JPH0456462A - Line sensor and substrate - Google Patents

Line sensor and substrate

Info

Publication number
JPH0456462A
JPH0456462A JP2166068A JP16606890A JPH0456462A JP H0456462 A JPH0456462 A JP H0456462A JP 2166068 A JP2166068 A JP 2166068A JP 16606890 A JP16606890 A JP 16606890A JP H0456462 A JPH0456462 A JP H0456462A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
substrate
conversion element
line sensor
glass fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2166068A
Other languages
Japanese (ja)
Inventor
Tadashi Yamashita
山下 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP2166068A priority Critical patent/JPH0456462A/en
Publication of JPH0456462A publication Critical patent/JPH0456462A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Facsimile Heads (AREA)

Abstract

PURPOSE:To easily connect a photoelectric converting element and to miniaturize the device by using a substrate composed of a unidirectional glass fiber-resin composite orientating glass fiber in the direction of arranging the photoelectric converting element. CONSTITUTION:A substrate 2 is composed of the unidirectional glass fiber-resin composite impregnating and curing matrix resin 6 while unidirectionally orientating glass fiber 5 and on the surface, a circuit 7 is formed for controlling a photoelectric converting element 3. On the substrate 2, plural elements 3 are linearly arranged in the direction of orientating the fiber 5, and a protection cover 4 composed of a transparent material is adhered by an adhesive agent. Thus, the substrate 2 can be obtained with the almost same linear expansion coefficients as that of the element 3. Further, by using this substrate 2, the elements 3 can be easily connected and stably mounted at prescribed positions and the device can be miniaturized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は線状に配置された光電変換素子を有するライン
センサ、ならびにラインセンサ用の基板に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a line sensor having photoelectric conversion elements arranged in a linear manner, and a substrate for the line sensor.

〔従来の技術〕[Conventional technology]

ファクシミリ、イメージスキャナ等においては、原稿を
線状に読取るためにラインセンサが採用されている。こ
のようなラインセンサは、CCD(Charge Co
upled Device)等の光電変換素子が基板に
線状に配置されている。
Line sensors are used in facsimiles, image scanners, and the like to read documents in a line. Such a line sensor is a CCD (Charge Co.
Photoelectric conversion elements, such as an uploaded device (upled device), are arranged in a line on a substrate.

第1図は従来の密着型のラインセンサを示す斜視図、第
6図はそのA−A断面図である。図において、ラインセ
ンサ1は、基板2上にCCD等の複数の光電変換素子3
が端部を重ねて2段に線状に装着されている。そして光
電変換素子3を覆うように、船形の透明な保護カバー4
が基板2に取付けられている。
FIG. 1 is a perspective view showing a conventional contact type line sensor, and FIG. 6 is a sectional view taken along line A-A. In the figure, a line sensor 1 includes a plurality of photoelectric conversion elements 3 such as CCDs on a substrate 2.
are installed linearly in two stages with their ends overlapping. Then, a boat-shaped transparent protective cover 4 is placed so as to cover the photoelectric conversion element 3.
is attached to the board 2.

上記のラインセンサ1では、保護カバー4から入った光
は光電変換素子3において光電変換され、その信号は基
板2に形成された回路(、図示省略)から取出される。
In the above line sensor 1, light entering from the protective cover 4 is photoelectrically converted in the photoelectric conversion element 3, and the signal is extracted from a circuit (not shown) formed on the substrate 2.

ラインセンサ1においては、光電変換素子3は基板2に
機械的に装着され、基板2に形成された回路に電気的に
接続しているから、両者の線膨張係数の差が小さいこと
が要求される。一般に光電変換素子3はシリコン等の半
導体が使用され、線膨張係数は4〜6 X 10−’ 
/ ℃である。ところが−般にプリント回路基板に使用
されているエポキシ樹脂の線膨張係数は45〜65 X
 10−’ / ’Cであって、光電変換素子3よりは
るかに大きい。またこのような樹脂をガラス繊維クロス
に含浸、硬化させたガラス繊維−エポキシ樹脂複合材も
10〜15 X 10−’/℃であって、光電変換素子
3より大きく、回路基板として一般的な樹脂基板は使用
できない。
In the line sensor 1, the photoelectric conversion element 3 is mechanically attached to the substrate 2 and electrically connected to the circuit formed on the substrate 2, so it is required that the difference in linear expansion coefficient between the two be small. Ru. Generally, a semiconductor such as silicon is used for the photoelectric conversion element 3, and the linear expansion coefficient is 4 to 6 x 10-'
/℃. However, the coefficient of linear expansion of epoxy resin generally used for printed circuit boards is 45 to 65
10-'/'C, which is much larger than the photoelectric conversion element 3. Furthermore, a glass fiber-epoxy resin composite material obtained by impregnating and curing such a resin into a glass fiber cloth has a temperature of 10 to 15 The board cannot be used.

