JPH0456176A - Compound semiconductor device between ii-vi families - Google Patents

Compound semiconductor device between ii-vi families

Info

Publication number
JPH0456176A
JPH0456176A JP2163747A JP16374790A JPH0456176A JP H0456176 A JPH0456176 A JP H0456176A JP 2163747 A JP2163747 A JP 2163747A JP 16374790 A JP16374790 A JP 16374790A JP H0456176 A JPH0456176 A JP H0456176A
Authority
JP
Japan
Prior art keywords
layer
families
type
compound
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2163747A
Other languages
Japanese (ja)
Inventor
Yasuo Okuno
奥野 保男
Takeshi Maruyama
剛 丸山
Hiroyuki Kato
裕幸 加藤
Michihiro Sano
道宏 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2163747A priority Critical patent/JPH0456176A/en
Publication of JPH0456176A publication Critical patent/JPH0456176A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable grid defect and quality change in each layer to be reduced extremely and achieve emission with a high efficiency by constituting first, second, and third layers with the same substances (compound between II-VI families). CONSTITUTION:A first layer 1 consisting of a compound semiconductor between n-type II-VI families, a second layer 2 which mainly consists of a compound between II-VI families which are the same as the compound between II-VI families of the layer 1 and which consists of a compound semiconductor between n-type II-VI families where a VII family element is added, and a third layer 3 which consists of a compound semiconductor between p-type II-VI families which mainly consist of the same compound between II-VI families as the compound between II-VI families of the layer 1 are formed, thus enabling generation of grid defect due to grid mismatching to be suppressed greatly and quality change due to diffusion of constituting elements from the layer 1 to the layer 2 to be suppressed greatly. Also, absorption of light emitted at the layer 1 which is the substrate layer can be suppressed for improved efficiency. Also, since the layer 2 uses a crystal obtained by adding a VII-family element, diffusion of n-type dopant to the p-type semiconductor layer which is the layer 3 above this can be reduced, thus preventing formation of a high-resistance layer in a pn interface.

Description

【発明の詳細な説明】 7産業上の利用分野コ 本発明は、II−VI族間化合物半導体装置に関し、特
に高効率な発光を容易に望めるダイオード楕遣:従来技
術〕 第6図および第7図は、…−■族間化合物であるセレン
化亜鉛(ZnSe)を用いた青色発光ダイオードの断面
構造を示す。
[Detailed Description of the Invention] 7. Fields of Industrial Application The present invention relates to a II-VI intergroup compound semiconductor device, and in particular to a diode ellipse that can easily achieve highly efficient light emission: prior art] Figs. 6 and 7 The figure shows a cross-sectional structure of a blue light emitting diode using zinc selenide (ZnSe), which is an intergroup compound.

第6図に示す発光ダイオードは、Zn5e基板の代用と
してZn5eと格子定数が比較的近いカリウムヒ素(G
aAs)を基板結晶101として用いている。この基板
結晶101の上に、n形Zn5eの薄層102とp形Z
n5eの薄層103を積層し、pn接合を実現している
The light emitting diode shown in Fig. 6 uses potassium arsenide (G
aAs) is used as the substrate crystal 101. On this substrate crystal 101, a thin layer 102 of n-type Zn5e and a thin layer 102 of p-type Zn5e are formed.
A pn junction is realized by laminating thin layers 103 of n5e.

第7図に示す発光ダイオードは、バルク状のZn5e結
晶から切り出したノンドー1のZn5e結晶をZn中で
熱処理しあるいはn形不純物を拡散してn形化したn形
結晶層111の上にp形結晶層112を形成した構造を
有する。
The light emitting diode shown in FIG. 7 has a p-type crystal layer 111 on which a non-doped Zn5e crystal cut out from a bulk Zn5e crystal is heat-treated in Zn or made into an n-type crystal by diffusing n-type impurities. It has a structure in which a crystal layer 112 is formed.

「発明か解決しようとする課題] 第6図において、基板層(GaAs )101とその上
の成長層(ZnSe)102とでは構成元素の異なる結
晶を用いている。そのため、格子不整合による格子欠陥
か発生する。GaAsとZn5eとは格子定数か比較的
近いか、このような格子不整合による格子欠陥の発生は
不可避である。
"Problem to be solved by the invention" In FIG. 6, crystals with different constituent elements are used for the substrate layer (GaAs) 101 and the growth layer (ZnSe) 102 thereon.As a result, lattice defects due to lattice mismatch GaAs and Zn5e have relatively similar lattice constants, or the occurrence of lattice defects due to such lattice mismatch is inevitable.

