JPH045712Y2 - - Google Patents

Info

Publication number
JPH045712Y2
JPH045712Y2 JP1987189164U JP18916487U JPH045712Y2 JP H045712 Y2 JPH045712 Y2 JP H045712Y2 JP 1987189164 U JP1987189164 U JP 1987189164U JP 18916487 U JP18916487 U JP 18916487U JP H045712 Y2 JPH045712 Y2 JP H045712Y2
Authority
JP
Japan
Prior art keywords
air passage
air
cross
cooling
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1987189164U
Other languages
Japanese (ja)
Other versions
JPH0193321U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987189164U priority Critical patent/JPH045712Y2/ja
Publication of JPH0193321U publication Critical patent/JPH0193321U/ja
Application granted granted Critical
Publication of JPH045712Y2 publication Critical patent/JPH045712Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【考案の詳細な説明】 <産業上の利用分野> 本考案は、強制空冷頭上弁エンジンのシリンダ
ヘツドの冷却装置に関し、シリンダヘツドの吸・
排気ポート間に冷却風をスムーズに通してシリン
ダヘツドを強力に冷却できるものを提供する。
[Detailed description of the invention] <Industrial field of application> The present invention relates to a cylinder head cooling device for a forced air-cooled overhead valve engine.
To provide a cylinder head which can be powerfully cooled by smoothly passing cooling air between exhaust ports.

<従来技術> 本考案の対象となる頭上弁式空冷弁エンジンの
冷却装置の基本構造は、第1図及び第4図に示す
ように、強制空冷頭上弁エンジンEのシリンダヘ
ツド1の肉壁内で、吸・排気ポート2,3とプツ
シユロツド室4との間に縦走風路5を縦断状に走
らせるとともに、吸・排気ポート2,3間に横断
風路6を横断状に走らせ、横断風路6の出口7を
縦走風路5の途中部に連通させ、縦走風路5のう
ち、横断風路6の出口7よりも風上側を上流側風
路部分8とするとともに、それよりも風下側を下
流側風路部分10として、上流側風路部分8を通
過した冷却風と横断風路6を通過した冷却風とを
合流させて下流側風路部分10に通過させるよう
に構成した形成のものである。
<Prior art> The basic structure of the cooling system for an overhead valve type air-cooled valve engine, which is the object of the present invention, is as shown in FIGS. 1 and 4. A longitudinal air passage 5 is run vertically between the intake/exhaust ports 2, 3 and the push rod chamber 4, and a cross air passage 6 is run transversely between the intake/exhaust ports 2, 3 to prevent cross wind. The outlet 7 of the passage 6 is communicated with the middle part of the longitudinal air passage 5, and the part of the longitudinal air passage 5 that is upwind of the outlet 7 of the transverse air passage 6 is defined as the upstream air passage part 8, and The cooling air passing through the upstream air passage 8 and the cooling air passing through the cross-sectional air passage 6 are configured to merge with each other and pass to the downstream air passage 10. belongs to.

この形式の従来技術としては、実開昭60−
183225号公報に示すように(第4図参照)、シリ
ンダヘツド1の前後に亘り一本の縦走風路5を空
け、この縦走風路5の中央部に横断風路6を連通
させたものがある。
As a conventional technology of this type,
As shown in Japanese Patent No. 183225 (see Fig. 4), one longitudinal air passage 5 is provided before and after the cylinder head 1, and a transverse air passage 6 is connected to the center of the longitudinal air passage 5. be.

この場合、シリンダ内に吸気ポート2の入口と
排気ポート3の出口をまとめるために、両ポート
2,3の間隙は接近し、当該間隙に空けるべき横
断風路6の断面積はかなり細くなる。
In this case, in order to combine the inlet of the intake port 2 and the outlet of the exhaust port 3 in the cylinder, the gap between the two ports 2 and 3 becomes close, and the cross-sectional area of the cross-sectional air passage 6 to be provided in the gap becomes considerably narrow.

<考案が解決しようとする問題点> 上記従来技術では、横断風路6が細く、その入
口50はシリンダヘツド1の側方に空いているの
で、導風板により後方に案内される冷却風は、側
方の入口50から横断風路6に入り難いうえ、風
路抵抗も大きい。
<Problems to be solved by the invention> In the above-mentioned conventional technology, the cross-sectional air passage 6 is narrow and its entrance 50 is open on the side of the cylinder head 1, so the cooling air guided rearward by the baffle plate is , it is difficult to enter the cross air passage 6 from the side entrance 50, and the air passage resistance is also large.

