JPH0455749A - Continuous measuring apparatus for concentration of co gas - Google Patents

Continuous measuring apparatus for concentration of co gas

Info

Publication number
JPH0455749A
JPH0455749A JP2166506A JP16650690A JPH0455749A JP H0455749 A JPH0455749 A JP H0455749A JP 2166506 A JP2166506 A JP 2166506A JP 16650690 A JP16650690 A JP 16650690A JP H0455749 A JPH0455749 A JP H0455749A
Authority
JP
Japan
Prior art keywords
gas
zirconia
electromotive force
pipe
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2166506A
Other languages
Japanese (ja)
Inventor
Masato Maeda
眞人 前田
Tomoji Kanda
神田 智司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2166506A priority Critical patent/JPH0455749A/en
Publication of JPH0455749A publication Critical patent/JPH0455749A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the indication of a detector in actual measurement agree with the indication in calibration and to make it possible to measure a component to be measured stably for a long period by providing a filter comprising the sintered material of silicone carbide at the tip of a probe. CONSTITUTION:Gas to be measured MG is transmitted through a filter 17 comprising the sintered material of silicone carbide, and contained catalyst material is removed. Then, the MG is introduced into a zirconia pipe 1 and supplied to an inner electrode 16a. Comparing gas TG which is introduced through a comparing-gas introducing pipe 8 is supplied to the outside of the pipe 1. Under this state, the pipe 1 is heated with a heater 9 up to the temperature where oxygen-ion derivative is obtained. Then, CO contained in the gas MG comes into contact with the electrode 16a, and catalyst reaction occurs. As a result, electromotive force corresponding to the amount of CO gas which is consumed by the reaction is generated across an outer electrode 16b and a negative-side contact 3. When the detected signal corresponding to the electromotive force is processed, the oxygen and the CO gas in the gas to be measured are measured continuously and accurately.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明は、COガス濃度の連続測定装置に関し、更に詳
しくは、検出器の構造を改善して測定ガスに含まれるC
Oガスの濃度を連続的かつ正確に測定できるようにした
COガス11度の連続測定装置に閏する。
Detailed Description of the Invention Industrial Application Field The present invention relates to a device for continuously measuring CO gas concentration, and more specifically, the present invention relates to a device for continuously measuring CO gas concentration, and more specifically, the present invention relates to a device for continuously measuring CO gas concentration.
We will use a continuous measuring device for CO gas at 11 degrees Celsius, which allows us to measure the concentration of O gas continuously and accurately.

〈従来の技術〉 一般に、燃焼プロセスにおいては省エネルギーや公害防
止の観点から煙道を流れる燃焼排ガスに含まれる酸素と
可燃ガスの11度を常時監視し、燃焼炉が最適状態で運
転されるように燃焼制御される。このような煙道を流れ
る燃焼排ガスに含まれるCOガスのillを連続的に測
定するには従来法のような装置が用いられていた。即ち
、!!素イオン伝導体からなるジルコニア固体電解質で
構成されたジルコニア管に内側電極と外側j!極を設け
、測定ガスの入る該内側電極を非触媒性の電極で構成す
ると共に比較ガスが入る外側TIi極を触蝶能の強い電
極で構成し、ジルコニアセンサの起電力から前記測定ガ
ス中のCOガスS度を求めるようになっていた。また、
ジルコニアセンサーの先端部には、ダストがセル内に入
らないようにするためステンレス製またはアルミナ製の
金網が使用されていた。
<Conventional technology> Generally, in the combustion process, from the viewpoint of energy saving and pollution prevention, the oxygen and combustible gases contained in the flue gas flowing through the flue are constantly monitored at 11 degrees Celsius to ensure that the combustion furnace is operated in optimal conditions. Combustion is controlled. Conventional devices have been used to continuously measure the amount of CO gas contained in the combustion exhaust gas flowing through the flue. That is,! ! A zirconia tube made of a zirconia solid electrolyte made of an elementary ion conductor has an inner electrode and an outer j! The inner electrode, into which the measurement gas enters, is made of a non-catalytic electrode, and the outer TIi electrode, into which the comparison gas enters, is made up of an electrode with a strong tactile ability. The CO gas S degree was to be determined. Also,
A stainless steel or alumina wire mesh was used at the tip of the zirconia sensor to prevent dust from entering the cell.

