いる。
化学酸化重合させる際の酸化剤による処理及び高
分子単量体による処理はその順序を問わない。 本発明の電解酸化重合導電性高分子膜は、ピロ
ール、チオフエン、アニリンまたはフランを電気
化学的に酸化重合せしめたものであり、好ましく
はピロール重合体を用いる。電解酸化重合におい
ては、支持電解質として、陰イオンがアルキルベ
ンゼンスルホン酸、ベンゼンスルホン酸、ニトロ
ベンゼンスルホン酸などのスルホン酸アニオン、
過塩素酸アニオン、テトラフロロホウ素、ヘキサ
フロロリンなどのハロゲン化物アニオンを用い、
溶媒として水または有機溶媒が用いられる。 本発明のコンデンサの構造は、誘電体酸化皮膜
が薄いものや脆いものに特に有効であるが、誘電
体酸化皮膜の厚いものに対しても有効である。 (実施例) 以下、実施例により本発明を具体的に説明す
る。 実施例 1 タンタル線(長さ10mm)により陽極リードを取
り出したタンタル焼結体を150Vの電圧で陽極酸
化し、焼結体及び焼結体連結部分から5mmのとこ
ろまでの陽極リード部分に誘電体酸化皮膜を形成
した(液中容量3μF)。焼結体連結部分から2mm
のところまでの陽極リード部分に塩化ビニル樹脂
(溶媒はメチルエチルケトン80%およびアセトン
20%よりなる)を塗布し、そのまま80℃で30分間
乾燥した。次に該焼結体及び焼結体連結部分から
1.5mmのところまでの陽極リード部分を、過硫酸
アンモニウム水溶液(3mol/l)中に10分間浸
漬した。次いで同部分を、ピロールのエタノール
溶液(2mol/l)に10分間浸漬して焼結体及び
焼結体連結部分から1.5mmのところまでの陽極リ
ード部分上にピロールの化学酸化重合導電性高分
子膜を形成した。 テトラエチルアンモニウムパラトルエンスルホ
ン酸0.7mol/l及びピロール0.2mol/lを含む
水溶液に、前記処理を行なつた焼結体及び焼結体
連結部分から1.5mmのところまでの陽極リード部
分を浸漬した。次に白金線を該陽極リード上に形
成したピロールの化学酸化重合導電性高分子膜に
接触させ、この白金線を陽極とし、ステンレス板
を陰極として0.5mA/cm2の定電流で電解重合を行
なつた。その結果、該化学酸化重合導電性高分子
膜上に電解酸化による濃緑色のピロールの導電性
高分子膜が形成された。 水及びアセトンで洗浄し、乾燥後、該電解酸化
重合導電性高分子膜表面に銀ペーストを塗布し、
陰極リードを取り付け、エポキシ樹脂でモールド
することによりコンデンサを完成させた。 このコンデンサの120Hzにおける容量、損失角
の正接(tanδ)、100KHzにおける等価直列抵抗及
び35Vにおける漏れ電流を第1表に示す。 実施例 2 粗面化したアルミニウム箔(巾5mm、長さ6
cm)の端部にアルミニウム製リードボスをかしめ
付けにより取り付け、リードボス部にCP(カツパ
ープライ)線で陽極リードを取り付けた。アルミ
ニウム箔を直径4mmに捲回し、リードボス部と共
に化成液中で20Vの電圧を印加し、陽極酸化によ
り誘電体酸化皮膜を形成させた(液中容量
120μF)。該リードボス部のアルミニウム箔より
突出してている部分(長さ2mm)と長さ2mmの範
囲にわたる陽極リードにエポキシ樹脂を塗布し、
100℃で1時間硬化させた。次にリードボス部の
アルミニウム箔より突出している部分と該アルミ
ニウム箔を捲回してある部分(以下、コンデンサ
素子部分という)を、ピロール濃度が2mol/l
であるエタノール・水混合溶液(水・エタノール
比は重量比で1:1)に5分間浸漬した後、コン
デンサ素子部分を過硫酸アンモニウム3mol/l
水溶液に浸漬し、コンデンサ素子部分上に化学酸
化重合導電性高分子膜を形成せしめた。 テトラブチルアンモニウムパラトルエンスルホ
ン酸を0.8mol/l及びピロール0.2mol/lを含
む水溶液にコンデンサ素子部分を浸漬し、コンデ
ンサ素子部分の上部の化学酸化重合導電性高分子
膜にステンレス線を接触させ、このステンレス線
を陽極としステンレス板を陰極として、0.5mAの
定電流で電解重合を行なつた。その結果、コンデ
ンサ素子部分に電解酸化重合による濃緑色のピロ
ールの導電性高分子膜が形成された。 水及びアセトンで洗浄後、該電解酸化重合導電
性高分子膜表面に銀ペーストを塗布し、陰極リー
ドを取り付けた後、アルミニウムケースに入れエ
ポキシ樹脂で封口した。 このコンデンサの120Hzにおける容量、損失角
の正接(tanδ)、100KHzにおける等価直列抵抗及
び10Vにおける漏れ電流を第1表に示す。 比較例 1 陽極リード部分に塩化ビニル樹脂の塗布を省略
した以外は実施例1と同様の処理を行ないコンデ
ンサを完成させた。このコンデンサの120Hzにお
ける容量、損失角の正接(tanδ)、100KHzにおけ
る等価直列抵抗及び35Vにおける漏れ電流を第1
表に示す。
(Industrial Application Field) The present invention relates to a capacitor using a conductive polymer as a solid electrolyte. (Prior art) The present inventors first formed a dielectric oxide film on a film-forming metal, formed a chemically oxidized conductive polymer film on this dielectric oxide film, and further formed a conductive polymer film on this dielectric oxide film. We proposed a solid electrolytic capacitor with a structure in which an electrolytically polymerized polymer membrane was formed (patent application 1986-4053).
