JPH0456221A - Spin-coating method and spin-coating device - Google Patents

Spin-coating method and spin-coating device

Info

Publication number
JPH0456221A
JPH0456221A JP16715590A JP16715590A JPH0456221A JP H0456221 A JPH0456221 A JP H0456221A JP 16715590 A JP16715590 A JP 16715590A JP 16715590 A JP16715590 A JP 16715590A JP H0456221 A JPH0456221 A JP H0456221A
Authority
JP
Japan
Prior art keywords
solution
silicon substrate
semiconductor substrate
sog
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16715590A
Other languages
Japanese (ja)
Inventor
Takamasa Fujiwara
藤原 琢正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP16715590A priority Critical patent/JPH0456221A/en
Publication of JPH0456221A publication Critical patent/JPH0456221A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To collect an SOG solution easily in the recessed part on a silicon substrate, and to make it possible to form an SOG film having excellent uniformity in film thickness and flatness by a method wherein a solution is dripped on a semiconductor substrate under pressure, and immediately after the dripping, a rotary coating and the like is conducted. CONSTITUTION:A solution 5a, prepared by dispersing or melting an inorganic or organic substance under pressure, is dripped on a semiconductor substrate 1, and the whole surface of the semiconductor substrate 1 is coated with the solution 5a by rotating the substrate 1. For example, an SOG solution 5a, which contains alcohol as a solvent, is dripped on the center of the silicon substrate 1 in a nitrogen gas atmosphere at the rate of 4cc per 5 seconds while the silicon substrate 1 is being rotated at 20rpm under pressure of 1.5 to 1.8 atmospheric pressure. Subsequently, the silicon substrate 1 is rotated at 2000rpm for 8 seconds, and an SOG film 5 is formed on the whole surface of the silicon substrate 1. Consequently, as the solution can be easily collected in the recessed part of the semiconductor substrate by controlling the viscosity which is determined by the speed of evaporation of the solvent in the solution, the uniformity of film thickness after the evaporation of solvent can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体装置の製造に用いる回転塗布方法およ
び回転塗布装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a spin coating method and a spin coating apparatus used for manufacturing semiconductor devices.

従来の技術 近年、2層以上の配線を有する半導体装置か多くなって
きているが、第1層の配線の段差を平坦化するためにS
OG膜が使用される。SOGとは、S pin−On−
G 1assの略称で、シリコン化合物を有機溶剤に溶
解した溶液またはこの溶液を塗布焼成することにより形
成される酸化シリコン膜の総称である。以下に説明する
従来例および本発明の実施例においては、シリコン化合
物を溶解した液をSOG液、これを塗布した膜をSOG
膜と称する。
2. Description of the Related Art In recent years, more and more semiconductor devices have two or more layers of wiring.
OG membrane is used. What is SOG?
G1ass is an abbreviation for a silicon oxide film formed by a solution prepared by dissolving a silicon compound in an organic solvent or by applying and baking this solution. In the conventional example and the embodiment of the present invention described below, a liquid in which a silicon compound is dissolved is an SOG liquid, and a film coated with this is an SOG liquid.
It is called a membrane.

以下に従来の回転塗布方法および回転塗布装置について
説明する。
A conventional spin coating method and a conventional spin coating device will be explained below.