このため従来は基板2として線膨張係数の小さいセラミ
ックス基板を用いていたが、セラミックス基板の場合も
線膨張係数が6X10−’/’C以上であり、光電変換
素子3より高い。従って光電変換素子3を単純に並べた
だけでは、熱膨張により光電変換素子3間に間隙が生じ
る。このためラインセンサ1の温度変化による光電変換
素子3と基板2のずれを吸収するために、第6図に示す
ように、光電変換素子3の端部を重ねて2段に装着して
いる。
For this reason, a ceramic substrate with a small coefficient of linear expansion has conventionally been used as the substrate 2, but the coefficient of linear expansion of the ceramic substrate is also 6X10-'/'C or more, which is higher than that of the photoelectric conversion element 3. Therefore, if the photoelectric conversion elements 3 are simply arranged, gaps will be created between the photoelectric conversion elements 3 due to thermal expansion. Therefore, in order to absorb the misalignment between the photoelectric conversion element 3 and the substrate 2 due to temperature changes in the line sensor 1, the photoelectric conversion elements 3 are mounted in two stages with their ends overlapped, as shown in FIG.

ところが、このように光電変換素子3を2段に重ねて基
板2に装着する構造では、光電変換素子3と基板2の接
続構造が複雑になり、装置が大型化するほか、光電変換
素子3を所定位置に安定して装着することが困難である
などの問題点があった。
However, in this structure in which the photoelectric conversion elements 3 are stacked in two stages and mounted on the substrate 2, the connection structure between the photoelectric conversion elements 3 and the substrate 2 becomes complicated, the device becomes larger, and the photoelectric conversion elements 3 are There have been problems such as difficulty in stably attaching it to a predetermined position.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の第1の目的は、上記のような問題点を解決する
ため、光電変換素子の接続が容易で、所定位置に安定し
て装着でき、かつ装置を小型化できるラインセンサを提
供することである。
A first object of the present invention is to provide a line sensor in which a photoelectric conversion element can be easily connected, the sensor can be stably mounted in a predetermined position, and the device can be miniaturized, in order to solve the above problems. It is.

本発明の第2の目的は、光電変換素子とほぼ同等の線膨
張係数を有するラインセンサ用基板を提供することであ
る。
A second object of the present invention is to provide a line sensor substrate having a coefficient of linear expansion substantially equivalent to that of a photoelectric conversion element.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は次のラインセンサおよび基板である。 The present invention is the following line sensor and substrate.

(1)線状に配置された光電変換素子と、この光電変換
素子を装着するように、前記光電変換素子の配置方向に
ガラス繊維を配向させた一方向ガラス繊維−樹脂複合材
からなる基板と、前記光電変換素子を覆うように設けら
れた透光性を有する保護カバーとよりなることを特徴と
するラインセンサ。
(1) A photoelectric conversion element arranged linearly, and a substrate made of a unidirectional glass fiber-resin composite material in which glass fibers are oriented in the direction in which the photoelectric conversion element is arranged so that the photoelectric conversion element is mounted. A line sensor comprising: a light-transmitting protective cover provided to cover the photoelectric conversion element.

(2)光電変換素子は1個または複数個が線状に配置さ
れたものである上記(1)記載のラインセンサ。
(2) The line sensor according to (1) above, wherein one or more photoelectric conversion elements are arranged in a line.

(3)保護カバーが光電変換素子を全体的に覆うように
基板に固着された上記(1)または(2)記載のライン
センサ。
(3) The line sensor according to (1) or (2) above, wherein the protective cover is fixed to the substrate so as to entirely cover the photoelectric conversion element.

(4)樹脂がエポキシ樹脂である上記(1)ないしく3
)のいずれかに記載のラインセンサ。
(4) The resin is epoxy resin (1) or 3 above.
) line sensor described in any of the above.

(5)線状に配置された光電変換素子を装着するための
基板であって、光電変換素子の配置方向にガラス繊維を
配向させた一方向ガラス繊維−樹脂複合材からなること
を特徴とするラインセンサ用基板。
(5) A substrate for mounting photoelectric conversion elements arranged linearly, characterized by being made of a unidirectional glass fiber-resin composite material in which glass fibers are oriented in the direction in which the photoelectric conversion elements are arranged. Board for line sensor.

(6)樹脂がエポキシ樹脂である上記(5)記載の基板
(6) The substrate according to (5) above, wherein the resin is an epoxy resin.

(7)基板が回路用の導体層を有する上記(5)または
(6)記載の基板。
(7) The board according to (5) or (6) above, wherein the board has a conductor layer for a circuit.