そのうえ、横断風路6の出口7も上記入口50
と同様に細いので、横断風路6から縦走風路5に
流れる冷却風のうち、縦走風路5を流れる冷却風
に接触する面積が小さくなつて、横断風路6の冷
却風が縦走風路5の冷却風の粘性で引き出される
割合も低くなる。
Moreover, the outlet 7 of the cross-wind passage 6 is also connected to the inlet 50.
Since the cooling air flowing from the transverse air passage 6 to the longitudinal air passage 5 is thin, the area that comes into contact with the cooling air flowing through the longitudinal air passage 5 is small, and the cooling air from the transverse air passage 6 flows into the longitudinal air passage 5. The rate of extraction due to the viscosity of the cooling air in step 5 also decreases.

この結果、横断風路6に流れる冷却風量が少な
くなつて、シリンダヘツド1における両ポート
2,3の間隙、特に、高温になるにも拘わらず冷
却フアン51とは反対側の後部に配置される排気
ポート3の周肉壁部分の冷却性能は低下する。
As a result, the amount of cooling air flowing through the cross air passage 6 is reduced, and the cooling air is disposed in the gap between the two ports 2 and 3 in the cylinder head 1, especially in the rear part on the opposite side from the cooling fan 51 despite the high temperature. The cooling performance of the peripheral wall portion of the exhaust port 3 is degraded.

本考案は、吸・排気ポートの間隙の冷却性能を
高めることを技術的課題とする。
The technical problem of this invention is to improve the cooling performance of the gap between the intake and exhaust ports.

<問題点を解決するための手段> 上記課題を達成するための手段を、実施例に対
応する図面を用いて以下に説明する。
<Means for solving the problems> Means for achieving the above problems will be described below using drawings corresponding to embodiments.

即ち、本考案は、前記基本構造の強制空冷頭上
弁エンジンのシリンダヘツドの冷却装置におい
て、 横断風路6の出口7が臨む部分で縦走風路5の
下流側風路部分10の始端部12の通路断面積A
を、上流側風路部分8の終端部24の通路断面積
Bよりも拡大して、上流側風路部分8から下流側
風路部分10に流れ込む冷却風で横断風路6の出
口7の圧力を低下させて、横断風路6を流れる冷
却風を下流側風路部分10に吸い込ませるように
構成したことを特徴とするものである。
That is, the present invention provides a cooling system for a cylinder head of a forced air-cooled overhead valve engine having the above-mentioned basic structure, in which the starting end 12 of the downstream side air passage section 10 of the longitudinal air passage 5 is Passage cross-sectional area A
is larger than the passage cross-sectional area B of the terminal end 24 of the upstream air passage section 8, and the pressure at the outlet 7 of the cross air passage 6 is increased by the cooling air flowing from the upstream air passage section 8 to the downstream air passage section 10. It is characterized in that it is configured so that the cooling air flowing through the cross-sectional air passage 6 is sucked into the downstream air passage portion 10 by lowering the cooling air.

<作用> 下流側通路断面積A>上流側通路断面積Bであ
つて、下流側風路部分10の始端部12が上流側
風路部分8の終端部24に比べて拡大されている
ので、横断風路6の出口7で横断風路6を流れる
冷却風が縦走風路5の冷却風に接触する面積が大
きくなり、縦走風路5の冷却風の粘性で横断風路
6から冷却風が効率良く引き出される(即ち、当
該出口7に負圧が生じる)うえ、この冷却風が広
い面積の下流側風路部分10にスムーズに入り込
む。
<Operation> Downstream passage cross-sectional area A>Upstream passage cross-sectional area B, and since the starting end 12 of the downstream air passage section 10 is enlarged compared to the terminal end 24 of the upstream air passage section 8, At the exit 7 of the cross-sectional air passage 6, the area where the cooling air flowing through the cross-sectional air passage 6 comes into contact with the cooling air from the longitudinal air passage 5 increases, and the viscosity of the cooling air from the longitudinal air passage 5 causes the cooling air to flow from the cross-sectional air passage 6. In addition to being efficiently drawn out (that is, negative pressure is generated at the outlet 7), this cooling air smoothly enters the downstream air passage portion 10 having a large area.

このため、横断風路6から下流側風路部分10
に流れる冷却風量が増加して、両ポート2,3の
間隙部分を強力に冷却する。
For this reason, the downstream side air path portion 10 from the cross air path 6
The amount of cooling air flowing through increases, and the gap between both ports 2 and 3 is strongly cooled.