第4図(a)〜(dlは従来の回転塗布方法を説明する
ための工程断面図であり、シリコン基板上に形成された
アルミニウム系金属薄膜またはシリサイド等からなる配
線の段差を平坦化するためのSOG液の回転塗布方法の
例を示している。第4図+alはシリコン基板1上にト
ランジスタ等の素子(図では省略した)を形成した後、
層間絶縁膜として常圧CVD法等により第一のシリコン
酸化膜2を形成し、その上に1μm厚の第一のアルミニ
ウム配線3を形成したものである。第4図(blは第一
のアルミニウム配線3の上にプラズマCVD法により第
二のシリコン酸化膜4を4000人の厚さに形成したも
のである。このシリコン基板1上にSOGOsO4成す
るのであるが、まずシリコン基板1を毎分20回転で回
転させなからSOG液を5秒間で4 ccシリコン基板
1の中心に滴下し、その後シリコン基板1を毎分500
0回転で8秒間回転させてSOG液を全面に広げて溶剤
を蒸発させた後、窒素雰囲気中で470℃−20分の熱
処理を行う。この状態を第4図(C1に示したが、シリ
コン基板1の表面の凹部かSOGOsO4められている
。このSOGOsO4にプラズマCVD法によって第三
のシリコン酸化膜4aを3000人堆積した状態を第4
図(diに示した。このようにしてSOGOsO4成し
てアルミニウム配線3の段差ヲ平坦化し、第二のアルミ
ニウム配線(図では省略した)の段切れや配線抵抗の増
大を抑える。
FIGS. 4(a) to (dl) are process cross-sectional views for explaining the conventional spin coating method, which is used to flatten the steps of wiring made of aluminum-based metal thin film or silicide formed on a silicon substrate. An example of the spin coating method of the SOG liquid is shown in FIG.
A first silicon oxide film 2 is formed as an interlayer insulating film by atmospheric pressure CVD or the like, and a first aluminum wiring 3 having a thickness of 1 μm is formed thereon. FIG. 4 (bl) shows a second silicon oxide film 4 formed to a thickness of 4000 nm on the first aluminum wiring 3 by the plasma CVD method.SOGOsO4 is formed on this silicon substrate 1. However, first, the silicon substrate 1 is rotated at 20 revolutions per minute, and then 4 cc of SOG liquid is dropped onto the center of the silicon substrate 1 in 5 seconds, and then the silicon substrate 1 is rotated at 50 revolutions per minute.
After rotating at 0 rotation for 8 seconds to spread the SOG liquid over the entire surface and evaporate the solvent, heat treatment is performed at 470° C. for 20 minutes in a nitrogen atmosphere. This state is shown in FIG. 4 (C1), where SOGOsO4 is deposited in the recesses on the surface of silicon substrate 1. The state in which 3,000 third silicon oxide films 4a are deposited on this SOGOsO4 by plasma CVD is shown in Figure 4.
In this way, SOGOsO4 is formed to flatten the step of the aluminum wiring 3, thereby suppressing the breakage of the second aluminum wiring (not shown in the figure) and the increase in wiring resistance.

第5図は従来の回転塗布装置を示す要部断面図である。FIG. 5 is a sectional view of a main part of a conventional spin coating device.

シリコン基板1は真空チャック6に吸着されており、こ
の真空チャック6はモーター7の回転軸8に連結されて
いる。SOG液はSOG液導入管9によりシリコン基板
1上に導かれ、ソレノイドバルブ10の開閉により一定
量が滴下されるようになっている。
The silicon substrate 1 is attracted to a vacuum chuck 6, and the vacuum chuck 6 is connected to a rotating shaft 8 of a motor 7. The SOG liquid is introduced onto the silicon substrate 1 by an SOG liquid introduction pipe 9, and a fixed amount is dripped by opening and closing a solenoid valve 10.

発明が解決しようとする課題 しかしながら上記従来の構成では、シリコン基板内での
SOG膜にばらつきが多く、部分的に平坦度の悪い場所
が生し、アルミニウム配線の段切れや配線抵抗の増大が
発生するという課題を有していた。
Problems to be Solved by the Invention However, in the above-mentioned conventional configuration, there are many variations in the SOG film within the silicon substrate, resulting in areas with poor flatness, leading to disconnections in the aluminum wiring and an increase in wiring resistance. We had the challenge of doing so.

またSOG液はシリコン基板の中心部に滴下されると時
間とともに溶媒であるエチルアルコールが蒸発し、粘度
が高くなりながらシリコン基板の回転によって中心部か
ら周辺部へと広がって行く。したがってSOG液は粘度
が高くならない状態でシリコン基板の回転による遠心力
で周辺部へ流れて行くためにシリコン基板の中心部では
凹部に溜りにくく膜厚が薄くなる。一方シリコン基板の
周辺部ではSOG液の粘度が高いため凹部に溜りやすく
膜厚が厚くなる。
Further, when the SOG liquid is dropped onto the center of the silicon substrate, the ethyl alcohol as a solvent evaporates over time, and the viscosity increases as the silicon substrate rotates and spreads from the center to the periphery. Therefore, the SOG liquid flows to the periphery due to the centrifugal force caused by the rotation of the silicon substrate without increasing its viscosity, so that it is less likely to accumulate in the recesses in the center of the silicon substrate, resulting in a thinner film. On the other hand, since the viscosity of the SOG liquid is high in the peripheral area of the silicon substrate, the SOG liquid tends to accumulate in the recesses, resulting in a thick film.

