JPH0456891B2 - - Google Patents

Info

Publication number
JPH0456891B2
JPH0456891B2 JP60005071A JP507185A JPH0456891B2 JP H0456891 B2 JPH0456891 B2 JP H0456891B2 JP 60005071 A JP60005071 A JP 60005071A JP 507185 A JP507185 A JP 507185A JP H0456891 B2 JPH0456891 B2 JP H0456891B2
Authority
JP
Japan
Prior art keywords
intermediate plate
spiral grooves
thrust
thrust bearing
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60005071A
Other languages
Japanese (ja)
Other versions
JPS61167712A (en
Inventor
Shotaro Mizobuchi
Yoshiichi Kimura
Katsumi Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP507185A priority Critical patent/JPS61167712A/en
Publication of JPS61167712A publication Critical patent/JPS61167712A/en
Publication of JPH0456891B2 publication Critical patent/JPH0456891B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水中ポンプや水中モータ等に使用さ
れる動圧効果を利用したスラスト軸受に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a thrust bearing that utilizes a dynamic pressure effect and is used in submersible pumps, submersible motors, and the like.

(従来の技術) 従来の動圧効果を利用したスラスト軸受は、回
転軸を支持する固定支持面に、正回転時に動圧効
果を生じさせる方向の一方向のみにスパイラル溝
を切り、該固定支持面と回転軸側の圧力部材との
相対回転する二面間に流体を介在させ、上記スパ
イラル溝に回転軸の回転に伴い例えば外側から内
側に向けて加圧された動圧を発生させて軸推力を
支持させていた。(例えば特公昭41−12121号公報
参照) また上記のような動圧型スラスト軸受の代りに
用いられるテイルテイング型スラスト軸受は、第
5図に示すように、回転軸1と一体に回転する上
部支持体2にデイスク3を固定し、該デイスク3
に対向して、固定軸4に対して球面5で支持され
回転しないようにピン6に係合された下部支持体
7の上部に、パツド8を回転しないように取り付
けて構成され、これらデイスク3とパツド8の両
対向面によつて軸推力を支持させていた。
(Prior art) A conventional thrust bearing that utilizes a dynamic pressure effect has a fixed support surface that supports a rotating shaft with a spiral groove cut in only one direction that produces a dynamic pressure effect during forward rotation. Fluid is interposed between the two relatively rotating surfaces of the surface and the pressure member on the rotating shaft side, and dynamic pressure is generated in the spiral groove from the outside to the inside as the rotating shaft rotates, and the shaft is rotated. It supported thrust. (For example, see Japanese Patent Publication No. 41-12121.) Also, a tailing type thrust bearing, which is used instead of the above-mentioned hydrodynamic type thrust bearing, has an upper support that rotates integrally with the rotating shaft 1, as shown in Fig. 5. A disk 3 is fixed to the body 2, and the disk 3 is
A pad 8 is attached so as not to rotate on the upper part of a lower support 7 which is supported by a spherical surface 5 with respect to the fixed shaft 4 and is engaged with a pin 6 so as not to rotate. The axial thrust was supported by both opposing surfaces of pad 8.

(発明が解鼓決しようとする問題点) 上記した従来のスパイラル溝付スラスト軸受を
水中ポンプや水中モータに取付けて駆動する際、
配線ミスのため羽根車軸を逆方向に回転させる場
合がある。このような場合には、通常、正回転時
に比べて逆回転時の負荷は小さいが、回転軸を支
持する固定支持面には正回転時に動圧効果を生じ
させる方向の一方向のみにスパイラル溝が切られ
ているので、逆回転時には動圧効果が全く生せ
ず、材料によつては焼付く可能性があるなどの欠
点があつた。
(Problems to be Solved by the Invention) When the above-described conventional spiral grooved thrust bearing is attached to a submersible pump or submersible motor and driven,
A wiring error may cause the impeller shaft to rotate in the opposite direction. In such cases, the load during reverse rotation is usually smaller than during forward rotation, but the fixed support surface that supports the rotating shaft has spiral grooves in only one direction, which produces a dynamic pressure effect during forward rotation. Since it is cut off, there is no dynamic pressure effect at all during reverse rotation, and there is a possibility of seizing depending on the material.