<考案の効果> 横断風路に流れる冷却風量が増加して、吸・排
気両ポートの間隙部分を強力に冷却するので、シ
リンダヘツドの全体の冷却性能が向上する。
<Effects of the invention> The amount of cooling air flowing through the cross-sectional air passage is increased and the gap between the intake and exhaust ports is strongly cooled, improving the overall cooling performance of the cylinder head.

<実施例> 以下、本考案の実施例を図面に基づいて述べ
る。
<Example> Hereinafter, an example of the present invention will be described based on the drawings.

第1図はシリンダヘツドの横断平面図、第2図
は同シリンダヘツドの背面図、第3図は強制空冷
頭上弁ガソリンエンジンの平面図であつて、当該
ガソリンエンジンEの前方に導風ケース14を配
置し、クランク軸に連動した冷却フアン11を導
風ケース14に収容するとともに、エンジンEの
シリンダブロツクの上方にシリンダヘツド1とヘ
ツドカバー12とを順番に固定する。
Fig. 1 is a cross-sectional plan view of the cylinder head, Fig. 2 is a rear view of the cylinder head, and Fig. 3 is a plan view of a forced air-cooled overhead valve gasoline engine. A cooling fan 11 interlocked with the crankshaft is housed in an air guide case 14, and a cylinder head 1 and a head cover 12 are sequentially fixed above the cylinder block of an engine E.

上記シリンダヘツド1の前寄りに吸気ポート2
を、また、後ろ寄りに排気ポート3を各々空け、
吸気ポート2に気化器15を介してエアクリーナ
16を接続し、排気ポート3にマフラ17を接続
する。
Intake port 2 near the front of the cylinder head 1 above
Also, open the exhaust port 3 toward the rear,
An air cleaner 16 is connected to the intake port 2 via a carburetor 15, and a muffler 17 is connected to the exhaust port 3.

そして、上記吸・排気ポート2,3の左側にプ
ツシユロツド室4を空け、当該両ポート2,3と
プツシユロツド室4との間の肉壁18に前後方向
に亘り縦走風路5を貫通し、両方のポート2,3
の間の肉壁20に横断風路6を左右方向に空け
て、その出口7を縦走風路5の中間位置付近に連
通させ、その入口22を両ポート2,3の右側中
央部に形成した凹部23に開口する。
Then, a push rod chamber 4 is provided on the left side of the intake/exhaust ports 2, 3, and a vertical air passage 5 is passed through the wall 18 between the ports 2, 3 and the push rod chamber 4 in the front and back direction. port 2,3
A transverse air passage 6 is left in the left-right direction in the wall 20 between the ports 2 and 3, and its outlet 7 is communicated with the vicinity of the middle position of the longitudinal air passage 5, and its inlet 22 is formed at the center right side of both ports 2 and 3. The recess 23 is opened.

上記縦走風路5のうち、横断風路6の出口7よ
りも風上側、即ち前方側を上流側風路部分8と
し、当該出口7よりも風下側、即ち後方側を下流
側風路部分10として、第1図に示すように、上
流側風路部分8をその終端部24に行くほど若干
先絞り状に形成し、下流側風路部分10もその後
端部25に行くほど若干先絞り状に形成する。
Of the longitudinal air passages 5, the upwind side, i.e., the front side, of the outlet 7 of the cross-sectional air passage 6 is defined as an upstream air passage section 8, and the leeward side, that is, the rear side of the exit 7, is defined as a downstream air passage section 10. As shown in FIG. to form.

また、下流側風路部分10の始端部12から上
流側風路部分8の終端部24にかけて縦走風路5
の径路を断続的に拡大して、 当該始端部12における通路断面積A>終端部
24における通路断面積B とする。
Further, the longitudinal air passage 5 extends from the starting end 12 of the downstream air passage portion 10 to the terminal end 24 of the upstream air passage portion 8.
The path is intermittently enlarged so that the passage cross-sectional area A at the starting end 12 is greater than the passage cross-sectional area B at the terminal end 24.