また回転数を下げてSOG液か周辺部に流れる速度を遅
くしてシリコン基板の中心部でのSOG液の粘度を高め
た場合、シリコン基板の中心部ではSOG液が凹部に溜
りやすくなり膜厚も厚くなるが、シリコン基板の周辺部
ではSOG液の粘度が高くなりすぎて塗布むらが発生す
る。SOG液がシリコン基板の中心部から周辺部へ流れ
る速度はシリコン基板の回転数によっても制御できるが
、単位時間あたりのSOG液の粘度の上昇程度は分散さ
せた物質と溶媒固有のものである。
In addition, if the viscosity of the SOG liquid at the center of the silicon substrate is increased by lowering the rotation speed to slow down the flow rate of the SOG liquid to the peripheral area, the SOG liquid will tend to accumulate in the recesses at the center of the silicon substrate, resulting in a thicker film. However, the viscosity of the SOG liquid becomes too high around the silicon substrate, causing uneven coating. The speed at which the SOG liquid flows from the center to the periphery of the silicon substrate can also be controlled by the rotational speed of the silicon substrate, but the degree of increase in the viscosity of the SOG liquid per unit time is unique to the dispersed substance and solvent.

第6図(al〜fclは従来の塗布方法でシリコン基板
1上にSOG液5aを塗布する過程を説明するためのシ
リコン基板の断面図である。第6図(alはSOG液5
aをシリコン基板1上に滴下したところである。第6図
tb+はシリコン基板1を5000回転で回転させ始め
たところでSOG液5aの粘度が増大しながら周辺に広
がって行くところを示している。第6図(C1は回転を
終えたところで、SOGOsO4リコン基板1の中心部
で薄く、周辺部で厚くなっている。この段階でSOGO
sO4厚はシリコン基板1の中心部で1500人、周辺
部で1800人である。
FIG. 6 (al to fcl are cross-sectional views of a silicon substrate for explaining the process of applying SOG liquid 5a onto silicon substrate 1 using a conventional coating method.
A was dropped onto the silicon substrate 1. FIG. 6 tb+ shows that the viscosity of the SOG liquid 5a increases and spreads around the silicon substrate 1 when it starts to rotate at 5000 revolutions. Figure 6 (C1 is at the end of rotation and is thinner at the center of the SOGOsO4 silicon substrate 1 and thicker at the periphery.At this stage, the SOGO
The sO4 thickness is 1500 at the center of the silicon substrate 1 and 1800 at the periphery.

第7図(al、 (blに上記の方法でSOG液5aを
回転塗布した後のシリコン基板1の中心部および周辺部
の断面図を示す。第7図fa)はシリコン基板1の中心
部での断面図、第7図(blはシリコン基板1の周辺部
での断面図である。シリコン基板1の中心部では周辺部
に比べSOG液5aが溜りにくく、中心部の凹部でのS
OGOsO4厚は周辺部の凹部での膜厚の50%しかな
い。
FIG. 7(al) and (bl) show cross-sectional views of the center and peripheral portions of the silicon substrate 1 after spin-coating the SOG liquid 5a by the above method. FIG. FIG. 7 is a cross-sectional view of the peripheral part of the silicon substrate 1. The SOG liquid 5a is less likely to accumulate in the center of the silicon substrate 1 than in the peripheral part, and the SOG liquid 5a is
The OGOsO4 thickness is only 50% of the film thickness at the peripheral recess.

本発明は上記従来の課題を解決するもので、シリコン基
板上の凹部にSOG液が溜りゃすく、膜厚の均一性およ
び平坦化に優れたSOG膜を形成できる回転塗布方法お
よび回転塗布装置を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and provides a spin coating method and a spin coating device that can prevent SOG liquid from accumulating in the recesses on a silicon substrate and form an SOG film with excellent film thickness uniformity and flatness. The purpose is to provide.