またテイルテイング型スラスト軸受を用いる場
合には、互いに摺動するデイスク3とパツド8の
両面に、使用中摩耗によりまた異物の侵入等によ
つて凹凸が生じると、該凹凸部に熱が発生し、こ
の熱による材料の凝着が行われるいわゆる凝着摩
耗が生じ易く、また比較的負荷容量は少なく、大
きな負荷特性を発揮させるために粘性の大きい潤
滑液が必要であり、この潤滑液のシールや冷却方
法または潤滑液の劣化などに問題があり、また温
泉、地熱水などの高温液体には使用できない等の
欠点があつた。
Furthermore, when using a tailing type thrust bearing, if unevenness occurs on both surfaces of the disk 3 and pad 8 that slide against each other due to wear during use or due to the intrusion of foreign matter, heat will be generated in the uneven portion. This heat tends to cause so-called adhesive wear, in which materials stick together, and the load capacity is relatively small, requiring a highly viscous lubricant to exhibit large load characteristics. There were problems with the cooling method, deterioration of the lubricant, and other drawbacks, such as the inability to use high-temperature liquids such as hot springs and geothermal water.

本発明は、流体摩擦を利用して損失動力を少く
すると共に、正回転のときばかりでなく、逆回転
させた場合でも、スラスト荷重が受けられること
を可能としたスラスト軸受を得ることを技術的課
題としている。
The present invention utilizes fluid friction to reduce power loss, and the technical object is to obtain a thrust bearing that can receive thrust loads not only when rotating in the forward direction but also when rotating in the reverse direction. This is an issue.

(問題点を解決するための手段) 本発明は、上記した従来技術の欠点を除去し、
技術的課題を解決するために、表面に、正転時に
動圧効果を生じさせる方向に形成されたスパイラ
ル溝を、また裏面には、逆回転時に動圧効果を生
じさせる方向に形成された表面より少ない数のス
パイラル溝をそれぞれ設けた硬質材料からなる中
間板を、相対回転する2個の対向する受板の間に
介在させたことを特徴としている。
(Means for solving the problems) The present invention eliminates the drawbacks of the prior art described above,
In order to solve the technical problem, we created spiral grooves on the front surface that are oriented in a direction that produces a dynamic pressure effect during forward rotation, and on the back surface that are formed in a direction that produces a dynamic pressure effect during reverse rotation. It is characterized in that an intermediate plate made of a hard material, each provided with a smaller number of spiral grooves, is interposed between two opposing receiving plates that rotate relative to each other.

(作用) 本発明は上記のように構成したことにより、回
転軸に荷重負荷をかけた状態で正方向に回転させ
ると、中間板の表面のスパイラル溝は、潤滑液を
周辺部より中心部へ向つて強制移動させるのに伴
い動圧を発生し、対向両面間に所要の厚さの液膜
が形成されて推力荷重を支える。他方、裏面のス
パイラル溝は、回転軸の回転につれて中間板も共
に回転しようとするのがその溝の向きが表面の溝
とは正面からみて逆方向に形成されているので動
圧効果が生ぜず、中心部より周辺部へ溝内の液が
排除されようとして両面間に吸引力が働くので、
該中間板は下部受板に完全に密着される。従つ
て、中間板をハウジング側の受板に接着剤等によ
つて接着する必要がない。
(Function) With the present invention configured as described above, when the rotating shaft is rotated in the forward direction with a load applied, the spiral grooves on the surface of the intermediate plate move the lubricating fluid from the periphery to the center. Dynamic pressure is generated along with the forced movement toward the opposite surface, and a liquid film of a required thickness is formed between the opposing surfaces to support the thrust load. On the other hand, with the spiral grooves on the back surface, the intermediate plate also tries to rotate as the rotating shaft rotates, but since the direction of the grooves is opposite to the grooves on the front surface when viewed from the front, no dynamic pressure effect occurs. , as the liquid in the groove is being removed from the center to the periphery, a suction force is created between both sides.
The intermediate plate is completely attached to the lower receiving plate. Therefore, there is no need to bond the intermediate plate to the receiving plate on the housing side using an adhesive or the like.

