JPH0457892A - Electroviscous fluid - Google Patents

Electroviscous fluid

Info

Publication number
JPH0457892A
JPH0457892A JP16955390A JP16955390A JPH0457892A JP H0457892 A JPH0457892 A JP H0457892A JP 16955390 A JP16955390 A JP 16955390A JP 16955390 A JP16955390 A JP 16955390A JP H0457892 A JPH0457892 A JP H0457892A
Authority
JP
Japan
Prior art keywords
chains
fine particles
electrorheological fluid
polyoxyalkylene
electrorheological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16955390A
Other languages
Japanese (ja)
Inventor
Kazunari Sakai
一成 酒井
Hiroyuki Tokuda
博之 徳田
Atsushi Hosoda
篤 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP16955390A priority Critical patent/JPH0457892A/en
Publication of JPH0457892A publication Critical patent/JPH0457892A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare an electroviscous fluid exhibiting a stable Winslow effect by dispersing fine particles of a specified substance into an electrically insulating oily liq. CONSTITUTION:An electroviscous fluid is prepd. by dispersing a fine particulate material into an electrically insulating oily liq. (e.g. chlorodiphenyl). The fine particulate material is pref. a mixture consisting of a polymeric compd. having at least one member selected from polyoxyalkylene chains, polymethyl vinyl ether chain and the like (e.g. a cured product obtd. from polyethylene oxide and trifunctional polyisocyanate curing agent) and an electrolyte (e.g. LiClO4).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、外部電圧の印加によって粘性を増大し、大き
なせん断芯力を誘起する電気粘性流体に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an electrorheological fluid whose viscosity is increased by application of an external voltage to induce a large shear core force.

(従来の技術) 電気粘性流体とは、絶縁性の油状液体に固体粒子を分散
させてなり、外部電界により粘度が著しく増大する懸濁
液、すなわちウィンズロウ効果を生じる懸濁液を言う。
(Prior Art) An electrorheological fluid is a suspension in which solid particles are dispersed in an insulating oily liquid, and whose viscosity increases significantly by an external electric field, that is, a suspension that causes the Winslow effect.

この電気粘性流体は、少ない電力によって流体の粘性を
大きく増大させ、またその応答性が非常に速いという特
徴を有するので、クラッチ、ダンパー ブレーキ、ショ
ックアブソーバ−アクチュエーターなどへの応用が試み
られている。
This electrorheological fluid has the characteristics of greatly increasing the viscosity of the fluid with a small amount of electric power, and its response is extremely fast, so attempts are being made to apply it to clutches, damper brakes, shock absorber actuators, etc.

従来、−射的に電気粘性流体としては、シリコーン系オ
イル、塩化ジフェニル、トランス油等の絶縁油に、表面
に水分を吸着させたセルロース、デンプン、シリカゲル
、イオン交換樹脂などを分散させたものが知られている
Conventionally, electrorheological fluids have been made by dispersing cellulose, starch, silica gel, ion exchange resins, etc. with water adsorbed on their surfaces in insulating oils such as silicone oils, diphenyl chloride, and transformer oils. Are known.

更に、これらを改良するため、いわゆる電気2重層説に
基づく自由イオンの移動を利用したもの、例えば、含水
させた強酸性あるいは強塩基性のイオン交換樹脂の微粒
子を芳香族カルボン酸の高級アルキルエステル中に分散
させたらのく特公昭52−30274号公報)、ハロゲ
ン化ジアリール化合物あるいはシリコーンオイルに含水
させた親水性固体微粒子を分散させたもの(特開昭58
−501178号公報)があり、これらは優れたウィン
ズロウ効果を示すことが知られている。
Furthermore, in order to improve these problems, we have developed a method that utilizes the movement of free ions based on the so-called electric double layer theory. (Japanese Patent Publication No. 52-30274), halogenated diaryl compounds or silicone oil dispersed with hydrophilic solid fine particles (Japanese Patent Publication No. 58/1983)
-501178), and these are known to exhibit an excellent Winslow effect.