然しながら、このような従来例においては、内測定ガス
が触媒能の強いステンレスの酸化膜やアルミナと接触す
るため、これが触媒となって測定ガス中のCOガスが下
式(1)のように酸化され、結果的にジルコニアセンサ
の起電力が低下して大きな測定誤差を生ずるという欠点
があった。
However, in such conventional examples, the internal measurement gas comes into contact with the stainless steel oxide film and alumina, which have strong catalytic ability, and this acts as a catalyst, causing the CO gas in the measurement gas to oxidize as shown in equation (1) below. As a result, the electromotive force of the zirconia sensor decreases, resulting in a large measurement error.

co+ (1/2)Ox→CO2・・・・・・(1)ま
た、フィルタを用いない場合は煙道中のダストがセル内
に入り、このダストが触媒となっていた。
co+ (1/2)Ox→CO2 (1) Moreover, when a filter is not used, dust in the flue enters the cell, and this dust acts as a catalyst.

〈発明が解決しようとする問題点〉 本発明は、かかる従来例の欠点に鑑みてなされたもので
あり、その解決しようとする技術的課題は、検出器の指
示が実測時と校正時で一致すると共に長期間安定して被
測定成分を測定できるC0ガス濃度の連続測定i!キを
提供することにある。
<Problems to be Solved by the Invention> The present invention has been made in view of the drawbacks of the conventional example, and the technical problem to be solved is to ensure that the indications of the detector are the same at the time of actual measurement and at the time of calibration. Continuous measurement of CO gas concentration that allows stable measurement of the measured component over a long period of time i! The goal is to provide the key.

〈問題点を解決するための手段〉 上述のような問題点(技術的課題)を解決する本発明は
、ジルコニアセルと測定ガスが接触する部分にCOガス
の酸化触媒となる材料を使用しないことによって前記問
題点を解決したものである。
<Means for Solving the Problems> The present invention, which solves the above-mentioned problems (technical problems), does not use a material that serves as an oxidation catalyst for CO gas in the part where the zirconia cell and the measurement gas come into contact. This solves the above problem.

即も、本発明の特徴は、酸素イオン伝導体からなるジル
コニア固体電解質で構成されたジルコニアセンサの起電
力から前記測定ガス中の可燃ガス濃度を求めるCOガス
濃度の連続測定装置において、プローブの先端にシリコ
ーンカーバイドの焼結材料でなるフィルタを設けること
によって前記課題を解決したものである。また、同様に
して、本発明は、COガスlfiの連続測定装置におい
て、非触媒性の石英管または他のガラス管を、校正ガス
導入管として用いることによって前記vR11を解決し
たものである。
Immediately, the feature of the present invention is that in a continuous measuring device for CO gas concentration, which determines the combustible gas concentration in the measurement gas from the electromotive force of a zirconia sensor made of a zirconia solid electrolyte made of an oxygen ion conductor, This problem has been solved by providing a filter made of a sintered silicone carbide material. Similarly, the present invention solves vR11 by using a non-catalytic quartz tube or other glass tube as a calibration gas introduction tube in a continuous measurement device for CO gas lfi.