また始動時、配線等のミスで逆方向に回転させ
たときは、中間板の表側のスパイラル溝内の潤滑
液が周辺部へ排除されることになつて、上部受板
と中間板間に吸引力が働き、中間板は回転軸と一
体になつて回転するようになる。従つて動圧効果
は、該中間板の表面よりは数の少ない裏面のスパ
イラル溝と下部受部との間に形成されるのである
が、通常、逆回転時のスラスト荷重は正回転時の
スラスト荷重とは異なる場合が多く、また多くの
場合には、正回転時に比べて例えばポンプの場合
吐出圧が低いので羽根車に加わる水力荷重も少な
く、スラスト荷重即ち負荷が少ないので、中間板
の裏面に形成されるスパイラル溝の数は表面より
数が少くても、逆回転時のスラスト荷重を十分受
けることができる。
Additionally, if the rotation is made in the opposite direction due to a wiring error, etc. during startup, the lubricating fluid in the spiral groove on the front side of the intermediate plate will be expelled to the surrounding area and will be sucked between the upper receiving plate and the intermediate plate. The force acts, and the intermediate plate begins to rotate together with the rotating shaft. Therefore, the dynamic pressure effect is formed between the lower support and the spiral grooves on the back surface, which are fewer in number than the front surface of the intermediate plate, but normally the thrust load during reverse rotation is equal to the thrust load during forward rotation. The load is often different from the load, and in many cases, for example, in the case of a pump, the discharge pressure is lower than during forward rotation, so the hydraulic load applied to the impeller is small, and the thrust load, that is, the load, is small, so the back surface of the intermediate plate Even if the number of spiral grooves formed on the surface is smaller than that on the surface, it can sufficiently receive the thrust load during reverse rotation.

(実施例) 次に、本発明の実施例を図面と共に説明する。(Example) Next, embodiments of the present invention will be described with reference to the drawings.

第1図は、本発明の一実施例を示す縦断面図
で、回転軸1と一体に回転する上部支持体2に、
上部受板12が充填材を介して固定され、また固
定軸4に球面5で支持され回転しないようにピン
6に係合された下部支持体7に、下部受板13が
充填材を介して固定され、これら両受板12と1
3の間に、表裏両面にそれぞれ正面から見て逆方
向の向きのスパイラル溝をそれぞれ形成した硬質
材料からなる中間板10が挿入され、これらが、
内部に潤滑液の充満する軸受室14に収納されて
いる。なお、図中、15は中間板10が半径方向
に移動しないための支持体を示す。
FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention, in which an upper support body 2 that rotates together with a rotating shaft 1 has a
The upper support plate 12 is fixed via a filler material, and the lower support plate 13 is fixed via a filler material to a lower support body 7 which is supported by a spherical surface 5 on a fixed shaft 4 and engaged with a pin 6 so as not to rotate. are fixed, and these receiving plates 12 and 1
Between 3 and 3, an intermediate plate 10 made of a hard material having spiral grooves formed in opposite directions when viewed from the front is inserted on both the front and back sides, and these
It is housed in a bearing chamber 14 filled with lubricating fluid. In addition, in the figure, 15 indicates a support for preventing the intermediate plate 10 from moving in the radial direction.

上記中間板10は、第2図にその表面図が示さ
れているように、スパイラル溝11(図で黒い部
分)、また第3図その裏面図が示されているよう
に、表面のスパイラル溝11に比べて数の少ない
スパイラル溝11aが、それぞれ正面からみて互
いに向きを逆にして設けられており、表面のスパ
イラル溝11の向きは、該スパイラル溝11に接
して正回転する上部受板12によつて流体が中間
板10の周辺部より溝11に沿つて中心凹部11
c(図の黒い部分で凹部を形成している)へ誘導
され、両板10と12の間で動圧効果を生じるよ
うな方向に形成されている。
The intermediate plate 10 has a spiral groove 11 (black part in the figure) as shown in the front view in FIG. 2, and a spiral groove in the front surface as shown in the back view in FIG. The spiral grooves 11a, which are fewer in number than the spiral grooves 11, are provided in opposite directions when viewed from the front. As a result, the fluid flows from the peripheral part of the intermediate plate 10 along the groove 11 to the central recess 11.
c (the black part in the figure forms a recess), and is formed in a direction such that a dynamic pressure effect is produced between both plates 10 and 12.