また、自由イオンの移動を利用せず電子及びホールの移
動を利用する試みが提案されている。例えば、有機半導
体を絶縁油中に分散させる方法(特開昭61−2162
02号公報)、あるいは絶縁被覆した導電性粒子を絶縁
油中に分散させる方法(特開昭64−6093号公報)
などである。
Furthermore, attempts have been proposed to utilize the movement of electrons and holes instead of the movement of free ions. For example, a method of dispersing organic semiconductors in insulating oil (Japanese Patent Laid-Open No. 61-2162
02 Publication) or a method of dispersing insulating coated conductive particles in insulating oil (Japanese Unexamined Patent Publication No. 64-6093)
etc.

(発明が解決しようとする課題) ところが、電気2重層説に基づく自由イオンの移動を利
用した含水粒子を用いる電気粘性流体は、100°Cを
越えるような高温の環境での使用や、大きなせん断熱を
発生する高ズリ速度下での使用時などに、過大な電流が
流れ、また水分の飛散により経時的に電気粘性効果が減
少するという問題があり、実用化には至っていない。
(Problem to be solved by the invention) However, electrorheological fluids that use water-containing particles and utilize the movement of free ions based on the electric double layer theory cannot be used in high-temperature environments exceeding 100°C or have large cracks. It has not been put to practical use because of problems such as excessive current flowing when used at high shear speeds that cause insulation, and the electrorheological effect decreasing over time due to the scattering of moisture.

これらの問題に対する解決法として、上記電子及びホー
ルの移動を利用する方法があるが、これらは高温の環境
での使用や大きなせん断熱を発生する高ズリ速度下での
使用時などには安定した電気粘性効果を示すものの、自
由イオンの移動を利用したものと比較して、ウィンズロ
ウ効果が小さく実用化には問題がある。
As a solution to these problems, there is a method that utilizes the movement of electrons and holes, but these methods are unstable when used in high-temperature environments or under high shear rates that generate large shear heat. Although it exhibits an electrorheological effect, the Winslow effect is smaller than that using the movement of free ions, which poses a problem for practical use.

(課題を解決するための手段) 本発明は、上記事情に鑑みてなされたもので、外部電圧
を印加した際に高いウィンズロウ効果を示し、かつ高温
の環境での使用や、大きなせん断熱を発生する高ズリ速
度下での使用時などにも安定した電気粘性効果を示す電
気粘性流体を提供することを目的とするものである。
(Means for Solving the Problems) The present invention has been made in view of the above circumstances, and exhibits a high Winslow effect when an external voltage is applied, and is suitable for use in high-temperature environments and with large shear heat resistance. The object of the present invention is to provide an electrorheological fluid that exhibits a stable electrorheological effect even when used under high shear rates.

即ち、本発明は、電気絶縁性の油状液体中に微粒子を分
散させた電気粘性流体において、該微粒子が高分子固体
電解質からなることを特徴とする電気粘性流体である。
That is, the present invention is an electrorheological fluid in which fine particles are dispersed in an electrically insulating oily liquid, wherein the fine particles are made of a solid polymer electrolyte.

本発明に用いられる高分子固体電解質としては、分子内
にポリオキシアルキレン鎖、ポリメチルビニルエーテル
鎖、ポリエチレンスルフィド鎖、ポリ−β−プロピオラ
クトン鎖、ポリエチレンサクシネート鎖、ポリN−メチ
ルエチレンイミン鎖を有する高分子化合物と電解質塩の
との混合物、又は分子内にポリオキシアルキレン鎖、ポ
リメチルビニルエーテル鎖、ポリエチレンスルフィド鎖
、ポリ−β−プロピオラクトン鎖、ポリエチレンサクシ
ネート鎖、ポリN−メチルエチレンイミン鎖と解離基と
を有する高分子化合物が挙げられる。
The solid polymer electrolyte used in the present invention includes polyoxyalkylene chains, polymethyl vinyl ether chains, polyethylene sulfide chains, poly-β-propiolactone chains, polyethylene succinate chains, and polyN-methylethyleneimine chains in the molecule. A mixture of a polymer compound with an electrolyte salt, or a polyoxyalkylene chain, a polymethyl vinyl ether chain, a polyethylene sulfide chain, a poly-β-propiolactone chain, a polyethylene succinate chain, or a polyN-methylethylene chain in the molecule. Examples include polymeric compounds having an imine chain and a dissociative group.