(8)基板が光電変換素子制御用の回路を形成した回路
基板である上記(5)ないしく7)のいずれかに記載の
基板。
(8) The board according to any one of (5) to 7) above, wherein the board is a circuit board on which a circuit for controlling a photoelectric conversion element is formed.

本発明において、ラインセンサは、線状に配置された光
電変換素子と、この光電変換素子を装着する基板と、光
電変換素子を覆う透光性を有する保護カバーとを備えて
いる。
In the present invention, the line sensor includes photoelectric conversion elements arranged in a line, a substrate on which the photoelectric conversion elements are mounted, and a light-transmitting protective cover that covers the photoelectric conversion elements.

光電変換素子としては、COD等の光を電気信号に変換
するものを用いることができ、原稿等の被検知体を線状
に読取るように、1個または複数個が線状に配置される
As the photoelectric conversion element, one that converts light into an electrical signal such as COD can be used, and one or more photoelectric conversion elements are arranged in a line so that a detected object such as a document is read in a line.

基板は光電変換素子を装着するための基板であり、回路
形成用の導体層を形成した基板、あるいは光電変換素子
制御用の回路を形成した回路基板とすることができる。
The substrate is a substrate on which a photoelectric conversion element is mounted, and can be a substrate on which a conductor layer for forming a circuit is formed, or a circuit board on which a circuit for controlling the photoelectric conversion element is formed.

保護カバーは光電変換素子を全体的に覆うように基板に
固着することができ、少なくとも光電変換素子に対向す
る部分が透光性を有するように透明性の材料により形成
される。透明性の材料としてはガラス、プラスチック等
が使用できる。この保護カバーを基板に固着するために
は、エポキシ系の接着剤等により接着することができる
The protective cover can be fixed to the substrate so as to completely cover the photoelectric conversion element, and is made of a transparent material so that at least a portion facing the photoelectric conversion element has light-transmitting properties. Glass, plastic, etc. can be used as the transparent material. In order to fix this protective cover to the substrate, it can be bonded with an epoxy adhesive or the like.

本発明において、基板を構成する一方向ガラス繊維−樹
脂複合材は、ラインセンサにおいて線方向に配置される
光電変換素子の配置方向(長手方向)にガラス繊維を配
向させ、マトリックス樹脂を含浸させて、硬化させた複
合材である。
In the present invention, the unidirectional glass fiber-resin composite material constituting the substrate is made by oriented the glass fibers in the arrangement direction (longitudinal direction) of the photoelectric conversion elements arranged in the line direction in the line sensor and impregnated with matrix resin. , a cured composite material.

上記複合材に強化繊維として用いられるガラス繊維とし
ては、線膨張係数が6XIO−’/”C以下、好ましく
は4 X 1.0−’ / ℃以下のものが使用できる
As the glass fibers used as reinforcing fibers in the composite material, those having a linear expansion coefficient of 6XIO-'/"C or less, preferably 4X1.0-'/"C or less can be used.

一般に、プリント基板に用いられるEガラスは線膨張係
数が5xlO−’/”Cで、使用可能であるが、さらに
線膨張係数の低いものが好ましい。
Generally, E-glass used for printed circuit boards has a coefficient of linear expansion of 5xlO-'/''C and can be used, but a glass with an even lower coefficient of linear expansion is preferable.

本発明で用いるマトリックス樹脂としては、上記ガラス
繊維を固定できるものであれば制限はないが、エポキシ
樹脂(−船釣には線膨張係数45〜65 X 10−G
/’C)、フェノール樹脂(同25〜60 X 10−
G/”C)、ポリイミド樹脂(同25〜60X10−’
/’C)、ジアリルフタレート樹脂(同45〜65 X
 10−’ / ’C)、不飽和ポリエステル樹脂(同
55〜100XIO−’/℃)。
The matrix resin used in the present invention is not limited as long as it can fix the above-mentioned glass fibers, but epoxy resin (for boat fishing, linear expansion coefficient 45-65 x 10-G
/'C), phenolic resin (25-60 x 10-
G/"C), polyimide resin (25~60X10-'
/'C), diallyl phthalate resin (45-65
10-'/'C), unsaturated polyester resin (55 to 100XIO-'/'C).

ビニルエステル樹脂(同55〜100 X 10−’ 
/ ℃)等の熱硬化性樹脂が好ましく、中でもエポキシ
樹脂が好ましい。
Vinyl ester resin (55-100 x 10-'
/°C) and the like are preferred, and epoxy resins are especially preferred.