そしてこの実施例では、中間板10を構成する
硬質材としてセラツクス材例えば炭化珪素
(SiC)、窒化珪素(Si3N4)が使用され、また両
受板12,13には、アルミナセラミツクス及び
超硬合金、高鉛青銅、普通鋳鉄が使用される。な
お、このセラミツクス材は、耐食性に優れている
反面、加工性が悪いため、その表面に3〜50μm
(ミクロンメータ、1/1000mm)の極めて浅いス
パイラル状の溝加工を施すことは容易ではない
が、本発明では、所定形状のセラツクス製の被加
工材の表面を、所定形状のスパイラル状の樹脂マ
スクで遮蔽した上、微粉のアルミナ質研削材を上
記樹脂マスク上に噴射するシヨツトブラスト加工
法により、極めて短時間にスパイラル溝を形成す
る。上記のスパイラル状の樹脂マスクは、ポリエ
ステル系の液体感光性樹脂を紫外線で露光・硬化
させたもので、製作方法としては、先ず、スパイ
ラル状溝のネガフイルムを作成し、これをガラス
板上に置き、この上に透明のカバーフイルムを重
ね、感光性の有する液体樹脂を注加する。また、
この樹脂の上に、さらに、ベース・フイルムをロ
ールでラミネートする。
In this embodiment, a ceramic material such as silicon carbide (SiC) or silicon nitride (Si 3 N 4 ) is used as the hard material constituting the intermediate plate 10, and alumina ceramics and super Hard metals, high lead bronze, and plain cast iron are used. Although this ceramic material has excellent corrosion resistance, it has poor workability, so the surface has a thickness of 3 to 50 μm.
(micron meter, 1/1000 mm) It is not easy to process extremely shallow spiral grooves, but in the present invention, the surface of a ceramic workpiece with a predetermined shape is processed using a spiral resin mask with a predetermined shape. A spiral groove is formed in an extremely short time by a shot blasting method in which fine powder alumina abrasive material is sprayed onto the resin mask. The above spiral-shaped resin mask is made by exposing and curing polyester-based liquid photosensitive resin with ultraviolet light.The manufacturing method is to first create a negative film with spiral grooves, and then place it on a glass plate. A transparent cover film is placed on top of this, and a photosensitive liquid resin is poured into it. Also,
A base film is further laminated onto this resin using a roll.

次に、紫外線ランプで数秒間露光させ、ネガフ
イルムを通して、露光した部分の樹脂は硬化し、
フイルムと同一形状のスパイラル溝形状をした樹
脂マスクが出来る。
Next, the resin in the exposed areas is cured by exposing it to an ultraviolet lamp for a few seconds and passing it through a negative film.
A resin mask with spiral grooves in the same shape as the film is produced.

本軸受に使用した樹脂マスクは、2層のベー
ス・フイルムと粘着性を有するスパイラル溝模様
を有する樹脂、及び保護用紙とからなつている。
シヨツト加工するときは保護用紙をとり、被加工
材表面に貼り付け、ベース・フイルムの一層をは
がした後行う。そしてここで使用されたセラツク
ス板は、2mmの厚さの常圧焼結製SiC(炭化珪
素)、Si3N4(窒化珪素)で、両面に10μmのスパ
イラル溝が前記シヨツトブラストを用いて加工さ
れている。
The resin mask used in this bearing consists of a two-layer base film, an adhesive resin with a spiral groove pattern, and a protective paper.
When performing shot processing, remove the protective paper, attach it to the surface of the workpiece, and remove one layer of the base film. The ceramic plate used here was made of pressureless sintered SiC (silicon carbide) and Si 3 N 4 (silicon nitride) with a thickness of 2 mm, and 10 μm spiral grooves were formed on both sides using the shot blasting method described above. Processed.