これらの化合物以外でも実質上無水の状態においてイオ
ン電導性を有する高分子化合物であれば使用することが
できる。
Other than these compounds, any polymeric compound having ionic conductivity in a substantially anhydrous state can be used.

特に、ポリオキシアルキレン鎖を分子内に有する高分子
化合物と電解質塩との混合物、又はポリオキシアルキレ
ン鎖と解離基とを分子内に有する高分子化合物が電気粘
性流体として優れた性質を示す。
In particular, a mixture of a polymer compound having a polyoxyalkylene chain in the molecule and an electrolyte salt, or a polymer compound having a polyoxyalkylene chain and a dissociative group in the molecule exhibits excellent properties as an electrorheological fluid.

ポリオキシアルキレン鎖としては、ポリエチレンオキサ
イド、ポリプロピレンオキサイド、エチレンオキサイド
及びプロピレンオキサイドの共重合物、ポリテトラメチ
レングリコール及びこれらの混合物が挙げられるが、特
にポリエチレンオキサイドの場合に最も大きな電気粘性
効果を発生するので、最も好ましい。
Examples of polyoxyalkylene chains include polyethylene oxide, polypropylene oxide, copolymers of ethylene oxide and propylene oxide, polytetramethylene glycol, and mixtures thereof, but polyethylene oxide in particular produces the greatest electrorheological effect. Therefore, it is the most preferred.

本発明に用いる電解質塩としては、低分子量のものとし
て、Na5CN、KSCNS Na L  KI、Li
BF4、LiCFsSOs、L I CI O4、Li
PF、等が挙げられ、また高分子量のものとして、中和
された第一級、第二級、第三級アミン基、第四級アンモ
ニウム基及び中和されたスルホン酸基、カルボキシル基
等を分子内に有する高分子化合物等を挙げることができ
る。
The electrolyte salts used in the present invention include low molecular weight ones such as Na5CN, KSCNS Na L KI, Li
BF4, LiCFsSOs, L I CI O4, Li
PF, etc., and high molecular weight ones include neutralized primary, secondary, and tertiary amine groups, quaternary ammonium groups, and neutralized sulfonic acid groups, carboxyl groups, etc. Examples include polymeric compounds contained within the molecule.

特に高電圧を印加した際の安定性の点で、高分子量の電
解質塩を用いたものが好ましい。
In particular, from the viewpoint of stability when high voltage is applied, it is preferable to use a high molecular weight electrolyte salt.

本発明に用いる解離基としては特に制限はなく、例えば
中和された第一級、第二級、第三級アミン基、第四級ア
ンモニウム基及び中和されたスルホン酸基、カルボキシ
ル基等を挙げることができる。
The dissociative group used in the present invention is not particularly limited, and examples include neutralized primary, secondary, and tertiary amine groups, quaternary ammonium groups, and neutralized sulfonic acid groups and carboxyl groups. can be mentioned.

微粒子の形状は、できるだけ丸みを帯びた球状や楕円球
状の微粒子が好ましい。粒径としては、粒径の小さい方
が大きなウインズロウ効果を示す傾向があり、特に1〜
200μmが好ましい。
The shape of the fine particles is preferably as round as possible, spherical or ellipsoidal. Regarding the particle size, the smaller the particle size, the greater the Winslow effect.
200 μm is preferred.

また微粒子の粒径分布については、できるだけ単分散に
近いものが安定なウインズロウ効果を示しやすい。
Furthermore, regarding the particle size distribution of fine particles, particles that are as close to monodisperse as possible tend to exhibit a stable Winslow effect.

本発明に用いる高分子固体電解質粒子の含水率には制限
は無いが、特に高温の環境での使用や、大きなせん断熱
を発生する高ズリ速度下での使用時などに安定した電気
粘性効果を発生させる為には、カールフィッシャ法での
水分測定において、水分量が微粒子の重量の0.5%以
下であることが望ましい。従来の含水系電気粘性流体で
は、この程度の含水率では、殆ど電気粘性効果を示さな
かったものである。
Although there is no limit to the water content of the polymer solid electrolyte particles used in the present invention, stable electrorheological effects can be achieved, especially when used in high-temperature environments or at high shear rates that generate large shear heat. In order to generate this, it is desirable that the amount of water is 0.5% or less of the weight of the fine particles when measuring water using the Karl Fischer method. Conventional water-containing electrorheological fluids exhibit almost no electrorheological effect at this level of water content.