エポキシ樹脂としては、未硬化エポキシ樹脂および硬化
剤からなるエポキシ樹脂組成物が使用できる。未硬化エ
ポキシ樹脂は、エポキシ基を有するオリゴマーまたはプ
レポリマーなどの総称であって、一般にはビスフェノー
ル系エポキシオリゴマーまたはプレポリマーを代表とす
るが、エポキシ化フェノール、ノボラックプレポリマー
、エポキシ化ウレタンプレポリマーなど、幹構造が非エ
ポキシプレポリマーであっても、エポキシ基を含有する
形に変性されたものも同様に未硬化エポキシ樹脂として
用いることができる。このような未硬化エポキシ樹脂と
しては、液状ないし固体状のものが用いられ、液状樹脂
の場合には一般に約101〜10’cPs (25℃)
、好ましくは約102〜lO″’ cPs(25℃)の
粘度のものが用いられる。
As the epoxy resin, an epoxy resin composition consisting of an uncured epoxy resin and a curing agent can be used. Uncured epoxy resin is a general term for oligomers or prepolymers having epoxy groups, and is generally represented by bisphenol-based epoxy oligomers or prepolymers, but also includes epoxidized phenol, novolac prepolymers, epoxidized urethane prepolymers, etc. Even if the backbone structure is a non-epoxy prepolymer, one modified to contain an epoxy group can be similarly used as an uncured epoxy resin. Such uncured epoxy resins are either liquid or solid, and in the case of liquid resins, they generally have a temperature of about 101 to 10'cPs (at 25°C).
, preferably having a viscosity of about 102 to 10'' cPs (25°C).

エポキシ樹脂用硬化剤としては、周知のもののうち9重
合を実質的に阻害しないものであれば、いずれのものも
用いることができる。具体的には、例えば脂肪族アミン
類、酸無水物、ジシアンジアミド、ヒドラジン類、イミ
ダゾール類、三フッ化ホウ素のアミン錯体化合物などを
あげることができるが、中でも好ましいものは、増粘後
の樹脂組成物の粘度変化を生じ難い、つまり保存安定性
に優れた硬化剤であるジシアンジアミド、ヒドラジン類
、イミダゾール類、三フッ化ホウ素のアミン錯体化合物
などがある。
As the curing agent for epoxy resin, any known curing agent can be used as long as it does not substantially inhibit polymerization. Specifically, examples include aliphatic amines, acid anhydrides, dicyandiamide, hydrazines, imidazoles, and amine complex compounds of boron trifluoride, but among them, preferred are resin compositions after thickening. Examples include dicyandiamide, hydrazines, imidazoles, and amine complex compounds of boron trifluoride, which are curing agents that do not easily change the viscosity of the product, that is, have excellent storage stability.

本発明で基板として用いられる一方向ガラス繊維−樹脂
複合材は、ガラス繊維を一方向に引揃え、マトリックス
樹脂を含浸させた状態で、プルトルージョン法により引
抜加工を行い、そのまま硬化させて製造される。
The unidirectional glass fiber-resin composite used as a substrate in the present invention is produced by aligning glass fibers in one direction, impregnating them with matrix resin, drawing them using the pultrusion method, and then curing them as they are. Ru.

複合材中に占めるガラス繊維は、容積分率で30%以上
、望ましくは40〜70%とするのが好ましい。
The volume fraction of glass fibers in the composite material is preferably 30% or more, preferably 40 to 70%.

複合材の繊維配向方向の線膨張係数は、用いるガラス繊
維およびマトリックス樹脂の種類、ならびに含有割合等
により異なるので、光電変換素子のそれに近い線膨張係
数、好ましくは4〜6X10−G/℃となるように、こ
れらを調整する。
The linear expansion coefficient of the composite material in the fiber orientation direction varies depending on the type of glass fiber and matrix resin used, the content ratio, etc., so the linear expansion coefficient is close to that of the photoelectric conversion element, preferably 4 to 6 x 10-G/°C. Adjust these accordingly.

上記の複合材では、ガラス繊維が一方向に配向されてい
るので、ガラス繊維の充填密度が高くなり、複合材の線
膨張率がガラス繊維のそれに近くなり、光電変換素子の
線膨張係数に近づけることができる。低線膨張係数のガ
ラス繊維を用いる場合でも、従来のプリント基板のよう
にクロスを用いると、線膨張係数は10〜12X10−
’/’Cと高くなるから、ガラス繊維の配向方向は重要
である。
In the above composite material, the glass fibers are oriented in one direction, so the packing density of the glass fibers is high, and the coefficient of linear expansion of the composite material is close to that of glass fibers, which is close to that of the photoelectric conversion element. be able to. Even when using glass fiber with a low linear expansion coefficient, if a cloth is used like a conventional printed circuit board, the linear expansion coefficient will be 10 to 12X10-
The orientation direction of the glass fibers is important because the glass fibers are oriented as high as '/'C.