この実施例によれば、回転軸1に荷重負荷をか
けた状態で正方向(第2図で時計方向)に回転さ
せると、中間板10の表面のスパイラル溝11
は、潤滑液を周辺部より中心凹部11cへ向つて
強制移動させるのに伴い動圧を発生し、上部受板
12と中間板10の対向両面間に所要の厚さの液
膜が形成されて推力荷重を支える。他方、裏面の
スパイラル溝11aは、回転軸1の回転につれて
中間板10も共に回転しようとするが、その溝1
1aの向きが表面の溝11とは正面からみて逆方
向に形成されている(従つて透過してみたときは
同一の向きにみえる。)ので動圧効果が生ぜず、
中心凹部11cより周辺部へ溝11a内の液が排
除されようとして下部受板13と中間板10の両
面間に吸引力が働くので、該中間板10は下部受
板13に完全に密着される。従つて、中間板10
をハウジング側の受板に接着する必要がなくなる
ので、接着による熱膨脹差による割れの心配もな
く、高温用軸受としても使用することができる。
また回り止めを必要とせず簡単な構造となる。
According to this embodiment, when the rotating shaft 1 is rotated in the forward direction (clockwise in FIG. 2) with a load applied, the spiral groove 11 on the surface of the intermediate plate 10
Dynamic pressure is generated as the lubricant is forcibly moved from the periphery toward the center recess 11c, and a liquid film of a required thickness is formed between the opposing surfaces of the upper receiving plate 12 and the intermediate plate 10. Supports thrust loads. On the other hand, the spiral groove 11a on the back surface is such that as the rotating shaft 1 rotates, the intermediate plate 10 also tries to rotate.
Since the direction of the grooves 1a is opposite to the grooves 11 on the surface when viewed from the front (therefore, they appear to be in the same direction when seen through), no dynamic pressure effect occurs.
The liquid in the groove 11a is about to be removed from the central recess 11c to the periphery, and a suction force acts between both sides of the lower receiving plate 13 and the intermediate plate 10, so that the intermediate plate 10 is completely brought into close contact with the lower receiving plate 13. . Therefore, the intermediate plate 10
Since it is no longer necessary to bond the bearing plate to the receiving plate on the housing side, there is no fear of cracking due to differences in thermal expansion due to bonding, and it can also be used as a high-temperature bearing.
Furthermore, the structure is simple and does not require a rotation stopper.

また始動時、配線等のスで逆方向に回転させた
ときは、中間板10の表側のスパイラル溝11内
の潤滑液が周辺部へ排除されることになつて、上
部受板12と中間板10間に吸引力が働き、中間
板10は回転軸1と一体になつて回転するように
なる。従つて、動圧効果は、該中間板10の裏面
のスパイラル溝11aと下部受板13との間に形
成されるのであるが、通常、逆回転時には、正回
転時に比べて例えばポンプの場合吐出圧が低いの
で羽根車に加わる水力荷重も少なく、スラスト荷
重即ち負荷が少ないので、中間板の裏面に形成さ
れるスパイラル溝の数は表面より数が少くても、
逆回転時のスラスト荷重を十分受けることができ
る。
Furthermore, when the wiring or the like is rotated in the opposite direction during startup, the lubricant in the spiral groove 11 on the front side of the intermediate plate 10 is expelled to the periphery, causing the upper receiving plate 12 and the intermediate plate to A suction force acts between the intermediate plates 10 and 10, and the intermediate plate 10 rotates integrally with the rotating shaft 1. Therefore, a dynamic pressure effect is formed between the spiral groove 11a on the back surface of the intermediate plate 10 and the lower receiving plate 13, but normally, during reverse rotation, for example, in the case of a pump, the discharge is lower than during forward rotation. Since the pressure is low, the hydraulic load applied to the impeller is small, and the thrust load is small, so even if the number of spiral grooves formed on the back surface of the intermediate plate is smaller than on the front surface,
It can sufficiently bear the thrust load during reverse rotation.