課題を解決するための手段 この目的を達成するために本発明の回転塗布方法は、溶
液を陽圧下で半導体基板上へ滴下し、その直後に回転塗
布するものであり、また本発明の回転塗布装置は圧力容
器中に半導体基板を吸着して回転する真空チャックと、
半導体基板へ溶液を滴下する滴下装置を備えた構成を有
している。
Means for Solving the Problems In order to achieve this object, the spin coating method of the present invention is such that a solution is dropped onto a semiconductor substrate under positive pressure and spin coating is carried out immediately after. The device includes a vacuum chuck that sucks and rotates a semiconductor substrate in a pressure vessel,
The structure includes a dropping device that drops a solution onto a semiconductor substrate.

作用 この構成によって圧力容器内の圧力制御ができ、溶液中
の溶媒の蒸発速度で決定される粘度を制御して半導体基
板上の凹部へ溶液が溜りやすくすることで、溶媒蒸発後
の膜厚の均一性を向上させることができる。
Effect This configuration allows the pressure inside the pressure vessel to be controlled, and by controlling the viscosity determined by the evaporation rate of the solvent in the solution and making it easier for the solution to accumulate in the recesses on the semiconductor substrate, the film thickness after the solvent evaporates can be reduced. Uniformity can be improved.

実施例 以下本発明の一実施例について、図面を参照しながら説
明する。
EXAMPLE An example of the present invention will be described below with reference to the drawings.

第1図(a)、 fblは本発明の一実施例における回
転塗布方法を説明するためのシリコン基板の断面図であ
る。シリコン基板1を窒素ガス雰囲気1.5〜1.8気
圧の加圧状態で毎分20回転で回転させなから、エチル
アルコールを溶媒としたSOG液5aを5秒間−4cc
たけシリコン基板1上の中心に滴下したものが第1図(
alである。その後シリコン基板1を毎分2000回転
で8秒間回転させ、SOGOsO4リコン基板1の全面
に形成したものが第1図fblである。このときシリコ
ン基板1の中心部での膜厚は2100〜2150人、シ
リコン基板1の周辺部では2050〜2100人であっ
た。
FIG. 1(a), fbl is a sectional view of a silicon substrate for explaining a spin coating method in an embodiment of the present invention. While the silicon substrate 1 is rotated at 20 revolutions per minute in a nitrogen gas atmosphere under pressure of 1.5 to 1.8 atm, -4 cc of SOG liquid 5a with ethyl alcohol as a solvent is applied for 5 seconds.
The droplet dropped onto the center of the bamboo silicon substrate 1 is shown in Figure 1 (
It is al. Thereafter, the silicon substrate 1 was rotated at 2,000 revolutions per minute for 8 seconds, and the silicon substrate 1 was formed on the entire surface of the SOGOsO4 silicon substrate 1, as shown in FIG. 1 fbl. At this time, the film thickness at the center of the silicon substrate 1 was 2,100 to 2,150, and at the periphery of the silicon substrate 1, it was 2,050 to 2,100.

以上のようにSOG液5aを陽圧下で回転塗布すること
によりSOG液5aの溶媒であるエチルアルコールの蒸
発を制御してその粘度を一定に保ちながら低速回転を行
い、SOG液5aのシリコン基板1の周辺部への流れ速
度を低下させ、従来常圧下での回転塗布方法ではSOG
液5aが溜りにくかったシリコン基板1の中心部の凹部
も含め膜厚均一性に優れたSOGOsO4成することか
できる。なおSOG溶液5aを塗布後に回転数を下げな
がら徐々に圧力を下げることにより、発泡などによるS
OGOsO4くれが防止できる。
As described above, by spin coating the SOG liquid 5a under positive pressure, low speed rotation is performed while controlling the evaporation of ethyl alcohol, which is the solvent of the SOG liquid 5a, and keeping its viscosity constant. By reducing the flow speed to the peripheral area of SOG
It is possible to form SOGOsO4 with excellent film thickness uniformity even in the concave portion of the center of the silicon substrate 1 where the liquid 5a is difficult to accumulate. After applying the SOG solution 5a, gradually reduce the pressure while lowering the rotation speed to prevent SOG due to foaming, etc.
OGOsO4 can be prevented.