上記の一方向ガラス繊維−樹脂複合材は、そのまま基板
として使用され、そのガラス繊維の配向方向に光電変換
素子を配列させて装置し、ラインセンサが構成される。
The above-mentioned unidirectional glass fiber-resin composite material is used as a substrate as it is, and a line sensor is constructed by arranging photoelectric conversion elements in the orientation direction of the glass fibers.

複合材を基板として用いる場合、基板に回路用の導体層
、あるいは光電変換素子制御用の回路を形成することが
できる。
When a composite material is used as a substrate, a conductor layer for a circuit or a circuit for controlling a photoelectric conversion element can be formed on the substrate.

回路を形成した基板に光電変換素子を装着する場合、は
んだ付等により基板上の光電変換素子と回路を接続する
。そして保護カバーを基板に取付けて、光電変換素子を
覆いラインセンサが形成される。
When a photoelectric conversion element is attached to a circuit board on which a circuit is formed, the photoelectric conversion element on the board and the circuit are connected by soldering or the like. A protective cover is then attached to the substrate to cover the photoelectric conversion element and form a line sensor.

本発明のラインセンサは、原稿を等倍像として読取る密
着型のラインセンサに適しているが、縮少型または拡大
型のものに適用することもできる。
The line sensor of the present invention is suitable for a contact type line sensor that reads a document as a same-sized image, but it can also be applied to a reduced type or enlarged type.

〔作 用〕[For production]

本発明のラインセンサは従来のものと同様にして使用さ
れ、保護カバーから入った光は光電変換素子により光電
変換され、基板に形成された回路から信号が取出される
。この場合、基板と光電変換素子の線膨張係数がほぼ同
じであるから、温度変化に伴って両者は同じ比率で伸縮
し、光電変換素子間に間隙を生じたり、光電変換素子が
基板から剥離することがない。
The line sensor of the present invention is used in the same manner as conventional ones, and light entering through the protective cover is photoelectrically converted by a photoelectric conversion element, and a signal is extracted from a circuit formed on a substrate. In this case, since the linear expansion coefficients of the substrate and the photoelectric conversion element are almost the same, both expand and contract at the same rate as the temperature changes, creating a gap between the photoelectric conversion elements and causing the photoelectric conversion element to peel off from the substrate. Never.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

第1図は実施例の密着型のラインセンサを示す斜視図、
第2図はそのA−A断面図、第3図はその一部の拡大図
、第4図は一部の透視図であり、第6図と同一符号は同
一または相当部分を示す。
FIG. 1 is a perspective view showing a close-contact line sensor according to an embodiment;
FIG. 2 is a sectional view taken along the line AA, FIG. 3 is an enlarged view of a portion thereof, and FIG. 4 is a perspective view of a portion thereof, and the same reference numerals as in FIG. 6 indicate the same or corresponding parts.

この実施例では、基板2は、ガラス繊維5を一方向に配
向させて、マトリックス樹脂6を含浸、硬化させた一方
向ガラス繊維−樹脂複合材からなり、その表面に光電変
換素子3を制御するための回路7が形成されている。そ
して基板2上に複数の光電変換素子3がガラス繊維5の
配向方向に線状に配列さ九、装着されている。光電変換
素子3は同一面上に、突合せ状に配置され、はんだ付に
より基板2の回路7に機械的および電気的に接続されて
いる。このように光電変換素子3を装着した基板2に、
透明性の材料からなる保護カバー4が接着剤により接着
され、光電変換素子3を覆って、ラインセンサ1が形成
されている。
In this embodiment, the substrate 2 is made of a unidirectional glass fiber-resin composite material in which glass fibers 5 are oriented in one direction, and matrix resin 6 is impregnated and cured, and the photoelectric conversion element 3 is controlled on the surface of the substrate 2. A circuit 7 is formed for this purpose. A plurality of photoelectric conversion elements 3 are arranged linearly in the orientation direction of the glass fibers 5 and mounted on the substrate 2. The photoelectric conversion elements 3 are arranged on the same surface in abutting manner, and are mechanically and electrically connected to the circuit 7 of the substrate 2 by soldering. On the substrate 2 on which the photoelectric conversion element 3 is mounted in this way,
A protective cover 4 made of a transparent material is adhered with an adhesive and covers the photoelectric conversion element 3, forming the line sensor 1.

上記ラインセンサ1においては、保護カバー4から入っ
た光は光電変換素子3において光電変換され、その信号
は基板2に形成された回路7がら取出される。
In the line sensor 1 described above, light entering through the protective cover 4 is photoelectrically converted in the photoelectric conversion element 3, and the signal is extracted from the circuit 7 formed on the substrate 2.