またこの実施例では、中間板10を前記のよう
にセラツクス材で構成しているので、スパイラル
溝が3〜50μmの深さの溝で十分な軸受能力を発
揮することから、素材のセラツクスも経済的な肉
厚、例えばSiCでは1〜2mmの厚みでよく、しか
も前記のように、支持受板に対する吸引作用によ
つて金属材料等への接着の必要がないので、前記
のようにコスト的にも安価に製造でき、また接着
に伴う熱膨脹差による割れの心配もないので、高
温用としても都合がよい。また、潤滑液として水
のような粘性の小さい液を使用できるので、従来
のテイルテイング型スラスト軸受を用いる場合の
ような潤滑液のシールや冷却方法に問題がなく、
その劣化が生せず、耐荷重が大で信頼性に富み、
前記同様高温用にも適している。
Furthermore, in this embodiment, since the intermediate plate 10 is made of ceramic material as described above, the spiral groove exhibits sufficient bearing capacity even with a groove depth of 3 to 50 μm, making ceramic material economical. For example, for SiC, a thickness of 1 to 2 mm is sufficient, and as mentioned above, there is no need for adhesion to metal materials etc. due to the suction effect on the support plate, so it is cost-effective as mentioned above. It is also convenient for high-temperature applications because it can be manufactured at low cost and there is no fear of cracking due to differences in thermal expansion associated with adhesion. In addition, since a low viscosity liquid such as water can be used as the lubricant, there are no problems with sealing or cooling the lubricant as with conventional tailing type thrust bearings.
It does not deteriorate, has a large load capacity, and is highly reliable.
Like the above, it is also suitable for high temperature applications.

第4図は、スラスト軸受試験装置の概要図であ
つて、供試軸受21A,21Bの一方の軸受21
Aは、可変速モータ(10〜5000rpm)24よりプ
ーリ25を経て駆動される回転軸23の端に取り
付けられ、他方の軸受21Bは、油圧シリンダ
(〜5000Kgf)28、ロードセル30を経て推力
軸27の端部に取付けられる。図中、22は軸
受、25はプーリ、26はトルクメータ、29は
油圧ポンプを示す。
FIG. 4 is a schematic diagram of the thrust bearing testing device, in which one of the test bearings 21A and 21B is
A is attached to the end of a rotating shaft 23 driven by a variable speed motor (10 to 5000 rpm) 24 via a pulley 25, and the other bearing 21B is attached to the thrust shaft 27 via a hydraulic cylinder (up to 5000 Kgf) 28 and a load cell 30. attached to the end of the In the figure, 22 is a bearing, 25 is a pulley, 26 is a torque meter, and 29 is a hydraulic pump.

本発明のスラスト軸受を、上記第4図のスラス
ト軸受試験装置で、部材21A,21Bを両受板
としてその間に中間板を介在させてテストした。
回転数3000rpm(正回転及び逆回転)で、常温の
水道水中又は25〜75vol/vol%プロピレングリコ
ール水溶液中に没した環境下で正回転時における
スラスト荷重と逆回転時におけるスラスト荷重と
を変化させて試験をしたが、いづれの条件におい
ても極めて良好に回転した。そして、この時の表
面の溝本数は15本であり、裏面の溝本数は12本で
あつた。
The thrust bearing of the present invention was tested using the thrust bearing testing apparatus shown in FIG. 4, using members 21A and 21B as both receiving plates and an intermediate plate interposed therebetween.
At a rotation speed of 3000 rpm (forward rotation and reverse rotation), the thrust load during forward rotation and the thrust load during reverse rotation were changed in an environment submerged in tap water at room temperature or a 25 to 75 vol/vol% propylene glycol aqueous solution. I tested it under all conditions, and it rotated extremely well under all conditions. At this time, the number of grooves on the front surface was 15, and the number of grooves on the back surface was 12.

なお、本発明における中間板の裏面のスパイラ
ル溝本数が表面のスパイラル溝の本数と異なるも
のであるから、正回転時と逆回転時におけるスラ
スト荷重が異なる場合において好適に対応でき
る。また、本発明における中間板裏面のスパイラ
ル溝は、表面のスパイラル溝より数を少なくする
のに伴いスパイラル溝幅を適宜広くするなど、溝
の形状を変えて逆回転時のスラスト荷重に見合つ
た動圧を生ぜしめるように適宜設計変更すること
は可能である。
In addition, since the number of spiral grooves on the back surface of the intermediate plate in the present invention is different from the number of spiral grooves on the front surface, it is possible to suitably cope with cases where the thrust loads are different during forward rotation and reverse rotation. In addition, in the present invention, the number of spiral grooves on the back surface of the intermediate plate is smaller than the number of spiral grooves on the front surface, and the width of the spiral grooves is appropriately widened. It is possible to make appropriate design changes to generate pressure.