第2図は本発明の一実施例における回転塗布装置の構成
図である。第2図において、圧力容器11はシリコン基
板の回転装置系(図面では省略した)を内部に備えてお
り、SOG液の滴下はSOG液導入管9、ソレノイドバ
ルブ10を通して行われる。
FIG. 2 is a block diagram of a spin coating apparatus in an embodiment of the present invention. In FIG. 2, the pressure vessel 11 is equipped with a silicon substrate rotating device system (omitted in the drawing), and the SOG liquid is dropped through the SOG liquid introduction pipe 9 and the solenoid valve 10.

圧力容器11内を1.5〜1.8気圧に加圧するために
、150kg/at/で充填された窒素ガスホンへ12
のガスを減圧弁13で5 kg/adに減圧し、第一の
マスフローコントローラ14によって流量コントロール
しながら圧力容器11内に導入する。また圧力容器11
内のガスは可変オリフィス15、第二のマスフローコン
トローラ16を通して外部へ排出される。圧力容器11
内の圧力は圧力検出装置17で検出されて電気信号とし
てマイクロコンピュータ18に送られ、マイクロコンピ
ュータ18は圧力容器11内が一定圧力になるように第
一および第二のマスフローコントローラ14.16およ
び可変オリフィス15を制御する。
In order to pressurize the inside of the pressure vessel 11 to 1.5 to 1.8 atmospheres, the nitrogen gas phone 12 filled with 150 kg/at/
The pressure of the gas is reduced to 5 kg/ad by the pressure reducing valve 13, and the gas is introduced into the pressure vessel 11 while the flow rate is controlled by the first mass flow controller 14. Also, the pressure vessel 11
The gas inside is exhausted to the outside through the variable orifice 15 and the second mass flow controller 16. Pressure vessel 11
The pressure inside the pressure vessel 11 is detected by the pressure detection device 17 and sent as an electric signal to the microcomputer 18. The orifice 15 is controlled.

第3図は圧力容器の断面図である。圧力容器11は下部
容器19と上蓋20の2つの部分に分かれていてOリン
グ21とクランプ22で密閉される。下部容器19には
内部を加圧するための不活性ガスを導入するためのガス
導入管23および排気管24が接続されている。また上
蓋20にはSOG液導入管9が接続されており、ソレノ
イドバルブ10の開閉によってSOG液を滴下する。
FIG. 3 is a sectional view of the pressure vessel. The pressure vessel 11 is divided into two parts, a lower vessel 19 and an upper lid 20, which are sealed with an O-ring 21 and a clamp 22. A gas introduction pipe 23 and an exhaust pipe 24 are connected to the lower container 19 for introducing an inert gas for pressurizing the inside. Further, an SOG liquid introduction pipe 9 is connected to the upper lid 20, and the SOG liquid is dripped by opening and closing a solenoid valve 10.

シリコン基板1は真空チャック6に吸着され、その真空
チャック6は回転軸8を通してモーター7で回転する。
The silicon substrate 1 is attracted to a vacuum chuck 6, and the vacuum chuck 6 is rotated by a motor 7 through a rotating shaft 8.

以上のように本実施例の回転塗布装置は密閉できる圧力
容器11を有し、陽圧下でSOG液5aの回転塗布が可
能であり、この装置を用いてSOG液5aを陽圧下でシ
リコン基板1上に塗布することにより、シリコン基板1
上の凹部にSOG液5aが溜りやすくなり、最終的に膜
厚均一性に優れたSOGOsO4成できる。
As described above, the spin coating apparatus of this embodiment has a pressure vessel 11 that can be sealed, and is capable of spin coating the SOG liquid 5a under positive pressure. By coating on the silicon substrate 1
The SOG liquid 5a easily accumulates in the upper recess, and finally SOGOsO4 with excellent film thickness uniformity can be formed.