上記の基板2は線膨張係数が光電変換素子3と同じ4〜
6X10−’/’Cに調整されているので、温度変化に
より基板2と光電変換素子3は同じ線膨張率で膨張、収
縮する。従って基板2の膨張によって、光電変換素子3
間に間隙が生じて読取像が途切れたり、あるいは収縮に
より光電変換素子3同士が押し合って剥離したりするこ
とはない。
The above substrate 2 has the same linear expansion coefficient as the photoelectric conversion element 3 4~
Since the temperature is adjusted to 6X10-'/'C, the substrate 2 and the photoelectric conversion element 3 expand and contract with the same coefficient of linear expansion due to temperature changes. Therefore, due to the expansion of the substrate 2, the photoelectric conversion element 3
The read image will not be interrupted due to gaps, or the photoelectric conversion elements 3 will not be pushed against each other and peeled off due to contraction.

上記実施例は光電変換素子3が複数の場合について説明
したが、光電変換素子3が1個の場合にも適用でき、こ
の場合も基板2と光電変換素子3のずれによる剥離が防
止される。
Although the above embodiment has been described in the case where there are a plurality of photoelectric conversion elements 3, it can also be applied to the case where there is only one photoelectric conversion element 3, and in this case as well, peeling due to misalignment between the substrate 2 and the photoelectric conversion element 3 is prevented.

試験例 ガラス繊維5として低線膨張ガラス繊維(日東紡績(株
)製、TグラスロービングR5Tll0PA−535A
S、商標)を用い、マトリックス樹脂6として、ビスフ
ェノールAタイプのエポキシ樹脂(三井石油化学工業(
株)製、エボミックR140,商標)100重量部、硬
化剤として酸無水物(日本化成(株)製、メチルテトラ
ヒドロ無水フタル酸) 90重量部、および硬化触媒と
してイミダゾール系触媒(四国化成(株)製、キュアゾ
ール2E4MZ−CN、商標)1重量部からなる樹脂組
成物を用いて、一方向ガラス繊維−樹脂複合材を成形し
た。成形はプルトルージョン法により行った。硬化条件
は温度150℃、滞留時間は5分とし、ガラス繊維含有
量の異なるガラス繊維5が一方向に引揃えられた厚さ2
mm1幅15mm、長さ226+++mの複合材を得た
。これらの複合材の繊維の配向方向の線膨張係数は、協
和界面科学(株)製の線膨張係数測定器によって測定し
た。結果を第5図に示す。
Test example glass fiber 5 was a low linear expansion glass fiber (manufactured by Nitto Boseki Co., Ltd., T glass roving R5Tll0PA-535A)
A bisphenol A type epoxy resin (Mitsui Petrochemical Industries (trademark)) was used as the matrix resin 6.
100 parts by weight of an acid anhydride (manufactured by Nippon Kasei Co., Ltd., methyltetrahydrophthalic anhydride) as a curing agent, and an imidazole catalyst (manufactured by Shikoku Kasei Co., Ltd.) as a curing catalyst. A unidirectional glass fiber-resin composite material was molded using a resin composition consisting of 1 part by weight of Curesol 2E4MZ-CN (Trademark) manufactured by Co., Ltd. Molding was performed by the pultrusion method. The curing conditions were a temperature of 150°C and a residence time of 5 minutes.The glass fibers 5 with different glass fiber contents were aligned in one direction.
A composite material having a mm1 width of 15 mm and a length of 226 +++ m was obtained. The linear expansion coefficients of these composite materials in the fiber orientation direction were measured using a linear expansion coefficient measuring device manufactured by Kyowa Interface Science Co., Ltd. The results are shown in Figure 5.

第5図の結果より、ラインセンサ用基板に要求される線
膨張係数の下限値4XIO−’/’Cは、繊維含有量が
70容量%としたときに可能であった。
From the results shown in FIG. 5, the lower limit value of the linear expansion coefficient of 4XIO-'/'C required for the line sensor substrate was possible when the fiber content was 70% by volume.

上記により得られた複合材を基板2として用い、回路7
の形成は上記複合材に銅箔をプレスにより接着し、エツ
チングレジストで回路パターンを形成した後に、FeC
Q2水溶液で銅箔をエツチングし、最終的にエツチング
レジストを除去して回路を形成した。こうして形成され
た基板2の長手方向に光電変換素子3を5個突合せ状に
並べて、線状に配置して装着し、ラインセンサ1を形成
したが、温度変化による光電変換素子3間の間隙の発生
や剥離は認められなかった。
Using the composite material obtained above as the substrate 2, the circuit 7
The formation of the FeC
The copper foil was etched with a Q2 aqueous solution, and the etching resist was finally removed to form a circuit. The line sensor 1 was formed by arranging five photoelectric conversion elements 3 abutting each other in the longitudinal direction of the thus formed substrate 2 and installing them in a linear manner. No occurrence or peeling was observed.