本発明に使用される油状液体としては、従来の電気粘性
流体で使用されてきたもの、例えば塩化ジフェニル、セ
パチン酸ジブチル、芳香族ポリカルボン酸高級アルキル
エステル、ハロフェニルアルキルエーテル、トランス油
、塩化パラフィン、フッ素系オイル、シリコーン系オイ
ル等があげられるが、これら以外でも、電気絶縁性や電
気絶縁破壊強度が高く、化学的に安定で分散微粒子との
比重差があまり大きくないものであればよい。
The oily liquids used in the present invention include those used in conventional electrorheological fluids, such as diphenyl chloride, dibutyl sepatate, higher alkyl esters of aromatic polycarboxylic acids, halophenyl alkyl ethers, trans oils, and chlorinated paraffin. , fluorine-based oil, silicone-based oil, etc., but any other material may be used as long as it has high electrical insulation properties and electrical breakdown strength, is chemically stable, and does not have a large difference in specific gravity from the dispersed fine particles.

本発明の誘電体微粒子の油状液体との混合体積比率は1
対99から50対50、好ましくは5対95から40対
60の範囲で選ばれる。
The mixing volume ratio of the dielectric fine particles of the present invention with the oily liquid is 1
The ratio is selected in the range of 5:99 to 50:50, preferably 5:95 to 40:60.

混合された電気粘性流体は、電気絶縁性をあまり低下さ
せない範囲で分散の安定化などの目的で添加剤を使用す
ることもできる。
Additives may be used in the mixed electrorheological fluid for purposes such as stabilizing dispersion, as long as the electrical insulation properties are not significantly reduced.

高分子固体電解質の製法としては、■ポリオキシアルキ
レン鎖等よりなる高分子化合物と電解質とを混合する方
法■ポリオキシアルキレン鎖等よりなる原料をビニル重
合反応させ、又はポリウレタン化、ポリウレア化、ポリ
エステル化、ポリアミド化、ポリイミド化等させること
により、より高分子量化した高分子化合物と電解質塩と
を混合させる方法■ポリオキシアルキレン鎖等よりなる
原料と解離基を有する原料とをビニル重合反応させ、又
はポリウレタン化、ポリウレア化、ポリエステル化、ポ
リアミド化、ポリイミド化等させることにより結合させ
る方法がある。
Methods for producing solid polymer electrolytes include: ■ A method of mixing a polymer compound consisting of polyoxyalkylene chains, etc. with an electrolyte; ■ A method of vinyl polymerization reaction of raw materials consisting of polyoxyalkylene chains, etc., or polyurethanization, polyureaization, polyester A method of mixing a polymer compound with a higher molecular weight and an electrolyte salt by converting it into polyoxyalkylene, polyamide, polyimidation, etc. A raw material consisting of a polyoxyalkylene chain, etc. and a raw material having a dissociative group are subjected to a vinyl polymerization reaction, Alternatively, there is a method of bonding by polyurethanization, polyureaization, polyesterification, polyamidation, polyimidation, etc.

得られた硬化した高分子固体電解質を粉砕し、場合によ
り分級し、減圧下乾燥することにより微粒子を得ること
ができる。
Fine particles can be obtained by pulverizing the obtained hardened polymer solid electrolyte, optionally classifying it, and drying it under reduced pressure.

(発明の効果) 本発明の電気粘性流体は、外部電圧を印加した際に大き
なせん断力が得られ、かつ高温の環境での使用や、大き
なせん断熱を発生する高ズリ速度下での使用時などにも
安定した電気粘性効果を示すため、クラッチ、ダンパー
 ブレーキ、ショックアブソーバ−アクチ一エーターな
どへ有効に応用できる。
(Effects of the Invention) The electrorheological fluid of the present invention can obtain a large shearing force when an external voltage is applied, and is suitable for use in high-temperature environments or at high shear rates that generate large shear heat. Since it exhibits a stable electrorheological effect, it can be effectively applied to clutches, damper brakes, shock absorber actuators, etc.