なお、本実施例において圧力容器11内を窒素ガスで加
圧したが、アルゴン等の不活性ガスを用いてもよいこと
はいうまでもない。
Although the inside of the pressure vessel 11 is pressurized with nitrogen gas in this embodiment, it goes without saying that an inert gas such as argon may also be used.

また本実施例においては、SOG液5aの回転塗布を例
として説明したか、ポリイミド系樹脂の塗布に応用して
も同様の効果が得られる。
Further, in this embodiment, the spin coating of the SOG liquid 5a has been explained as an example, but the same effect can be obtained even if it is applied to the coating of polyimide resin.

発明の効果 以上のように本発明は、陽圧下で無機または有機の物質
を分散または溶解した溶液を半導体基板上に滴下し、そ
の半導体基板を回転して溶液を半導体基板全面に塗布す
ることにより、半導体基板上の凹部へ溶液が溜りやすく
、最終的に膜厚均一性に優れた塗布膜が得られる優れた
回転塗布方法および回転塗布装置を実現できるものであ
る。
Effects of the Invention As described above, the present invention is capable of applying a solution containing an inorganic or organic substance dispersed or dissolved onto a semiconductor substrate under positive pressure, and rotating the semiconductor substrate to coat the entire surface of the semiconductor substrate with the solution. Accordingly, it is possible to realize an excellent spin coating method and spin coating apparatus in which the solution easily accumulates in the recesses on the semiconductor substrate, and a coating film with excellent film thickness uniformity can be obtained in the end.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al、 (blは本発明の一実施例における回
転塗布方法を適用するためのシリコン基板の断面図、第
2図は本発明の一実施例における回転塗布装置の概略断
面図、第3図は本発明の回転塗布装置の圧力容器の断面
図、第4図(al〜(dlは従来の回転塗布方法を説明
するための工程断面図、第5図は従来の回転塗布装置を
示す要部断面図、第6図fat〜fclは従来の塗布方
法を適用するためのシリコン基板の断面図、第7図fa
l、 (blは従来の方法で回転塗布した後のシリコン
基板の中心部および周辺部の断面図である。 1・・・・・・シリコン基板(半導体基板)、5a・・
・・・・SOG溶液(溶液)。 代理人の氏名 弁理士 粟野重孝 ほか1名第1図 1  ・シリコン基M(99伯本幕不q)a・ SO@
渣(ダ寥珂★) 弔 図 弔 図 第 図 第 図
Figure 1 (al, (bl) is a sectional view of a silicon substrate to which a spin coating method in an embodiment of the present invention is applied; Figure 2 is a schematic sectional view of a spin coating apparatus in an embodiment of the present invention; 3 is a sectional view of the pressure vessel of the spin coating device of the present invention, FIG. A cross-sectional view of the main parts, FIG. 6 fat to fcl is a cross-sectional view of a silicon substrate to which the conventional coating method is applied, and FIG. 7 fa
l, (bl is a cross-sectional view of the center and peripheral parts of a silicon substrate after spin coating by a conventional method. 1...Silicon substrate (semiconductor substrate), 5a...
...SOG solution (solution). Name of agent: Patent attorney Shigetaka Awano and one other person Figure 1 ・Silicon Group M (1999 Honmakufuq) a・SO@
渣(Da寥珂★) Funeral map

Claims (3)