また、本発明の推力軸受における中間板の材質
は前記実施例におけるセラミツクス材ばかりでな
く、タングステンカーバイドその他の硬質材料を
含むことは勿論である。またこの推力軸受は、水
中ポンプや水中モータばかりでなく、一般の推力
軸受としても使用できる。
Further, the material of the intermediate plate in the thrust bearing of the present invention is not limited to the ceramic material in the above embodiment, but of course includes tungsten carbide and other hard materials. Furthermore, this thrust bearing can be used not only for submersible pumps and submersible motors, but also as general thrust bearings.

(発明の効果) 以上説明したように、本発明によれば、表裏両
面に正面からみて互いに向きを逆にし且つ裏面に
は表面と数の異なる(特に少ない)スパイラル溝
をそれぞれ形成して動圧効果を生じさせるように
したセラミツクス材等の硬質材料からなる中間板
を、2個の対向受板の間に介在させるようにして
推力軸受を構成したために、推力軸の正転時ばか
りなく、逆回転時においても、動圧効果を利用し
て正転時に比べて少ないがスラスト荷重を受ける
ことができ、また正逆何れの回転時においても、
動圧効果を生じない側には吸引力が生じるため、
対向受板との間に強力な接着作用を生じる。
(Effects of the Invention) As explained above, according to the present invention, the directions of the front and back surfaces are opposite to each other when viewed from the front, and the back surface is formed with a different (particularly fewer) number of spiral grooves than the front surface, thereby generating dynamic pressure. Because the thrust bearing is constructed by interposing an intermediate plate made of a hard material such as ceramic material that produces an effect between the two opposing receiving plates, the thrust shaft is not only rotated in the normal direction, but also when it rotates in the reverse direction. Also, by utilizing the dynamic pressure effect, it is possible to receive a thrust load, which is smaller than when rotating forward, and also during both forward and reverse rotation.
Since suction force is generated on the side where no dynamic pressure effect occurs,
A strong adhesive effect is created between it and the opposing receiving plate.

従つて、特に正回転時(正常回転時)、中間板
を該中間板を支持する金属板等への接着の必要が
なくなるので、接着による熱膨脹差による割れの
心配もなく、脆性的な材料、特に炭化珪素セラミ
ツクスを軸受材に使用することが可能となり、軸
受性能を向上させ、かつコスト的に安価に製造で
きる効果があるばかりでなく、従来のパツド型推
力軸受に比較して損失動力を1/5以下にするこ
とができる。
Therefore, especially during forward rotation (normal rotation), there is no need to bond the intermediate plate to a metal plate, etc. that supports the intermediate plate, so there is no fear of cracking due to differences in thermal expansion due to bonding, and brittle materials, In particular, it has become possible to use silicon carbide ceramics as a bearing material, which not only improves bearing performance and can be manufactured at low cost, but also reduces power loss by 1/2 compared to conventional pad-type thrust bearings. /5 or less.

また本発明では、特に中間板の裏面に形成され
るスパイラル溝の数を表面の溝数より少くしてい
るので、通常正転時に比べて負荷の小さい逆転時
の軸推力を過不足なく有効に支持することができ
る。
In addition, in the present invention, the number of spiral grooves formed on the back surface of the intermediate plate is smaller than the number of grooves on the surface, so that the axial thrust during reverse rotation, where the load is smaller than during normal rotation, is effectively used in just the right amount. can be supported.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の推力軸受の一実施例を示す縦
断面図、第2図は本発明の推力軸受の一部を構成
する中間板の表面に形成されるスパイラル溝の一
実施例を示す正面図、第3図は同じく中間板の裏
面に形成されるスパイラル溝の一実施例を示す正
面図、第4図はスラスト軸受試験装置の概要図、
第5図は従来のテイルテイングパツド型軸受の縦
断面図である。 1…回転軸、10…中間板、11…中間板表面
のスパイラル溝、11a…同裏面のスパイラル
溝、12…上部受板、13…下部受板。
FIG. 1 is a longitudinal sectional view showing an embodiment of the thrust bearing of the present invention, and FIG. 2 is a longitudinal sectional view showing an embodiment of the spiral groove formed on the surface of an intermediate plate that constitutes a part of the thrust bearing of the present invention. A front view, FIG. 3 is a front view showing an example of a spiral groove formed on the back surface of the intermediate plate, FIG. 4 is a schematic diagram of a thrust bearing testing device,
FIG. 5 is a longitudinal sectional view of a conventional tailing pad type bearing. DESCRIPTION OF SYMBOLS 1... Rotating shaft, 10... Intermediate plate, 11... Spiral groove on the surface of intermediate plate, 11a... Spiral groove on the back surface, 12... Upper receiving plate, 13... Lower receiving plate.