〈実施例〉 以下、図面を用いて本発明実施例について詳しく説明す
る。第1図は本発明実施例の構成断面図であり、図中、
1は例えば1llAイオン伝導体からなるジルコニア固
体電解質で構成されている試験管形のジルコニア管、2
は後述の内Ill極16aの電極リードと接触するリン
グ状の正側コンタクト、3は後述の外側電極16bの電
極リードと接触するリング状の負側コンタクト、4はカ
バープレート、5はOリング、6はプローブパイプ、7
゜7−は非触媒性の石英管または他のガラス管でなる校
正ガス導入管、8は比較ガス導入管、9は熱電対、10
はジルコニア管1を加熱するためのヒータ、11は仕切
板、12は燃焼排ガスなどでなる測定ガスMGが流れる
煙道の!!!(図示せず)等に装置を固定するためのフ
ランジ、13は端子箱、14はバッキング、15は校正
ガス導入口、16aはジルコニア管15の底部に¥7A
Ifされた非触媒性(触媒能が極めて少ない)物質であ
る例えば2γMO20[1(モリブデンジルコニウムオ
キサイド)でなる内側電極、16bはジルコニア管1が
基準ガスRGと接触する面(外側面)に装着され白金粉
末などを焼結した多孔質白金触媒でなる外側電極、17
はプローブパイプ6の先端に装着されたシリコーンカー
バイドの焼結材料でなるフィルターである。
<Examples> Examples of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a cross-sectional view of the configuration of an embodiment of the present invention, and in the figure,
1 is a test tube-shaped zirconia tube made of a zirconia solid electrolyte made of, for example, a 11A ionic conductor; 2;
3 is a ring-shaped negative side contact that contacts the electrode lead of the inner electrode 16b, which will be described later; 4 is a cover plate; 5 is an O-ring; 6 is a probe pipe, 7
゜7- is a calibration gas introduction tube made of a non-catalytic quartz tube or other glass tube, 8 is a comparison gas introduction tube, 9 is a thermocouple, 10
is a heater for heating the zirconia tube 1, 11 is a partition plate, and 12 is a flue through which the measurement gas MG, which is composed of combustion exhaust gas, flows! ! ! (not shown) etc., 13 is a terminal box, 14 is a backing, 15 is a calibration gas inlet, 16a is attached to the bottom of the zirconia tube 15 for ¥7A
An inner electrode 16b made of a non-catalytic (very low catalytic ability) material such as 2γMO20[1 (molybdenum zirconium oxide)] is attached to the surface (outer surface) of the zirconia tube 1 in contact with the reference gas RG. Outer electrode made of porous platinum catalyst made by sintering platinum powder, etc., 17
is a filter made of a sintered silicone carbide material attached to the tip of the probe pipe 6.

このような構成からなる本発明の実施例において、測定
ガスMGはフィルタ17を透過して含有する触媒性物質
が除去されてのちジルコニア管1の内側に導かれ、内側
電極16aに供給される。
In the embodiment of the present invention having such a configuration, the measurement gas MG passes through the filter 17 to remove the catalytic substance contained therein, and is then guided inside the zirconia tube 1 and supplied to the inner electrode 16a.

また、比較ガス導入管8から導入された比較ガスRGは
ジルコニア管1の外側に供給されている。
Further, the comparison gas RG introduced from the comparison gas introduction pipe 8 is supplied to the outside of the zirconia tube 1.

この状態で、ヒータ9によりジルコニア管1を酸素イオ
ン訳導体となる温度まで(通常、500’C)加熱する
と、測定ガスMGに含まれているCOは内側電極16a
に接触し前記(1)式のような触媒反応を起こす。 こ
の結果、ジルコニアセンサーの外側電極16bと負側コ
ンタクト3との間には、反応によって消費されるCOガ
スの量に対応する起電力が発生する。
In this state, when the zirconia tube 1 is heated by the heater 9 to a temperature at which it becomes an oxygen ion conductor (usually 500'C), the CO contained in the measurement gas MG is removed from the inner electrode 16a.
, causing a catalytic reaction as shown in formula (1) above. As a result, an electromotive force corresponding to the amount of CO gas consumed by the reaction is generated between the outer electrode 16b of the zirconia sensor and the negative contact 3.

ところで、測定ガスMGのOz1度をχ%、COガス濃
度を1%、比較ガスRGの021度を20.6%とした
場合、起電力E^は次の式に従い下式(2)のように表
すことができる。
By the way, if the measurement gas MG's Oz 1 degree is χ%, the CO gas concentration is 1%, and the comparison gas RG's 021 degree is 20.6%, the electromotive force E^ is calculated as shown in the following formula (2) according to the following formula. It can be expressed as

E^=に^・(RT^/4F)・1T1(y/χ)+C
^ ・・・・・・・・・・・・・・・・・・・・・・・
・・・・ (2)但し、F:ファラデ一定数、R:ガス
定数、T^:動作温度、K^、CA:定数。
E^=ni^・(RT^/4F)・1T1(y/χ)+C
^ ・・・・・・・・・・・・・・・・・・・・・・・・
... (2) However, F: Faraday constant, R: gas constant, T^: operating temperature, K^, CA: constant.