Furthermore, regarding the production of the solid electrolytic capacitors mentioned above, as a method for improving the efficiency of electrolytic polymerization, a conductor is brought into contact with a chemically oxidized conductive polymer film or
A method was proposed in which electrolytic polymerization was performed by arranging them at a distance of less than mm (Japanese Patent Application No. 187739/1982). Although the above capacitor is a solid electrolytic capacitor with large capacitance and excellent electrical and temperature characteristics, there is still room for improvement in its structure. (Problems to be Solved by the Invention) In other words, when electrolytic polymerization is performed by bringing conductors into contact with each other as described above, if the dielectric oxide film is thin or mechanically fragile, the conductor may There were cases where the dielectric oxide film was damaged and the capacitor characteristics were significantly deteriorated. (Means for Solving the Problems) As a result of various studies in order to solve the above problems, the inventors of the present invention have found that in solid electrolytic capacitors, a film is formed in which an anode lead partially or entirely made of a film-forming metal is attached. a dielectric oxide film formed on a part of the anode lead, an insulating polymer film covering a part of the dielectric oxide film formed on the anode lead, and the insulating polymer A chemical oxidative polymer conductive polymer film of pyrrole, thiophene, aniline, or furan formed on a part of the surface of the film and a dielectric oxide film of a film-forming metal, and a chemical oxidative polymer conductive polymer film formed on the chemical oxidative polymer conductive polymer film. It has been found that the above-mentioned problems can be solved by creating a structure consisting of an electrolytically oxidized conductive polymer film of pyrrole, thiophene, aniline, or furan. Next, the present invention will be explained in more detail with reference to the drawings.
Figure 1 uses tantalum as the film-forming metal.