また、基板層101から成長層102への構成元素の拡
散による変質がある。
Further, there is deterioration due to diffusion of constituent elements from the substrate layer 101 to the growth layer 102.

さらに、基板層101を構成する基板結晶の禁制帯幅は
、発光層102の結晶の禁制帯幅より小さい、そのため
、発光した光のうち基板層側に向かう光は基板層101
に多く吸収される。結果として、高効率な発光タイオー
ドが得られない。
Further, the forbidden band width of the substrate crystal constituting the substrate layer 101 is smaller than the forbidden band width of the crystal of the light emitting layer 102. Therefore, among the emitted light, the light directed toward the substrate layer side is
is absorbed in large quantities. As a result, a highly efficient light emitting diode cannot be obtained.

第7図の構造では、n形結晶層111が拡散形である場
合、p形結晶層112の形成時に、n形結晶層111の
構成元素かp形結晶層112側へ逆拡散する。そのため
p形結晶層112が高抵抗化し、高効率な発光ダイオー
ドか得られない。
In the structure shown in FIG. 7, when the n-type crystal layer 111 is of the diffusion type, when the p-type crystal layer 112 is formed, the constituent elements of the n-type crystal layer 111 are back-diffused toward the p-type crystal layer 112 side. Therefore, the p-type crystal layer 112 has a high resistance, and a highly efficient light emitting diode cannot be obtained.

本発明の目的は、格子欠陥や各層の変質が極めて少なく
、高効率で発光を行うことのできるU−■膜間化合物半
導体装置を提供することである。
An object of the present invention is to provide a U-2 intermembrane compound semiconductor device that has extremely few lattice defects and alterations in each layer and can emit light with high efficiency.

:課題を解決するための手段シ 本発明によれば、n形n −VI族間化合物半導体から
なる第1Nと、該第1層の■−■族間化合物と同一のI
I−VI族間化合物主成分とし、■族元素を添加しなn
形■−■膜間化合物半導体からなる第2層と、該第1層
のII−VI族間化合物と同一のII−VI族間化合物
を主成分とするp形II−VI族間化合物半導体からな
る第3層とを有することを特徴とするII−VI族間化
合物半導体装置が提供される。
According to the present invention, a first N made of an n-type n-VI intergroup compound semiconductor and an I which is the same as the ■-■ intergroup compound of the first layer.
Mainly composed of I-VI intergroup compounds, with no addition of group ■ elements.
A second layer consisting of a type ■-■ intermembrane compound semiconductor, and a p-type II-VI intergroup compound semiconductor whose main component is the same II-VI intergroup compound as the II-VI intergroup compound of the first layer. There is provided a II-VI intergroup compound semiconductor device characterized by having a third layer.

1作 用コ 第1層と第2層とは同一の■−■族間化合物を用いたn
形1l−VI族間化合物半導体であるので、格子不整合
による格子欠陥の発生か極力抑えられる。同様にヘテロ
構造の場合と較べて、第1層から第2層への構成元素の
拡散による変質も極力抑えられる。
1. The first layer and the second layer are formed using the same ■-■ intergroup compound.
Since it is a type 1l-VI intergroup compound semiconductor, the occurrence of lattice defects due to lattice mismatch can be suppressed to the utmost. Similarly, compared to the case of a heterostructure, deterioration due to diffusion of constituent elements from the first layer to the second layer is also suppressed to the utmost.

各層は同一のII−VI族間化合物を用いているので、
各層の禁制帯幅は同一である。そのため、基板層である
第1層における発光した光の吸収が抑えられ、高効率な
発光タイオードが得られる。
Since each layer uses the same II-VI intergroup compound,
The forbidden band width of each layer is the same. Therefore, absorption of the emitted light in the first layer, which is the substrate layer, is suppressed, and a highly efficient light emitting diode can be obtained.