[実施例コ 以下、実施例により本発明の詳細な説明するが、本発明
の範囲がこれらの実施例にのみ限定されるものではない
[Examples] The present invention will be described in detail below with reference to Examples, but the scope of the present invention is not limited only to these Examples.

実施例1 500mlフラスコに、ポリエチレンオキサイド(分子
量400)100g、塩化メチレン100g5 LiC
10,20gを計り取り、60℃に加温し10時間攪拌
した。減圧下に塩化メチレンを脱溶剤し、これに、大日
本インキ化学工業製3官能ポリイソシアネート硬化剤バ
ーノックDN950(商品名)を175g加えた。10
分間撹拌したのち該混合物をテフロンプレート上に広げ
、80℃で10時間加熱した。得られた硬化物を粉砕分
級し、120℃減圧下で5時間乾燥し、平均粒径50μ
mの微粒子(以後微粒子1という。)を得た。カールフ
ィッシャー法で測定した含水率は、0,1%であった。
Example 1 In a 500 ml flask, 100 g of polyethylene oxide (molecular weight 400), 100 g of methylene chloride5 LiC
10.20 g was weighed out, heated to 60°C, and stirred for 10 hours. Methylene chloride was removed as a solvent under reduced pressure, and 175 g of a trifunctional polyisocyanate curing agent Burnock DN950 (trade name) manufactured by Dainippon Ink and Chemicals was added thereto. 10
After stirring for a minute, the mixture was spread on a Teflon plate and heated at 80° C. for 10 hours. The obtained cured product was pulverized and classified, dried at 120°C under reduced pressure for 5 hours, and the average particle size was 50 μm.
m fine particles (hereinafter referred to as fine particles 1) were obtained. The moisture content measured by Karl Fischer method was 0.1%.

実施例2 500m1フラスコに、ポリエチレンオキサイド(分子
量600)100g、 メタノール100 g。
Example 2 100 g of polyethylene oxide (molecular weight 600) and 100 g of methanol were placed in a 500 ml flask.

水20g、強酸性陽イオン交換樹脂ダウエックス50W
(20C)−400メツシユバス)のNa塩30gを計
り取り室温で10時間攪拌した。濾過にてメタノールと
水を取り除き、さらに減圧下130℃にて5時間乾燥し
微粒子(以後微粒子2という。)を得た。カールフィッ
シャー法で測定した含水率は、0.4%であった。
20g of water, strongly acidic cation exchange resin DOWEX 50W
(20C)-400 mesh bath) was weighed out and stirred at room temperature for 10 hours. Methanol and water were removed by filtration, and the mixture was further dried under reduced pressure at 130° C. for 5 hours to obtain fine particles (hereinafter referred to as fine particles 2). The moisture content measured by Karl Fischer method was 0.4%.

実施例3 500mlフラスコに、ポリメチルビニルエーテル(分
子j1600)100g、 メタノール100g、水2
0g、強酸性陽イオン交換樹脂ダウエックス50W(2
00−400メツシユバス)のNa塩30gを計り取り
室温で10時間攪拌した。
Example 3 In a 500 ml flask, 100 g of polymethyl vinyl ether (molecule j1600), 100 g of methanol, and 2 ml of water.
0g, strongly acidic cation exchange resin DOWEX 50W (2
00-400 mesh bath) was weighed out and stirred at room temperature for 10 hours.

濾過にてメタノールと水を取り除き、さらに減圧下13
0°Cにて5時間乾燥し微粒子(以後微粒子3という。
Methanol and water were removed by filtration, and further 13 minutes under reduced pressure.
Fine particles (hereinafter referred to as fine particles 3) were dried at 0°C for 5 hours.

)を得た。カールフィッシャー法で測定した含水率は、
0.4%であった。
) was obtained. The moisture content measured by Karl Fischer method is
It was 0.4%.