この結果、前記冷却フアン11で生じた冷却風
は導風ケース14に導かれて、縦走風路5を後方
に吹き抜けるが、その際に、拡大された下流側風
路部分10の始端部12で、横断風路6からの冷
却風を縦走風路5を流れる冷却風がその粘性で引
き出そうとするので、横断風路6の出口7の圧力
がその入口22に比べて低下して、横断風路6を
流れる冷却風は下流側風路部分10に吸い込まれ
て、横断風路6の冷却風量を増加させ、吸・排気
ポート2,3の間隙の冷却効率を向上できる。
As a result, the cooling air generated by the cooling fan 11 is guided to the air guide case 14 and blows backward through the longitudinal air passage 5, but at that time, the cooling air is introduced into the starting end 12 of the expanded downstream air passage portion 10. Since the cooling air flowing through the longitudinal air passage 5 attempts to draw out the cooling air from the cross air passage 6 with its viscosity, the pressure at the outlet 7 of the cross air passage 6 is lower than that at its inlet 22, and The cooling air flowing through the cross-sectional air passage 6 is sucked into the downstream air passage portion 10, increasing the amount of cooling air in the cross-sectional air passage 6, and improving the cooling efficiency in the gap between the intake and exhaust ports 2 and 3.

尚、当該実施例では、排気ポート3は縦走風路
5の後方側に、また、吸気ポート2は縦走風路5
の前方側に配置されるが、両ポート2,3の配置
は逆さになつても差し支えない。
In this embodiment, the exhaust port 3 is located on the rear side of the longitudinal air passage 5, and the intake port 2 is located on the rear side of the longitudinal air passage 5.
However, both ports 2 and 3 may be placed upside down.

しかしながら、本実施例では、第1図及び第2
図に示すように、下流側風路部分10の通路断面
積を上流側風路部分8のそれより大きく形成し、
吸気ポート2を上流側風路部分8に対して傾斜状
に、また、排気ポート3を下流側風路部分10に
並列状に各々配置することにより、排気ポート3
側の冷却風量を増加させて、排気ポート3を強力
に冷却できるようにしてある。
However, in this embodiment, FIGS.
As shown in the figure, the passage cross-sectional area of the downstream air passage portion 10 is formed larger than that of the upstream air passage portion 8,
By arranging the intake port 2 in an inclined manner with respect to the upstream air passage portion 8 and the exhaust port 3 in parallel with the downstream air passage portion 10, the exhaust port 3
By increasing the amount of cooling air on the side, the exhaust port 3 can be powerfully cooled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本考案の実施例を示し、第1
図はシリンダヘツドの横断平面図、第2図は同シ
リンダヘツドの背面図、第3図は強制空冷頭上弁
ガソリンエンジンの平面図、第4図は従来技術を
示す第1図相当図である。 1……シリンダヘツド、2……吸気ポート、3
……排気ポート、4……プツシユロツド室、5…
…縦走風路、6……横断風路、7……6の出口、
8……上流側風路部分、10……下流側風路部
分、24……8の終端部、E……強制空冷頭上弁
エンジン。
Figures 1 to 3 show embodiments of the present invention;
2 is a cross-sectional plan view of the cylinder head, FIG. 2 is a rear view of the cylinder head, FIG. 3 is a plan view of a forced air-cooled overhead valve gasoline engine, and FIG. 4 is a view equivalent to FIG. 1 showing the prior art. 1...Cylinder head, 2...Intake port, 3
...Exhaust port, 4...Push rod chamber, 5...
...Longitudinal wind path, 6...Cross wind path, 7...Exit of 6,
8...Upstream air passage portion, 10...Downstream air passage portion, 24...Terminal portion of 8, E...Forced air cooling overhead valve engine.

Claims (1)