FIG. 2 is a schematic cross-sectional view of a capacitor in which this fine powder is sintered and an anode lead is attached from the center with a tantalum wire. A dielectric oxide film 2 is formed on a part of the film-forming metal 1 made of tantalum and the anode lead 7 made of tantalum wire by anodic oxidation. Next, the anode lead 7 is coated with the insulating polymer film 3 by a method such as coating an insulating polymer. There is no problem in covering the area other than the part of the anode lead 7 where the dielectric oxide film 2 is formed. Next, the insulating polymer film 3 and the dielectric oxide film 2 are immersed in an oxidizing agent and a solution containing the oxidizing agent. A molecular film 4 is formed. The area in which the chemical oxidation polymerized conductive polymer film 4 is formed is below the insulating polymer film 3. Next, the conductor 6 is brought into contact with the chemical oxidation polymerized conductive polymer film 4 formed on the insulating polymer film 3, and immersed in an electrolytic solution containing a supporting electrolyte and a conductive polymer monomer.
By performing electrolytic oxidative polymerization using the conductor 6 as an anode, an electrolytic oxidatively polymerized conductive polymer film 5 is formed. In this electrolytic oxidative polymerization, if the insulating polymer film 3 is not present, the dielectric oxide film 2 may be damaged by the conductor 6, and the resulting capacitor may have a large leakage current. FIG. 2 is a schematic cross-sectional view of the vicinity of the lead attachment portion of the wound capacitor. An anode lead 7 is attached to a film-forming metal 1 made of aluminum foil via an aluminum lead boss 8.
A dielectric oxide film 2 is formed on a part of the lead boss 8 and the entire surface of the film-forming metal 1, and a part of the lead boss and the anode lead 7 is covered with an insulating polymer film 3. Furthermore, a chemical oxidative polymer conductive polymer film 4 is formed on a part of the insulating polymer film 3 and the dielectric oxide film 2, and an electrolytic oxidative polymer conductive polymer film 5 is further formed thereon. . Various insulating polymers used in the present invention can be used, such as vinyl chloride, polyethylene terephthalate, silicone resin, epoxy resin, vinylidene fluoride, polyimide, polyetherimide, polyamideimide, polyethylene, and polypropylene. The polymer is used by dissolving it in a suitable solvent and coating it, then drying it and curing it, by melting it with heat and then cooling it and curing it, or by mixing it with a curing agent and coating it. The film-forming metal used in the present invention is a foil or sintered body of aluminum or tantalum. For example, when a foil is used, it can be wound or flat. Further, in the case of a wound type, an anode foil and/or a separator paper are not necessarily required. The chemically oxidized conductive polymer film of the present invention is obtained by polymerizing pyrrole, thiophene, aniline, or furan with an oxidizing agent, and preferably uses a pyrrole polymer. In addition, as the oxidizing agent,
Halogens such as iodine and bromine, metal halides such as arsenic pentafluoride and phosphorous pentafluoride, protonic acids such as sulfuric acid and nitric acid, persulfates such as sodium persulfate, potassium persulfate, and ammonium persulfate, hydrogen peroxide, Use peroxides such as peracetic acid.
The order of treatment with an oxidizing agent and treatment with a polymer monomer during chemical oxidative polymerization does not matter. The electrolytically oxidatively polymerized conductive polymer membrane of the present invention is obtained by electrochemically oxidatively polymerizing pyrrole, thiophene, aniline, or furan, and preferably uses a pyrrole polymer. In electrolytic oxidation polymerization, as a supporting electrolyte, the anion is a sulfonic acid anion such as alkylbenzenesulfonic acid, benzenesulfonic acid, nitrobenzenesulfonic acid, etc.