実施例4 500m1フラスコに、ポリエチレンオキサイドジメタ
クリレート(分子量400)100g、ジメチルホルム
アミド60m1、メタクリル酸L415g、日本油脂■
製有機過酸化物バーブチルO(商品名)0.6を計り取
り、10分間攪拌した後、テフロンプレート上に広げ、
アルゴン気流下で80°Cで10時間加熱した。得られ
た硬化物を粉砕分級した後120°C減圧下で5時間乾
燥させ、平均粒径50μmの微粒子(以後微粒子4とい
う。)を得た。カールフィッシャー法で測定した含水率
は、0.3%であった。
Example 4 In a 500ml flask, 100g of polyethylene oxide dimethacrylate (molecular weight 400), 60ml of dimethylformamide, 415g of methacrylic acid L, NOF ■
Weighed out 0.6 of the organic peroxide Barbutyl O (trade name), stirred it for 10 minutes, and then spread it on a Teflon plate.
Heated at 80°C for 10 hours under a stream of argon. The obtained cured product was pulverized and classified, and then dried at 120° C. under reduced pressure for 5 hours to obtain fine particles (hereinafter referred to as fine particles 4) with an average particle size of 50 μm. The moisture content measured by Karl Fischer method was 0.3%.

減圧下130℃にて5時間乾燥し微粒子(以後微粒子6
という。)を得た。カールフィッシャー法で測定した含
水率は、0.9%であった。
Fine particles (hereinafter referred to as fine particles 6) were dried at 130°C for 5 hours under reduced pressure.
That's what it means. ) was obtained. The moisture content measured by Karl Fischer method was 0.9%.

実施例5 50 omtフラスコに、ポリプロピレンオキサイドジ
メタクリレート(分子量400)100g。
Example 5 In a 50 omt flask, 100 g of polypropylene oxide dimethacrylate (molecular weight 400).

ジメチルホルムアミド60g1 メタクリル酸Li13
g、日本油脂■製有機過酸化物パーブチル00.6gを
計り取り、10分間攪拌した後、テフロンプレート上に
広げ、アルゴン気流下で80℃で10時間加熱した。得
られた硬化物を粉砕分級した後120℃減圧下で5時間
乾燥させ、平均粒径50μmの微粒子(以後微粒子5と
いう。)を得た。カールフィッシャー法で測定した含水
率は、0.3%であった。
Dimethylformamide 60g1 Li13 methacrylate
00.6 g of organic peroxide perbutyl manufactured by Nippon Oil & Fats Corporation was weighed out, stirred for 10 minutes, spread on a Teflon plate, and heated at 80° C. for 10 hours under an argon stream. The obtained cured product was pulverized and classified, and then dried at 120° C. under reduced pressure for 5 hours to obtain fine particles (hereinafter referred to as fine particles 5) with an average particle size of 50 μm. The moisture content measured by Karl Fischer method was 0.3%.

比較例1 強酸性陽イオン交換樹脂ダウエックス50W(200−
400メツシユバス)のNa塩30gを比較例2 NFmクロマトグラフィー用微結晶セルロース10gを
減圧下130℃にて5時間乾燥させた後25°C相対湿
度70%の条件下で吸湿させ含水率4.0%の微粒子(
以後微粒子7という。)を得た。
Comparative Example 1 Strongly acidic cation exchange resin DOWEX 50W (200-
Comparative Example 2 10 g of microcrystalline cellulose for NFm chromatography was dried at 130°C under reduced pressure for 5 hours, and then absorbed at 25°C and 70% relative humidity to have a water content of 4.0. % fine particles (
Hereinafter, it will be referred to as fine particle 7. ) was obtained.

実施例6 微粒子1〜7を大日本インキ化学工業■製モノサイザー
W−700()リメリット酸エステル、商品名)に15
重量%となるように混合分散させた。
Example 6 Fine particles 1 to 7 were added to Monocizer W-700 () Limellitic acid ester, trade name) manufactured by Dainippon Ink and Chemicals.
They were mixed and dispersed so as to achieve the same weight percent.