第2層は■族元素を添加した結晶を用いているので、こ
の上の第3層であるp形半導体層へのn形ドーパントの
拡散か減少する。したがって、pn界面における高抵抗
層の形成が防止できる。
Since the second layer uses a crystal doped with group Ⅰ elements, the diffusion of n-type dopants into the p-type semiconductor layer, which is the third layer thereon, is reduced. Therefore, formation of a high resistance layer at the pn interface can be prevented.

3実施例] 本発明における具体的な実施例として、n−VI族化合
物半導体であるZn5eを例にとり、以下説明する。
3 Examples] A specific example of the present invention will be described below by taking Zn5e, which is an n-VI group compound semiconductor, as an example.

第1図は、本発明に係るII−VI族間化合物半導体装
置である発光ダイオードの断面構造を示す。
FIG. 1 shows a cross-sectional structure of a light emitting diode which is a II-VI intergroup compound semiconductor device according to the present invention.

■族元素を添加したn形Zn5e層(第1層)1上に■
族元素を添加したn形Zn5e層(第2層)2を形成し
、その後、Ia族元素を添加したp形Zn5e層(第3
層)3を形成している。
■On the n-type Zn5e layer (first layer) 1 doped with group elements■
An n-type Zn5e layer (second layer) 2 doped with group elements is formed, and then a p-type Zn5e layer (third layer) doped with group Ia elements is formed.
Layer) 3 is formed.

第2層としてn形の低抵抗結晶を得るなめには、例えば
以下のようにする。溶媒としてZnを用い、この溶媒中
に適当量の不純物である■族元素を添加する。温度差を
付けた溶媒の高温側に原料結晶を置き、低温側に基板結
晶(第1層)−を置く、これにより、飽和溶解度の高い
高温/Fl(原料結晶部分)から飽和溶解度の低い低温
側(基板結晶部分)に向かって濃度勾配による溶質の流
れか生じ、溶けた結晶材料の拡散が起こる。そして、原
料結晶か基板上にエピタキシャル成長し、第2層が形成
される。
In order to obtain an n-type low resistance crystal as the second layer, for example, the following procedure is performed. Zn is used as a solvent, and an appropriate amount of a group Ⅰ element as an impurity is added to this solvent. The raw material crystal is placed on the high-temperature side of the solvent with a temperature difference, and the substrate crystal (first layer) is placed on the low-temperature side.This allows the transition from the high temperature/Fl (raw material crystal part) with high saturated solubility to the low temperature with low saturated solubility. A flow of solute occurs toward the side (crystalline portion of the substrate) due to a concentration gradient, and diffusion of the melted crystalline material occurs. Then, the raw material crystal is epitaxially grown on the substrate to form a second layer.

第2図に、■族元素の代りに■族元素を用いて形成した
結晶の電気的特性を示す。第3図に、■族元素を用いて
形成した結晶の電気的特性を示す。
FIG. 2 shows the electrical characteristics of a crystal formed using a group Ⅰ element instead of a group Ⅰ element. FIG. 3 shows the electrical characteristics of a crystal formed using a group Ⅰ element.

第2図から分かるように、■族元素(Ga。As can be seen from Figure 2, group II elements (Ga.

In)を添加した結晶では、不純物の添加量が10−2
mo1%以上で、キャリア密度が1017c11−3以
上となる。しかし、任意のキャリア密度を得ることは容
易ではない、第3図から分かるように、■族元素(Br
、I)を添加した結晶では、不純物の添加量か10−6
mo1%以上で、キャリア密度か1017cn−3とな
る。添加量は■族元素の場合、非常に少ない、添加量お
よび不純物の種類を適当に選択することにより、キャリ
ア密度を1018cm3近傍とすることら可能である。
In the crystal doped with In), the amount of impurities added is 10-2
When the mo is 1% or more, the carrier density is 1017c11-3 or more. However, it is not easy to obtain an arbitrary carrier density, as can be seen from Figure 3.
, I), the amount of impurities added is 10-6
When the mo is 1% or more, the carrier density becomes 1017cn-3. In the case of group Ⅰ elements, the amount added is very small; by appropriately selecting the amount added and the type of impurity, it is possible to make the carrier density around 1018 cm3.