また、内側電極168は触媒能が極めて少ない電極材料
で構成されており、しかも、ジルコニア管1内に触媒性
物質は存在しない。このため、測定ガスMG中の酸素ガ
スとCOガスが一緒に内側電極16aに到達しても、該
COガスだけが、上記ネルンストの式に従い、測定ガス
MG中のCOガス濃度に対応した起電力を発生させる。
Furthermore, the inner electrode 168 is made of an electrode material with extremely low catalytic ability, and moreover, no catalytic substance is present within the zirconia tube 1. Therefore, even if oxygen gas and CO gas in the measurement gas MG reach the inner electrode 16a together, only the CO gas generates an electromotive force corresponding to the CO gas concentration in the measurement gas MG according to the Nernst equation. to occur.

即ち、COガスはジルコニア管1内部のQ−2イオンと
、CO+  O’    →CO2+  2  e−−
(3)の如く反応し、起電力を発生する。また、この起
電力に対応した検出信号は図示しない信号処理器で信@
処理することにより、測定ガス中の酸素とCOガスを連
続かつ正確に測定できるようになる。
That is, the CO gas and the Q-2 ions inside the zirconia tube 1 and CO+ O' → CO2+ 2 e--
It reacts as shown in (3) and generates an electromotive force. In addition, a detection signal corresponding to this electromotive force is sent by a signal processor (not shown).
By processing, oxygen and CO gas in the measurement gas can be measured continuously and accurately.

一方、第2図は前記従来例の場合と本発明実施例の場合
についてジルコニアセンサから生ずるセル起電力を比較
した実験結彎を示すセル起電力の特性曲線図である。こ
の図において、横軸は第1図の内側電極16aに供給さ
れるCOガス激度と酸素ガス濃度が一定の校正ガスの流
1(ml/mn、)を示し、縦軸はジルコニアセンサの
電極間に発生する起電力(mV)を示している。また、
第2図の特性−1i1Bから明らかなように、前記従来
例の場合は校正ガス流量の減少に伴なってセル起電力が
斬減しているが、本発明実施例@例の4合は特性曲線A
で示すように校正ガス流量の変化に係わらずセル起電力
が一定となっている。これは次のような理由によるもの
である。
On the other hand, FIG. 2 is a characteristic curve diagram of the cell electromotive force showing an experimental result comparing the cell electromotive force generated from the zirconia sensor in the case of the conventional example and the case of the embodiment of the present invention. In this figure, the horizontal axis shows the flow 1 (ml/mn) of the calibration gas with constant CO gas intensity and oxygen gas concentration supplied to the inner electrode 16a of FIG. 1, and the vertical axis shows the electrode of the zirconia sensor. It shows the electromotive force (mV) generated during that time. Also,
As is clear from the characteristic-1i1B in FIG. 2, in the case of the conventional example, the cell electromotive force decreases sharply as the calibration gas flow rate decreases, but in the case of the fourth case of the present invention example, the characteristic Curve A
As shown in , the cell electromotive force remains constant regardless of changes in the calibration gas flow rate. This is due to the following reasons.

即ち、前記従来例のように第1図のジルコニアセンサに
触媒性物質が存在する場合にはの場合には、該触媒によ
って測定ガス中のCOガスが酸化されてCO2となり、
その結果、ジルコニアセンサの起電力が低下するように
なる。これに対し、本発明実施例のように第1図のジル
コニア111内に触媒性物質が存在しない場合には、ジ
ルコニア管1内で前記従来例のような触媒作用がないた
め、測定ガス中のCOガスが酸化されることはなくジル
コニアセンサの起電力が低下するようなこともない。
That is, in the case where a catalytic substance is present in the zirconia sensor of FIG. 1 as in the conventional example, the CO gas in the measurement gas is oxidized by the catalyst to become CO2,
As a result, the electromotive force of the zirconia sensor decreases. On the other hand, when there is no catalytic substance in the zirconia 111 shown in FIG. 1 as in the embodiment of the present invention, there is no catalytic action in the zirconia tube 1 as in the conventional example, so The CO gas is not oxidized and the electromotive force of the zirconia sensor does not decrease.