これらの混合液を同軸二重円筒型回転粘度計の内外筒間
に満たし所定の温度に設定した後、せん断速度100s
ec−1で内外筒間に4KVの交流電圧を印加すること
によって電気粘性効果を測定した。粘度計は、内筒の外
径が20mm、長さが50mm、外筒の内径が22mm
のものを用いた。
After filling these mixed liquids between the inner and outer cylinders of a coaxial double cylinder rotational viscometer and setting the temperature to a predetermined temperature, the shear rate was set at 100 s.
The electrorheological effect was measured by applying an AC voltage of 4 KV between the inner and outer cylinders using ec-1. The viscometer has an inner cylinder outer diameter of 20 mm, a length of 50 mm, and an outer cylinder inner diameter of 22 mm.
I used the one from

表、1 表1に、測定時の混合液の温度、発生したせん断応力及
び電流密度の測定結果を示す。微粒子1〜5では、室温
から110℃に至るまで安定したウィングロウ効果が得
られており、また、電流値も小さく消費電力が小さい。
Table 1 Table 1 shows the measurement results of the temperature of the mixed liquid at the time of measurement, the generated shear stress, and the current density. For fine particles 1 to 5, a stable wingrow effect was obtained from room temperature to 110° C., and the current value was also small, resulting in low power consumption.

一方、微粒子6は、110℃では、過大な電流が流れる
為ウィングロウ効果の測定が不能であった。微粒子7は
、110℃においては、含水率の低下によりウィングo
つ効果が消失した。
On the other hand, in the case of fine particles 6, it was impossible to measure the wingrow effect at 110° C. due to excessive current flowing therethrough. At 110°C, the fine particles 7 have wing o due to the decrease in water content.
One effect disappeared.

*:過大電流が流れ、測定不能であった。*: An excessive current flowed and measurement was impossible.

代理人 弁理士  高 橋 勝 利Agent Patent Attorney Katsutoshi Takahashi

Claims (1)

【特許請求の範囲】 1、電気絶縁性の油状液体中に微粒子を分散させた電気
粘性流体において、該微粒子が高分子固体電解質からな
ることを特徴とする電気粘性流体。 2、高分子固体電解質が分子内にポリオキシアルキレン
鎖、ポリメチルビニルエーテル鎖、ポリエチレンスルフ
ィド鎖、ポリ−β−プロピオラクトン鎖、ポリエチレン
サクシネート鎖、ポリN−メチルエチレンイミン鎖から
選ばれる少なくとも1種を有する高分子化合物と電解質
塩との混合物であることを特徴とする請求項1記載の電
気粘性流体。 3、電解質塩が高分子電解質塩であることを特徴とする
請求項2記載の電気粘性流体。 4、高分子固体電解質が分子内にポリオキシアルキレン
鎖、ポリメチルビニルエーテル鎖、ポリエチレンスルフ
ィド鎖、ポリ−β−プロピオラクトン鎖、ポリエチレン
サクシネート鎖、ポリN−メチルエチレンイミン鎖から
選ばれる少なくとも1種及び解離基を分子内に有する高
分子化合物であることを特徴とする請求項1記載の電気
粘性流体。 5、請求項2又は4のポリオキシアルキレン鎖がポリオ
キシエチレンであることを特徴とする請求項2ないし4
記載の電気粘性流体。 6、請求項1の微粒子が0.5重量%以下の水を含むこ
とを特徴とする請求項1ないし5記載の電気粘性流体。
[Scope of Claims] 1. An electrorheological fluid in which fine particles are dispersed in an electrically insulating oily liquid, characterized in that the fine particles are made of a solid polymer electrolyte. 2. The solid polymer electrolyte has at least one chain selected from polyoxyalkylene chains, polymethyl vinyl ether chains, polyethylene sulfide chains, poly-β-propiolactone chains, polyethylene succinate chains, and polyN-methylethyleneimine chains in the molecule. The electrorheological fluid according to claim 1, wherein the electrorheological fluid is a mixture of a polymer compound having seeds and an electrolyte salt. 3. The electrorheological fluid according to claim 2, wherein the electrolyte salt is a polymer electrolyte salt. 4. The solid polymer electrolyte has at least one chain selected from polyoxyalkylene chains, polymethyl vinyl ether chains, polyethylene sulfide chains, poly-β-propiolactone chains, polyethylene succinate chains, and polyN-methylethyleneimine chains in the molecule. The electrorheological fluid according to claim 1, wherein the electrorheological fluid is a polymer compound having a species and a dissociative group in the molecule. 5. Claims 2 to 4, wherein the polyoxyalkylene chain of Claim 2 or 4 is polyoxyethylene.
The electrorheological fluid described. 6. The electrorheological fluid according to any one of claims 1 to 5, wherein the fine particles of claim 1 contain 0.5% by weight or less of water.
JP16955390A 1990-06-27 1990-06-27 Electroviscous fluid Pending JPH0457892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16955390A JPH0457892A (en) 1990-06-27 1990-06-27 Electroviscous fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16955390A JPH0457892A (en) 1990-06-27 1990-06-27 Electroviscous fluid