比較例 前記試験例において、ガラス繊維5として、ガラス繊維
クロス(日東紡績(株)製、■グラスクロスWFT23
ON−100、商標、平織、織密度57本X54本/イ
ンチ、厚さ0.22mm、質量200g/+++2)を
用いて積層板を作成した。積層板は上記ガラス繊維クロ
スに試験例と同じ樹脂を含浸させ、これを15枚重ねた
ものを、温度150℃、圧力10kgf/adの条件テ
コ0分間プレス成形を行い、厚さ2Ilfflの積層板
を得た。
Comparative Example In the above test example, glass fiber cloth (manufactured by Nitto Boseki Co., Ltd., ■Glass Cloth WFT23) was used as the glass fiber 5.
A laminate was made using ON-100 (trade name, plain weave, weave density 57 x 54 threads/inch, thickness 0.22 mm, mass 200 g/+++2). The laminate was made by impregnating the above-mentioned glass fiber cloth with the same resin as in the test example, stacking 15 sheets, and press-molding the same at a temperature of 150°C and a pressure of 10 kgf/ad for 0 minutes to obtain a laminate with a thickness of 2Ilffl. I got it.

得られた積層板の繊維含有量は60容量%であった。The fiber content of the obtained laminate was 60% by volume.

上記積層板に対し、実施例と同様の測定法で線膨張係数
を測定した結果、その値は14 X 10−’ / ’
l:であった。
The coefficient of linear expansion of the above laminate was measured using the same method as in the example, and the value was 14 x 10-'/'
l: It was.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光電変換素子の配置方向にガラス繊維
を配向させた一方面ガラス繊維−樹脂複合材を用いたの
で、光電変換素子とほぼ同程度の線膨張係数を有する基
板が得られる。
According to the present invention, since a one-sided glass fiber-resin composite material in which glass fibers are oriented in the direction in which the photoelectric conversion element is arranged is used, a substrate having a coefficient of linear expansion approximately equal to that of the photoelectric conversion element can be obtained.

またこの基板を用いることにより、光電変換素子の接続
が容易で、所定位置に安定して装着でき、装置を小型化
できるとともに、光電変換素子間に間隙が生じたり、剥
離を生じないラインセンサが得られる。
In addition, by using this board, it is easy to connect photoelectric conversion elements, they can be stably mounted in a predetermined position, the device can be made smaller, and a line sensor that does not cause gaps or peeling between photoelectric conversion elements can be created. can get.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例および従来例のラインセンサを示す斜視
図、第2図は実施例のラインセンサを示す第1図のA−
A断面図、第3図はその一部の拡大図、第4図は一部の
透視図、第5図は試験例の結果を示すグラフ、第6図は
従来のラインセンサを示す第1図のA−A断面図である
。 各図中、同一符号は同一または相当部分を示し、1はラ
インセンサ、2は基板、3は光電変換素子、4は保護カ
バー、5はガラス繊維、6はマトリックス樹脂、7は回
路である。 第4図 代理人 弁理士 柳 原   成
Fig. 1 is a perspective view showing the line sensor of the embodiment and the conventional example, and Fig. 2 is a perspective view showing the line sensor of the embodiment.
A sectional view, Figure 3 is an enlarged view of a part of it, Figure 4 is a perspective view of a part, Figure 5 is a graph showing the results of a test example, Figure 6 is Figure 1 showing a conventional line sensor. It is an AA sectional view of. In each figure, the same reference numerals indicate the same or corresponding parts; 1 is a line sensor, 2 is a substrate, 3 is a photoelectric conversion element, 4 is a protective cover, 5 is a glass fiber, 6 is a matrix resin, and 7 is a circuit. Figure 4 Agent Patent Attorney Sei Yanagihara

Claims (8)