第4図に、■族元素(Ga)を添加した結晶と■族元素
(1)を添加した結晶の深さ方向の不純物密度を示す、
これは、ランド−1基板上にエピタキシャル成長させた
結晶について測定した結果である。同図によれば、■族
元素であるGaの基板側の不純物密度は、yH族元素で
ある■の基板側の不純物密度に比べて非常に高い。これ
は、■族元素であるGaの基板側への拡散が非常に大き
いことを示している。また、■族元素である■の基板側
への拡散はGaに比べて非常に低い、他の■族元素およ
び■族元素についても同機の傾向を示す。
Figure 4 shows the impurity density in the depth direction of a crystal doped with a group II element (Ga) and a crystal doped with a group II element (1).
This is the result of measurement of a crystal epitaxially grown on the land-1 substrate. According to the figure, the impurity density of Ga, which is a group II element, on the substrate side is much higher than the impurity density of Ga, which is a yH group element, on the substrate side. This indicates that the diffusion of Ga, which is a group Ⅰ element, toward the substrate side is extremely large. Furthermore, the same tendency is also shown for other group Ⅰ elements and group Ⅰ elements, in which the diffusion of ①, which is a group ① element, to the substrate side is very low compared to Ga.

このように■族元素は熱的に不安定である6すなわち、
■族元素を不純物として添加したn形半導体層の上にp
形半導体層を積層するときには、n形半導体層の■族元
素がp形半導体層側へ拡散してしまう、p形半導体層に
おいては、拡散しなn形不純物かアクセプタを補償する
なめに、nρ界面近傍の2層が高抵抗jとする。そのな
め、効率の低下を招きデバイス上非常に問題となる。こ
れに対し、■族元素はこのようなことかない。
In this way, group Ⅰ elements are thermally unstable6, that is,
■P-type semiconductor layer doped with group elements as impurities
When stacking type semiconductor layers, group Ⅰ elements in the n-type semiconductor layer diffuse toward the p-type semiconductor layer.In the p-type semiconductor layer, nρ It is assumed that the two layers near the interface have high resistance j. This leads to a drop in efficiency and poses a serious problem for devices. On the other hand, this is not the case with group II elements.

第5図は、■族元素のAg、Li、RbあるいはV族元
素のPをそれぞれ添加1.7’、、: Z n S e
結晶のフォトルミネセンススペクトルを示す、横軸は発
光波長、縦軸は任意単位の発光強度を示す、なお、縦軸
のスゲールは図中表示の数値倍して読むものとする。サ
ンプルは5°C/CIの温度勾配で、成長温度550℃
で成長した。これらの図から分るように、Ia族元素で
あるLi、Rbを添加した場合は、DAPや束縛された
中性アクセプタに起因した11ピークが観測される。I
b族元素のAgを添加した時は、550nm付近にピー
クを持つディープ発光か観察される。したかって、Ib
族元素を添加した結晶をP形半導体層(第3層)として
も、色純度の優れた青色発光は離しい、また、V族とし
てznP2を添加した場合は、束縛された中性ドナーに
起因した■2ピークか観察され浅いアクセプタの形成か
成されていない、したかって、p型ドーパントとして働
き得ないと考えられる。
Figure 5 shows the addition of Ag, Li, Rb, which is a group ■ element, or P, which is a group V element, at 1.7',...: Z n S e
The photoluminescence spectrum of the crystal is shown.The horizontal axis shows the emission wavelength, and the vertical axis shows the emission intensity in arbitrary units.The scale on the vertical axis is read by multiplying the numerical value shown in the figure. The sample was grown at a temperature gradient of 550°C with a temperature gradient of 5°C/CI.
I grew up in As can be seen from these figures, when Li and Rb, which are group Ia elements, are added, 11 peaks resulting from DAP and bound neutral acceptors are observed. I
When Ag, a group B element, is added, deep luminescence with a peak around 550 nm is observed. I want to, Ib
Even if a crystal doped with group elements is used as the P-type semiconductor layer (third layer), blue light emission with excellent color purity cannot be achieved.Also, when znP2 is added as a group V element, blue light emission due to bound neutral donors (2) Only two peaks were observed, and no shallow acceptor was formed.Therefore, it is thought that it cannot function as a p-type dopant.

以上説明したように、第2層としてVI族元素を添加し
たn形■−■膜間化合物半導体を用いれば、第2層のキ
ャリア密度が1018cl−3近傍に至るような結晶層
までも形成することかでき、電気的な制御範囲も広がる
As explained above, if an n-type ■-■ interlayer compound semiconductor doped with Group VI elements is used as the second layer, a crystalline layer with a carrier density of around 1018 cl-3 can be formed in the second layer. This also expands the electrical control range.