【特許請求の範囲】[Claims] (1)陽圧下で無機または有機の物質を分散または溶解
した溶液を半導体基板上に滴下し、前記半導体基板を回
転して溶液を半導体基板全面に塗布する回転塗布方法。
(1) A spin coating method in which a solution in which an inorganic or organic substance is dispersed or dissolved is dropped onto a semiconductor substrate under positive pressure, and the semiconductor substrate is rotated to coat the entire surface of the semiconductor substrate with the solution.
(2)半導体基板上に溶液を塗布した後、回転数を下げ
ながら陽圧から常圧へ戻す請求項1記載の回転塗布方法
(2) The spin coating method according to claim 1, wherein after coating the solution on the semiconductor substrate, the pressure is returned from positive pressure to normal pressure while lowering the rotation speed.
(3)圧力検出手段、ガス導入手段、ガス排気手段およ
び溶液供給手段を取り付けた圧力容器中に、半導体基板
を吸着回転するための吸着回転手段と、前記溶液供給手
段から供給される無機または有機の物質を分散または溶
解した溶液を前記半導体基板上へ滴下するための溶液滴
下手段とを備え、かつ前記各手段を制御する制御手段を
備えた回転塗布装置。
(3) In a pressure vessel equipped with a pressure detection means, a gas introduction means, a gas exhaust means, and a solution supply means, an adsorption rotation means for adsorption and rotation of the semiconductor substrate, and an inorganic or organic solution supplied from the solution supply means. a solution dropping means for dropping a solution in which a substance is dispersed or dissolved onto the semiconductor substrate, and a control means for controlling each of the means.
JP16715590A 1990-06-25 1990-06-25 Spin-coating method and spin-coating device Pending JPH0456221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16715590A JPH0456221A (en) 1990-06-25 1990-06-25 Spin-coating method and spin-coating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16715590A JPH0456221A (en) 1990-06-25 1990-06-25 Spin-coating method and spin-coating device

Publications (1)

Publication Number Publication Date
JPH0456221A true JPH0456221A (en) 1992-02-24

Family

ID=15844444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16715590A Pending JPH0456221A (en) 1990-06-25 1990-06-25 Spin-coating method and spin-coating device

Country Status (1)

Country Link
JP (1) JPH0456221A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319847B1 (en) 1997-03-31 2001-11-20 Nec Corporation Semiconductor device using a thermal treatment of the device in a pressurized steam ambient as a planarization technique
JP2007123460A (en) * 2005-10-27 2007-05-17 Tokyo Electron Ltd Method of depositing application film and its apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176572A (en) * 1986-01-31 1987-08-03 Toshiba Corp Apparatus for forming film
JPH03187217A (en) * 1989-12-15 1991-08-15 Rohm Co Ltd Surface treatment device for wafer
JPH0444217A (en) * 1990-06-07 1992-02-14 Seiko Epson Corp Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176572A (en) * 1986-01-31 1987-08-03 Toshiba Corp Apparatus for forming film
JPH03187217A (en) * 1989-12-15 1991-08-15 Rohm Co Ltd Surface treatment device for wafer
JPH0444217A (en) * 1990-06-07 1992-02-14 Seiko Epson Corp Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319847B1 (en) 1997-03-31 2001-11-20 Nec Corporation Semiconductor device using a thermal treatment of the device in a pressurized steam ambient as a planarization technique
JP2007123460A (en) * 2005-10-27 2007-05-17 Tokyo Electron Ltd Method of depositing application film and its apparatus

Similar Documents

Publication Publication Date Title
CN1404136A (en) Method of raising low-electric layer spreading capacity
US6530340B2 (en) Apparatus for manufacturing planar spin-on films
US6946407B2 (en) Method for pretreating a substrate prior to application of a polymeric coat
US6317642B1 (en) Apparatus and methods for uniform scan dispensing of spin-on materials
JPH03190232A (en) Manufacture of semiconductor device
US20010029111A1 (en) Solution flow-in for uniform deposition of spin-on films
JPH0456221A (en) Spin-coating method and spin-coating device
JPH08181133A (en) Dielectric material and manufacture of dielectric film
US5918152A (en) Gap filling method using high pressure
JPH02119226A (en) Spin coating of organic solution
US6420278B1 (en) Method for improving the dielectric constant of silicon-based semiconductor materials
JPH01286435A (en) Manufacture of semiconductor device and its equipment
JPH0444213A (en) Manufacture of semiconductor device
JP3230891B2 (en) Coating device
JPS59141220A (en) Application
JP3321294B2 (en) Method for manufacturing semiconductor device
JPH0444214A (en) Manufacture of semiconductor device
JPH0555131A (en) Method and device for resist coating
JPS63164318A (en) Spin-coating proces and device thereof
JPH05259049A (en) Spin coating on semiconductor substrate
JPH0254518A (en) Spin coater
JP2000188266A (en) Metal film-forming device and its film-forming method
JPH02126970A (en) Spin coating method
JPH0444216A (en) Manufacture of semiconductor device
JPS62195121A (en) Spin coater