【特許請求の範囲】[Claims] (1)線状に配置された光電変換素子と、この光電変換
素子を装着するように、前記光電変換素子の配置方向に
ガラス繊維を配向させた一方向ガラス繊維−樹脂複合材
からなる基板と、前記光電変換素子を覆うように設けら
れた透光性を有する保護カバーとよりなることを特徴と
するラインセンサ。
(1) A photoelectric conversion element arranged linearly, and a substrate made of a unidirectional glass fiber-resin composite material in which glass fibers are oriented in the direction in which the photoelectric conversion element is arranged so that the photoelectric conversion element is mounted. A line sensor comprising: a light-transmitting protective cover provided to cover the photoelectric conversion element.
(2)光電変換素子は1個または複数個が線状に配置さ
れたものである請求項(1)記載のラインセンサ。
(2) The line sensor according to claim (1), wherein one or more photoelectric conversion elements are arranged in a line.
(3)保護カバーが光電変換素子を全体的に覆うように
基板に固着された請求項(1)または(2)記載のライ
ンセンサ。
(3) The line sensor according to claim (1) or (2), wherein the protective cover is fixed to the substrate so as to completely cover the photoelectric conversion element.
(4)樹脂がエポキシ樹脂である請求項(1)ないし(
3)のいずれかに記載のラインセンサ。
(4) Claims (1) to (4) wherein the resin is an epoxy resin.
The line sensor according to any one of 3).
(5)線状に配置された光電変換素子を装着するための
基板であって、光電変換素子の配置方向にガラス繊維を
配向させた一方向ガラス繊維−樹脂複合材からなること
を特徴とするラインセンサ用基板。
(5) A substrate for mounting photoelectric conversion elements arranged linearly, characterized by being made of a unidirectional glass fiber-resin composite material in which glass fibers are oriented in the direction in which the photoelectric conversion elements are arranged. Board for line sensor.
(6)樹脂がエポキシ樹脂である請求項(5)記載の基
板。
(6) The substrate according to claim (5), wherein the resin is an epoxy resin.
(7)基板が回路用の導体層を有する請求項(5)また
は(6)記載の基板。
(7) The board according to claim (5) or (6), wherein the board has a conductor layer for a circuit.
(8)基板が光電変換素子制御用の回路を形成した回路
基板である請求項(5)ないし(7)のいずれかに記載
の基板。
(8) The board according to any one of claims (5) to (7), wherein the board is a circuit board on which a circuit for controlling a photoelectric conversion element is formed.
JP2166068A 1990-06-25 1990-06-25 Line sensor and substrate Pending JPH0456462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2166068A JPH0456462A (en) 1990-06-25 1990-06-25 Line sensor and substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2166068A JPH0456462A (en) 1990-06-25 1990-06-25 Line sensor and substrate

Publications (1)

Publication Number Publication Date
JPH0456462A true JPH0456462A (en) 1992-02-24

Family

ID=15824383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2166068A Pending JPH0456462A (en) 1990-06-25 1990-06-25 Line sensor and substrate

Country Status (1)

Country Link
JP (1) JPH0456462A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022511520A (en) * 2018-12-05 2022-01-31 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Manufacturing method of fiber composite parts, fiber composite parts, inspection method of fiber composite parts, computer programs, machine-readable storage media and equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022511520A (en) * 2018-12-05 2022-01-31 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Manufacturing method of fiber composite parts, fiber composite parts, inspection method of fiber composite parts, computer programs, machine-readable storage media and equipment
US11993035B2 (en) 2018-12-05 2024-05-28 Robert Bosch Gmbh Production method for a composite fiber component, composite fiber component, testing method for a composite fiber component, computer program, machine-readable storage medium and apparatus

Similar Documents

Publication Publication Date Title
KR101354372B1 (en) Reinforce for printed circuit board and integrated circuit package using the same
US5288542A (en) Composite for providing a rigid-flexible circuit board construction and method for fabrication thereof
AU704645B2 (en) IC card and IC module
US5512360A (en) PTFE reinforced compliant adhesive and method of fabricating same
US11630221B2 (en) Radiation detector, radiographic imaging device, and manufacturing method
EP0782500A1 (en) Foiled ud-prepreg and pwb laminate prepared therefrom
KR100394123B1 (en) New Copolymers and Granules, Films and Laminates, Electronic Modules and Capacitors
EP0403208A1 (en) Heat sinking substrate
MXPA97002059A (en) Preimpregnado material unidirectionally oriented of thin thread and laminar unit for printed wiring board prepared from mi
US20030010530A1 (en) Multilayer printed board
CN1219095A (en) Flexible printed circuit board unit fixed electronic parts on it
CN101609820A (en) Electronic device and the method for making electronic device
US5654081A (en) Integrated circuit assembly with polymeric underfill body
JP2019192855A (en) Imaging element module, imaging system, imaging element package, and manufacturing method
JPH0456462A (en) Line sensor and substrate
JPS6044521A (en) Polyester, manufacture and sealant therefrom forintegrated circuit module
JP3703568B2 (en) IC chip bonding sheet and IC package
KR102337943B1 (en) Printed wiring boards, printed circuit boards, prepregs
US11802980B2 (en) Radiation detector, radiographic imaging apparatus, and manufacturing method
JPH0237795A (en) Reinforcement sheet for flexible printed-wiring board
US20230215620A1 (en) Spacer tape, method for manufacturing a winding and winding
JP3038623B2 (en) Liquid epoxy resin molding compound for sealing
JPS56145920A (en) Epoxy resin composition
JPS62181486A (en) Printed circuit substrate
KR950034718A (en) Resin-sealed semiconductor device and semiconductor mounting device