Claims (1)

【特許請求の範囲】 1 表面に、正転時に動圧効果を生じさせる方向
に形成されたスパイラル溝を、また裏面には、逆
回転時に動圧効果を生じさせる方向に形成された
スパイラル溝をそれぞれ設けた硬質材料からなる
中間板を、一方が回転し他方が固定された対向す
る2個の受板の間に介在させたスラスト軸受にお
いて、上記中間板の裏面のスパイラル溝の数を表
面のスパイラル溝よりも少なくしたことを特徴と
するスラスト軸受。 2 硬質材料からなる中間板を、セラミツクス材
で構成した特許請求の範囲第2項記載のスラスト
軸受。
[Claims] 1. Spiral grooves formed on the front surface in a direction that produces a dynamic pressure effect during forward rotation, and spiral grooves formed on the back surface in a direction that produces a hydrodynamic pressure effect during reverse rotation. In a thrust bearing in which an intermediate plate made of a hard material is interposed between two opposing receiving plates, one of which rotates and the other is fixed, the number of spiral grooves on the back surface of the intermediate plate is determined by the number of spiral grooves on the surface. A thrust bearing characterized by less than . 2. The thrust bearing according to claim 2, wherein the intermediate plate made of a hard material is made of a ceramic material.
JP507185A 1985-01-17 1985-01-17 Thrust bearing Granted JPS61167712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP507185A JPS61167712A (en) 1985-01-17 1985-01-17 Thrust bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP507185A JPS61167712A (en) 1985-01-17 1985-01-17 Thrust bearing

Publications (2)

Publication Number Publication Date
JPS61167712A JPS61167712A (en) 1986-07-29
JPH0456891B2 true JPH0456891B2 (en) 1992-09-09

Family

ID=11601152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP507185A Granted JPS61167712A (en) 1985-01-17 1985-01-17 Thrust bearing

Country Status (1)

Country Link
JP (1) JPS61167712A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4699525A (en) * 1985-07-18 1987-10-13 Ebara Corporation Thrust bearing
DE3622671C1 (en) * 1986-07-05 1987-08-27 Ford Werke Ag Thrust washer arrangement, especially for planet gears in a planet carrier

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240881A (en) * 1988-07-28 1990-02-09 Matsushita Electric Ind Co Ltd Connecting method for terminal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240881A (en) * 1988-07-28 1990-02-09 Matsushita Electric Ind Co Ltd Connecting method for terminal

Also Published As

Publication number Publication date
JPS61167712A (en) 1986-07-29

Similar Documents

Publication Publication Date Title
JPH0240881B2 (en)
US4699525A (en) Thrust bearing
JPS6014615A (en) Thrust bearing and it's manufacture
JP2017207211A (en) Decorative sheet
JPH0456891B2 (en)
JPH0424572B2 (en)
EP2060805A1 (en) Method for producing a hydrodynamic thrust bearing and hydrodynamic thrust bearing
JPH0456892B2 (en)
JPS6199721A (en) Submerged thrust bearing
JPH11280755A (en) Fluid bearing device and spindle motor using the same
JPS61206822A (en) Static pressure bearing structure
JPS6199718A (en) Thrust bearing
JPH0456893B2 (en)
JPH0424573B2 (en)
JP4423803B2 (en) Horizontal shaft type pump
JPS624920A (en) Thrust bearing
JPH0517399B2 (en)
JPS62288719A (en) Dynamic pressure thrust bearing
JPS61223320A (en) Thrust bearing
JPH07139543A (en) Dynamic pressure bearing
JPS60227011A (en) Thrust bearing
JPS59106718A (en) Dynamic-pressure type fluid bearing apparatus
KR920002158B1 (en) Thrust bearing
JPH0211617Y2 (en)
JP2004116623A (en) Fluid bearing device