以上実施例に沿って本発明を説明したが、本発明はこれ
らに制限されるものではない。例えば、種々の変更、改
良、組合わせなどが可能なことは当業者に自明であろう
Although the present invention has been described above along with examples, the present invention is not limited to these. For example, it will be obvious to those skilled in the art that various changes, improvements, combinations, etc. are possible.

ε発明の効果] 以上説明したように、本発明によれば、半導体装置を構
成する各層を同一物質の結晶(II−VI族間化合物)
を用いて構成しているので、格子不整合による格子欠陥
の発生が抑えられる。まな、各層の変質も極めて少なく
なる。各層の禁制帯幅は同一となるので、発光した光の
うち基板側で反射してきた光もある程度吸収されずに半
導体装1前面から出てくる。したがって、発光効率が上
がる。
[Effect of ε Invention] As explained above, according to the present invention, each layer constituting a semiconductor device is made of crystals of the same substance (II-VI intergroup compound).
Since the structure uses lattice defects, generation of lattice defects due to lattice mismatch can be suppressed. Moreover, the deterioration of each layer is also extremely reduced. Since the forbidden band width of each layer is the same, some of the emitted light reflected from the substrate side is not absorbed to some extent and exits from the front surface of the semiconductor device 1. Therefore, luminous efficiency increases.

pn接合面に対し第2層としてV′J族添加結晶を用い
ているので、第3層のp形半導体層へのn形ドーパント
の拡散か減少する。したかって、pn界面近傍において
高抵抗層の形成が防止できる6また、キャリア密度を1
018cn−3近傍まで広範囲に選択できる。したがっ
て、電気的制御範囲が広がり高輝度化および高効率化を
図ることができる。
Since the V'J group doped crystal is used as the second layer for the p-n junction surface, the diffusion of n-type dopant into the third p-type semiconductor layer is reduced. Therefore, the formation of a high resistance layer near the pn interface can be prevented6.
Can be selected from a wide range up to around 018cn-3. Therefore, the electrical control range is expanded, and higher brightness and efficiency can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の半導体装置(発光ダイオード)の断
面図、 第2図は、■族元素を添加した結晶の電気的特性を示す
グラフ、 第3図は、■族元素を添加した結晶の電気的特性を示す
グラフ、 第4図は、■族元素を添加した結晶と■族元素を添加し
た結晶の深さ方向の不純物密度を示すグラフ、 第5図は、I族元素のAg、Li、RbあるいはV族元
素のPをそれぞれ添加したZn5e結晶のフォトルミネ
セントスペクトルを示すグラフ、第6図および第7図は
、Zn5eを用いた従来の発光タイオードの断面図であ
る。 図において、 ■族元素を添加した n形Zn5e層(第1層) Vm族元素を添加した n形Zn5e層(第2層) Ia族元素を添加した p形Zn5e層(第3層) 特許出願人  スタンレー電気株式会社代 理 人 弁
理士 高橋敬四部 第4図 添加量(mo19.。) 第2図 添加量(m01九) 第3図 第5図
Fig. 1 is a cross-sectional view of the semiconductor device (light emitting diode) of the present invention, Fig. 2 is a graph showing the electrical characteristics of a crystal doped with a group II element, and Fig. 3 is a crystal doped with a group II element. 4 is a graph showing the impurity density in the depth direction of a crystal doped with a group I element and a crystal doped with a group 2 element. FIG. Graphs showing photoluminescent spectra of Zn5e crystals doped with Li, Rb, or P, a group V element, respectively, and FIGS. 6 and 7 are cross-sectional views of conventional light emitting diodes using Zn5e. In the figure, an n-type Zn5e layer doped with group Ⅰ elements (first layer), an n-type Zn5e layer doped with group Vm elements (second layer), a p-type Zn5e layer doped with group Ia elements (third layer), and a patent application. Person Stanley Electric Co., Ltd. Representative Person Patent Attorney Takahashi Keishibe Figure 4 Addition amount (mo19..) Figure 2 Addition amount (m019) Figure 3 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)、n形II−VI族間化合物半導体からなる第1層と
、 該第1層のII−VI族間化合物と同一のII−VI族間化合物
を主成分とし、VII族元素を添加したn形II−VI族間化
合物半導体からなる第2層と、該第1層のII−VI族間化
合物と同一のII−VI族間化合物を主成分とするp形II−
VI族間化合物半導体からなる第3層と を有することを特徴とするII−VI族間化合物半導体装置
(1) A first layer consisting of an n-type II-VI intergroup compound semiconductor, the main component of which is the same II-VI intergroup compound as the II-VI intergroup compound of the first layer, and a group VII element added. a second layer consisting of an n-type II-VI intergroup compound semiconductor, and a p-type II-VI layer consisting mainly of the same II-VI intergroup compound as the II-VI intergroup compound of the first layer.
A II-VI intergroup compound semiconductor device, characterized in that it has a third layer made of an intergroup VI compound semiconductor.
JP2163747A 1990-06-21 1990-06-21 Compound semiconductor device between ii-vi families Pending JPH0456176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2163747A JPH0456176A (en) 1990-06-21 1990-06-21 Compound semiconductor device between ii-vi families