Using halide anions such as perchlorate anion, tetrafluoroboron, and hexafluoroline,
Water or an organic solvent is used as the solvent. The capacitor structure of the present invention is particularly effective for capacitors with thin or brittle dielectric oxide films, but is also effective for capacitors with thick dielectric oxide films. (Example) Hereinafter, the present invention will be specifically explained with reference to Examples. Example 1 A tantalum sintered body with an anode lead taken out using a tantalum wire (length 10 mm) was anodized at a voltage of 150 V, and a dielectric was applied to the sintered body and the anode lead part up to 5 mm from the sintered body connection part. An oxide film was formed (liquid capacity 3μF). 2mm from the sintered body connection part
PVC resin (solvent: 80% methyl ethyl ketone and acetone)
20%) was applied and dried at 80°C for 30 minutes. Next, from the sintered body and the sintered body connection part
The anode lead portion up to 1.5 mm was immersed in an aqueous ammonium persulfate solution (3 mol/l) for 10 minutes. Next, the same part was immersed in an ethanol solution of pyrrole (2 mol/l) for 10 minutes, and a chemically oxidized conductive polymer of pyrrole was applied onto the sintered body and the anode lead part up to 1.5 mm from the sintered body connection part. A film was formed. The sintered body subjected to the above treatment and the anode lead portion up to a distance of 1.5 mm from the connecting portion of the sintered body were immersed in an aqueous solution containing 0.7 mol/l of tetraethylammonium paratoluenesulfonic acid and 0.2 mol/l of pyrrole. Next, the platinum wire was brought into contact with the chemical oxidation polymerized conductive polymer film of pyrrole formed on the anode lead, and electrolytic polymerization was carried out at a constant current of 0.5 mA/cm 2 using the platinum wire as the anode and the stainless steel plate as the cathode. I did it. As a result, a dark green conductive polymer film of pyrrole was formed by electrolytic oxidation on the chemically oxidized conductive polymer film. After washing with water and acetone and drying, a silver paste is applied to the surface of the electrolytic oxidation polymerized conductive polymer membrane,
The capacitor was completed by attaching the cathode lead and molding it with epoxy resin. Table 1 shows the capacitance of this capacitor at 120Hz, the tangent of the loss angle (tan δ), the equivalent series resistance at 100KHz, and the leakage current at 35V. Example 2 Roughened aluminum foil (width 5 mm, length 6
An aluminum lead boss was attached by caulking to the end of the (cm), and an anode lead was attached to the lead boss using a CP (cut per ply) wire. Aluminum foil was wound to a diameter of 4 mm, and a voltage of 20 V was applied to it together with the lead boss in a chemical solution to form a dielectric oxide film by anodizing (capacity in the solution
120μF). Apply epoxy resin to the part of the lead boss that protrudes from the aluminum foil (length 2 mm) and the anode lead over a range of 2 mm,
It was cured at 100°C for 1 hour. Next, the part of the lead boss part that protrudes from the aluminum foil and the part where the aluminum foil is wound (hereinafter referred to as the capacitor element part) have a pyrrole concentration of 2 mol/l.
After immersing the capacitor element in an ethanol/water mixed solution (water/ethanol ratio 1:1 by weight) for 5 minutes, the capacitor element was soaked with 3 mol/l of ammonium persulfate.
A chemically oxidized conductive polymer film was formed on the capacitor element by immersing it in an aqueous solution. The capacitor element part is immersed in an aqueous solution containing 0.8 mol/l of tetrabutylammonium paratoluenesulfonic acid and 0.2 mol/l of pyrrole, and a stainless steel wire is brought into contact with the chemical oxidation polymerized conductive polymer film on the upper part of the capacitor element part. Using this stainless steel wire as an anode and the stainless steel plate as a cathode, electrolytic polymerization was carried out at a constant current of 0.5 mA. As a result, a dark green conductive polymer film of pyrrole was formed by electrolytic oxidation polymerization on the capacitor element portion. After washing with water and acetone, a silver paste was applied to the surface of the electrolytically oxidized conductive polymer membrane, a cathode lead was attached, and the membrane was placed in an aluminum case and sealed with epoxy resin. Table 1 shows the capacitance of this capacitor at 120 Hz, the tangent of the loss angle (tan δ), the equivalent series resistance at 100 KHz, and the leakage current at 10 V. Comparative Example 1 A capacitor was completed in the same manner as in Example 1 except that the application of vinyl chloride resin to the anode lead portion was omitted. The capacitance of this capacitor at 120Hz, the tangent of the loss angle (tanδ), the equivalent series resistance at 100KHz, and the leakage current at 35V are calculated as the first
Shown in the table.