Publications (1)

Publication Number Publication Date
JPH0457892A true JPH0457892A (en) 1992-02-25

Family

ID=15888604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16955390A Pending JPH0457892A (en) 1990-06-27 1990-06-27 Electroviscous fluid

Country Status (1)

Country Link
JP (1) JPH0457892A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04255795A (en) * 1990-08-25 1992-09-10 Bayer Ag Electroviscous liquid based on dispersion of polymer together with disperse phase containing electrolyte
WO2021015031A1 (en) * 2019-07-24 2021-01-28 日立オートモティブシステムズ株式会社 Electro-rheological fluid composition and cylinder device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04255795A (en) * 1990-08-25 1992-09-10 Bayer Ag Electroviscous liquid based on dispersion of polymer together with disperse phase containing electrolyte
WO2021015031A1 (en) * 2019-07-24 2021-01-28 日立オートモティブシステムズ株式会社 Electro-rheological fluid composition and cylinder device

Similar Documents

Publication Publication Date Title
Dong et al. Microwave-synthesized poly (ionic liquid) particles: a new material with high electrorheological activity
Zhang et al. The dielectric response of polar and non-polar nanodielectrics
Otsubo et al. Electrorheological properties of suspensions of inorganic shell/organic core composite particles
JPH04255795A (en) Electroviscous liquid based on dispersion of polymer together with disperse phase containing electrolyte
AU2006303341B2 (en) Use of nanomaterials in secondary electrical insulation coatings
An et al. Swelling-diffusion-interfacial polymerized core-shell typed polystyrene/poly (3, 4-ethylenedioxythiophene) microspheres and their electro-responsive characteristics
Awais et al. Investigation on optimal filler loadings for dielectric strength enhancement of epoxy/TiO2@ SiO2 nanocomposite
Kuramoto et al. The electrorheological property of a polyaniline-coated copolystyrene particle suspension
Kawaguchi Rheological properties of silica suspensions in polymer solutions
JPH0457892A (en) Electroviscous fluid
EP0432601A1 (en) Electroviscous fluids based on dispersed polyethers
EP0387857A1 (en) Electroviscous fluid
Jamail et al. Effect of nanofillers on the polarization and depolarization current characteristics of new LLDPE-NR compound for high voltage application
Liu et al. Fabrication of ammonium persulfate coated silica microsphere via chemical grafting and its electrorheology
Dong et al. Enhanced electrorheological effectiveness and temperature effect of suspensions based on poly (ionic liquid) s neutralized with mixed counterions
US6984343B1 (en) Fluid suspensions with electrorheological effect
Peng et al. Electrostatic‐Assembly of Carbon Nanotubes (CNTs) and Polymer Particles in Water: a Facile Approach to Improve the Dispersion of CNTs in Thermoplastics
Kuramoto et al. Electrorheological properties of poly (o-anisidine) and poly (o-anisidine)-coated silica suspensions
JPH03162494A (en) Electric field-responsive fluid
US5308525A (en) Electroviscous fluid comprising a base neutralized carboxyaryl group-containing organopolysiloxane polyelectrolyte
JPH03139598A (en) Electroviscous fluid
US5427706A (en) Electroviscous fluids containing metal sulfonate functional organopolysiloxanes
JPH04100897A (en) Electroviscous fluid
JPH03119098A (en) Electroviscous fluid
JP3115672B2 (en) Manufacturing method of electrorheological fluid composition