【実用新案登録請求の範囲】 1 強制空冷頭上弁エンジンEのシリンダヘツド
1の肉壁内で、吸・排気ポート2,3とプツシ
ユロツド室4との間に縦走風路5を縦断状に走
らせるとともに、吸・排気ポート2,3間に横
断風路6を横断状に走らせ、横断風路6の出口
7を縦走風路5の途中部に連通させ、縦走風路
5のうち、横断風路6の出口7よりも風上側を
上流側風路部分8とするとともに、それよりも
風下側を下流側風路部分10として、上流側風
路部分8を通過した冷却風と横断風路6を通過
した冷却風とを合流させて下流側風路部分10
に通過させるように構成した強制空冷頭上弁エ
ンジンのシリンダヘツドの冷却装置において、 横断風路6の出口7が臨む部分で縦走風路5
の下流側風路部分10の始端部12の通路断面
積Aを、上流側風路部分8の終端部24の通路
断面積Bよりも拡大して、上流側風路部分8か
ら下流側風路部分10に流れ込む冷却風で横断
風路6の出口7の圧力を低下させて、横断風路
6を流れる冷却風を下流側風路部分10に吸い
込ませるように構成したことを特徴とする強制
空冷頭上弁エンジンのシリンダヘツドの冷却装
置。 2 上記排気ポート3を下流側風路部分10と並
列状に走らせて形成したことを特徴とする実用
新案登録請求の範囲第1項に記載の強制空冷頭
上弁エンジンのシリンダヘツドの冷却装置。
[Claims for Utility Model Registration] 1. A longitudinal air passage 5 runs longitudinally between the intake/exhaust ports 2, 3 and the push rod chamber 4 within the wall of the cylinder head 1 of the forced air-cooled overhead valve engine E. At the same time, a transverse air passage 6 is run transversely between the intake and exhaust ports 2 and 3, and the outlet 7 of the transverse air passage 6 is communicated with the middle part of the longitudinal air passage 5. The windward side of the outlet 7 of 6 is defined as an upstream air passage section 8, and the leeward side thereof is defined as a downstream air passage section 10. The cooling air that has passed is merged with the downstream air passage section 10.
In a cooling system for a cylinder head of a forced air-cooled overhead valve engine configured to allow air to pass through the longitudinal air passage 5 at a portion facing the outlet 7 of the cross air passage 6.
The passage cross-sectional area A of the starting end 12 of the downstream air passage portion 10 is expanded to be larger than the passage cross-sectional area B of the terminal end 24 of the upstream air passage portion 8, so that the passage cross-sectional area A of the starting end 12 of the downstream air passage portion 10 is expanded from the upstream air passage portion 8 to the downstream air passage. Forced air cooling characterized in that the pressure at the outlet 7 of the cross-sectional air passage 6 is reduced by the cooling air flowing into the section 10, and the cooling air flowing through the cross-sectional air passage 6 is sucked into the downstream air passage section 10. Overhead valve engine cylinder head cooling system. 2. The cooling device for a cylinder head of a forced air-cooled overhead valve engine as claimed in claim 1, wherein the exhaust port 3 is formed by running in parallel with the downstream air passage section 10.
JP1987189164U 1987-12-11 1987-12-11 Expired JPH045712Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987189164U JPH045712Y2 (en) 1987-12-11 1987-12-11

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987189164U JPH045712Y2 (en) 1987-12-11 1987-12-11

Publications (2)

Publication Number Publication Date
JPH0193321U JPH0193321U (en) 1989-06-20
JPH045712Y2 true JPH045712Y2 (en) 1992-02-18

Family

ID=31480216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987189164U Expired JPH045712Y2 (en) 1987-12-11 1987-12-11

Country Status (1)

Country Link
JP (1) JPH045712Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5345405B2 (en) * 2009-01-08 2013-11-20 本田技研工業株式会社 Cylinder head cooling structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60183225U (en) * 1984-05-16 1985-12-05 株式会社クボタ Forced air-cooled overhead valve engine skid section cooling system

Also Published As

Publication number Publication date
JPH0193321U (en) 1989-06-20

Similar Documents

Publication Publication Date Title
JP3155993B2 (en) Cylinder head cooling structure for multi-valve engine
JP2002339809A (en) Egr gas recirculating device of internal combustion engine
US4433651A (en) Helical intake port type suction unit for horizontal single-cylinder direct injection type diesel engine
JPH045712Y2 (en)
JP2016118121A (en) Intercooler control device
JP3137397B2 (en) Oil separator for blow-by gas reduction unit
JPH02301648A (en) Piston cooling mechanism for internal combustion engine
JP2017180392A (en) Intake air distribution device of internal combustion engine
JP2007315315A (en) Multi-cylinder engine
JP3392513B2 (en) V-type engine exhaust recirculation system
JP2526038Y2 (en) Cylinder head cooling water passage structure
JPS6221688Y2 (en)
JP2002106345A (en) Cooling structure of radiator
JPH0544423A (en) Blowby gas treating device for internal combustion engine
JPH0648094Y2 (en) Blow-by gas oil separator in internal combustion engine
JP3387193B2 (en) Exhaust gas recirculation device
JP3523498B2 (en) Engine swirl intake port
JP3108184B2 (en) Intake device for turbocharged engine
JPH0141861Y2 (en)
JPS6079115A (en) Exhaust gas purification device
KR100256921B1 (en) Mechanism of intake port for increasing intake area in cylinder head
JP2002519579A (en) Automobile with internal combustion engine and catalytic converter
JPH0139848Y2 (en)
JP2005248881A (en) Intercooler for vehicle
JPH0729226Y2 (en) Reed valve