【表】 比較例 2 リードボス部及び陽極リード部分にエポキシ樹
脂の塗布を省略した以外は実施例2と同様の処理
を行ないコンデンサを完成させた。このコンデン
サの120Hzにおける容量、損失角の正接(tanδ)、
100KHzにおける等価直列抵抗及び10Vにおける
漏れ電流を第1表に示す。 (発明の効果) 保護層として誘電体酸化皮膜上の一定部分に絶
縁性高分子膜を形成し、この保護層表面を導電化
し、導電化した保護層より電解重合を行なうこと
により、誘電体酸化皮膜を損傷することなく漏れ
電流の少ない固体電解コンデンサを得ることがで
きた。
[Table] Comparative Example 2 A capacitor was completed in the same manner as in Example 2, except that the application of epoxy resin to the lead boss portion and anode lead portion was omitted. Capacity of this capacitor at 120Hz, tangent of loss angle (tanδ),
Table 1 shows the equivalent series resistance at 100KHz and the leakage current at 10V. (Effects of the invention) An insulating polymer film is formed on a certain part of the dielectric oxide film as a protective layer, the surface of this protective layer is made conductive, and electrolytic polymerization is performed from the conductive protective layer. A solid electrolytic capacitor with low leakage current could be obtained without damaging the film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、皮膜形成性金属としてタンタルを用
いこの微粉を焼結し、中心部より陽極リードを取
り出したコンデンサの概略断面図である。第2図
は、箔型コンデンサのリード取り付け部付近の概
略断面図である。 1…皮膜形成性金属、2…誘電体酸化皮膜、3
…絶縁性高分子膜、4…化学酸化重合導電性高分
子膜、5…電解酸化重合導電性高分子膜、6…導
電体、7…陽極リード、8…リードボス。
FIG. 1 is a schematic cross-sectional view of a capacitor in which tantalum is used as a film-forming metal and its fine powder is sintered, and the anode lead is taken out from the center. FIG. 2 is a schematic cross-sectional view of the vicinity of the lead attachment portion of the foil capacitor. 1... Film-forming metal, 2... Dielectric oxide film, 3
...Insulating polymer film, 4...Chemical oxidation polymerization conductive polymer membrane, 5...Electrolytic oxidation polymerization conductive polymer membrane, 6...Electric conductor, 7...Anode lead, 8...Lead boss.

Claims (1)

【特許請求の範囲】[Claims] 1 一部もしくは全部が皮膜形成性金属からなる
陽極リードを取り付けた皮膜形成性金属と、該陽
極リードの一部に形成された誘電体酸化皮膜と、
該陽極リード上に形成された誘電体酸化皮膜の一
部を被覆する絶縁性高分子膜と、該絶縁性高分子
膜の一部表面および皮膜形成性金属の誘電体酸化
皮膜上に形成されたピロール、チオフエン、アニ
リンまたはフランの化学酸化重合導電性高分子膜
と、該化学酸化重合導電性高分子膜上に形成され
たピロール、チオフエン、アニリンまたはフラン
の電解酸化重合導電性高分子膜とからなる固体電
解コンデンサ。
1 A film-forming metal to which an anode lead partially or entirely made of a film-forming metal is attached, and a dielectric oxide film formed on a part of the anode lead;
an insulating polymer film covering a part of the dielectric oxide film formed on the anode lead; and an insulating polymer film formed on a part of the surface of the insulating polymer film and the dielectric oxide film of the film-forming metal. A chemically oxidatively polymerized conductive polymer film of pyrrole, thiophene, aniline, or furan, and an electrolytically oxidatively polymerized conductive polymer film of pyrrole, thiophene, aniline, or furan formed on the chemically oxidatively polymerized conductive polymer film. A solid electrolytic capacitor.