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2163747A JPH0456176A (en) 1990-06-21 1990-06-21 Compound semiconductor device between ii-vi families

Publications (1)

Publication Number Publication Date
JPH0456176A true JPH0456176A (en) 1992-02-24

Family

ID=15779923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2163747A Pending JPH0456176A (en) 1990-06-21 1990-06-21 Compound semiconductor device between ii-vi families

Country Status (1)

Country Link
JP (1) JPH0456176A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213378A (en) * 1987-03-02 1988-09-06 Toshiba Corp Manufacture of semiconductor light emitting element
JPH0268968A (en) * 1988-09-02 1990-03-08 Sharp Corp Compound semiconductor light-emitting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213378A (en) * 1987-03-02 1988-09-06 Toshiba Corp Manufacture of semiconductor light emitting element
JPH0268968A (en) * 1988-09-02 1990-03-08 Sharp Corp Compound semiconductor light-emitting device

Similar Documents

Publication Publication Date Title
US5646419A (en) n-type wide bandgap semiconductors grown on a p-type layer to form hole injection pn heterojunctions and methods of fabricating the same
Craford et al. Vapor phase epitaxial materials for LED applications
US6791257B1 (en) Photoelectric conversion functional element and production method thereof
US20070126021A1 (en) Metal oxide semiconductor film structures and methods
US20060255351A1 (en) Metal oxide semiconductor films, structures and methods
JPH0268968A (en) Compound semiconductor light-emitting device
Hart Green and yellow emitting devices in vapor-grown gallium phosphide
Chichibu et al. Controlling the carrier lifetime of nearly threading-dislocation-free ZnO homoepitaxial films by 3d transition-metal doping
Kressel et al. Electroluminescence and photoluminescence of GaAs: Ge prepared by liquid phase epitaxy
Turco‐Sandroff et al. Arsenic‐doped P‐type ZnTe grown by molecular beam epitaxy
JPH0658977B2 (en) Semiconductor element
JPH0456176A (en) Compound semiconductor device between ii-vi families
US5032539A (en) Method of manufacturing green light emitting diode
Bet et al. Laser Doping of Chromium and Selenium in p-type 4H-SiC
JP2001226200A (en) LOW RESISTANCE p-TYPE SINGLE CRYSTAL ZnS AND ITS PRODUCING METHOD
JPH0456175A (en) Compound semiconductor device between ii-vi families
Masselink et al. In0. 35Ga0. 65P light‐emitting diodes grown by gas‐source molecular beam epitaxy
JP2545212B2 (en) Blue light emitting element
US5442202A (en) Semiconductor light emitting element
WO2007067166A1 (en) Metal oxide semiconductor devices and film structures and methods
JP3646706B2 (en) Boron phosphide-based semiconductor light-emitting diode and manufacturing method thereof
US5382813A (en) Light emission diode comprising a pn junction of p-type and n-type A1-containing ZnS compound semiconductor layers
SU928942A1 (en) Method of producing structures with p-n junction on base of type aiii bv semiconductors
JPH05304314A (en) Light emitting diode
Wang et al. Temperature quenching mechanisms for photoluminescence of MBE-grown chlorine-doped ZnSe epilayers