JP26183787A 1987-10-19 1987-10-19 Solid electrolytic capacitor Granted JPH01105523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26183787A JPH01105523A (en) 1987-10-19 1987-10-19 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26183787A JPH01105523A (en) 1987-10-19 1987-10-19 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH01105523A JPH01105523A (en) 1989-04-24
JPH0458165B2 true JPH0458165B2 (en) 1992-09-16

Family

ID=17367431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26183787A Granted JPH01105523A (en) 1987-10-19 1987-10-19 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH01105523A (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02303017A (en) * 1989-05-18 1990-12-17 Marcon Electron Co Ltd Manufacture of solid state electrolytic capacitor
JPH033220A (en) * 1989-05-31 1991-01-09 Marcon Electron Co Ltd Tantalum solid-state electrolytic capacitor
JP2700420B2 (en) * 1989-11-22 1998-01-21 日本カーリット株式会社 Method for manufacturing aluminum sintered body solid electrolytic capacitor
JP2811915B2 (en) * 1990-05-25 1998-10-15 松下電器産業株式会社 Method for manufacturing solid electrolytic capacitor
JPH04134833U (en) * 1991-06-04 1992-12-15 マルコン電子株式会社 solid electrolytic capacitor
US5752986A (en) * 1993-11-18 1998-05-19 Nec Corporation Method of manufacturing a solid electrolytic capacitor
JP2861774B2 (en) * 1993-12-28 1999-02-24 日本電気株式会社 Solid electrolytic capacitors
JP3080851B2 (en) * 1994-11-29 2000-08-28 富山日本電気株式会社 Method for manufacturing solid electrolytic capacitor
JPH10321471A (en) * 1997-05-22 1998-12-04 Nichicon Corp Solid electrolytic capacitor and its manufacture
JP4084862B2 (en) * 1997-05-22 2008-04-30 ニチコン株式会社 Manufacturing method of solid electrolytic capacitor
JP3245567B2 (en) 1999-01-25 2002-01-15 富山日本電気株式会社 Method for manufacturing solid electrolytic capacitor
JP2004228439A (en) * 2003-01-24 2004-08-12 Matsushita Electric Ind Co Ltd Method for manufacturing solid electrolytic capacitor
CN103295787B (en) * 2013-05-28 2016-01-20 中国振华(集团)新云电子元器件有限责任公司 The processing method of electrolytic capacitor manufacture process medium oxide-film
JP6475417B2 (en) * 2014-03-17 2019-02-27 株式会社トーキン Solid electrolytic capacitor element, manufacturing method thereof, and solid electrolytic capacitor

Also Published As

Publication number Publication date
JPH01105523A (en) 1989-04-24

Similar Documents

Publication Publication Date Title
US4943892A (en) Solid electrolytic capacitor and method for manufacturing the same
JP3705306B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US5119274A (en) Solid capacitor
JPH0474853B2 (en)
US20050128685A1 (en) Solid electrolytic capacitor and process for its fabrication
JPH0458165B2 (en)
JP3245567B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0362298B2 (en)
JPH05166681A (en) Manufacture of solid electrolytic capacitor
JP2640864B2 (en) Manufacturing method of tantalum solid electrolytic capacitor
JP3362600B2 (en) Manufacturing method of capacitor
JP2700420B2 (en) Method for manufacturing aluminum sintered body solid electrolytic capacitor
JP2001110685A (en) Solid electrolytic capacitor
JP2621087B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH02238613A (en) Solid electrolytic capacitor
JP2945100B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0365008B2 (en)
JPH0346215A (en) Manufacture of tantalum solid electrolytic capacitor
JP2640866B2 (en) Method for manufacturing solid electrolytic capacitor
JP2995109B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0423411B2 (en)
JPH06112094A (en) Manufacture of solid-state electrolytic capacitor
JPH033220A (en) Tantalum solid-state electrolytic capacitor
JPH0448709A (en) Manufacture of solid electrolytic capacitor
JPH0365007B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 16