尚、測定ガスを実際に測定する場合には、測定ガスが第
1図のジルコニア管1内に拡散や対流で供給され該供給
ガス流量が少ないため、第3図の特性曲線図で示した現
象がより顕茗に現われるようになる。
In addition, when actually measuring the measurement gas, the measurement gas is supplied into the zirconia tube 1 shown in Fig. 1 by diffusion or convection, and the flow rate of the supplied gas is small, so the phenomenon shown in the characteristic curve diagram of Fig. 3 occurs. begins to appear more clearly.

〈発明の効果〉 以上詳しく説明したような本発明によれば、次の■〜■
のような効果が得られる。即ち、■70−ブパイプの先
端にシリコーンカーバイドの焼結材料でなるフィルタを
装着したため、測定ガス中のダストがジルコニア管内に
入らなくなり、その結果、該ダストの中に触媒性物質が
含まれている場合であってもジルコニア管の高温部分に
触媒性物質が到達せず触媒による感度低下も回避できる
<Effects of the Invention> According to the present invention as explained in detail above, the following ■~■
You can get an effect like this. In other words, (1) A filter made of sintered silicone carbide material was attached to the tip of the 70-tube pipe, so dust in the measurement gas was prevented from entering the zirconia pipe, and as a result, the dust contained catalytic substances. Even in such a case, the catalytic substance does not reach the high-temperature portion of the zirconia tube, and a decrease in sensitivity due to the catalyst can be avoided.

■シリコーンカーバイドの焼結材料でなるフィルタは常
温ないし500” Cの間で殆ど触媒性を持たないため
、該フィルタ自体が触媒になることはない。
(2) A filter made of a sintered silicone carbide material has almost no catalytic properties between room temperature and 500''C, so the filter itself does not act as a catalyst.

■非触媒性の石英管または他のガラス管を校正ガス導入
管として用いているため、表面に形成される酸化膜が触
媒となることもなく、このような触媒に起因して前記従
来例で生じていた感度低下や校正時と実測時の測定値の
ずれなどを回避できる。
■Since a non-catalytic quartz tube or other glass tube is used as the calibration gas introduction tube, the oxide film formed on the surface does not act as a catalyst. It is possible to avoid the decrease in sensitivity and the discrepancy between the measured values during calibration and actual measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の構成断面図、第2図はジルコニ
アのセル起電力特性曲線図である。
FIG. 1 is a cross-sectional view of the structure of an embodiment of the present invention, and FIG. 2 is a zirconia cell electromotive force characteristic curve diagram.

Claims (1)

【特許請求の範囲】 1)酸素イオン伝導体からなるジルコニア固体電解質で
構成されたジルコニアセンサの起電力から測定ガス中の
COガス濃度を求めるCOガス濃度の連続測定装置にお
いて、プローブの先端にシリコーンカーバイドの焼結材
料でなるフィルタを設けたことを特徴とするCOガス濃
度の連続測定装置。 2)酸素イオン伝導体からなるジルコニア固体電解質で
構成されたジルコニアセンサの起電力から測定ガス中の
COガス濃度を求めるCOガス濃度の連続測定装置にお
いて、非触媒性の石英管または他のガラス管を、校正ガ
ス導入管として用いたことを特徴とするCOガス濃度の
連続測定装置。
[Claims] 1) In a continuous CO gas concentration measuring device that determines the CO gas concentration in a measurement gas from the electromotive force of a zirconia sensor made of a zirconia solid electrolyte made of an oxygen ion conductor, silicone is attached to the tip of the probe. A continuous measuring device for CO gas concentration, characterized in that it is equipped with a filter made of sintered carbide material. 2) In a continuous CO gas concentration measuring device that determines the CO gas concentration in the measurement gas from the electromotive force of a zirconia sensor made of a zirconia solid electrolyte made of an oxygen ion conductor, a non-catalytic quartz tube or other glass tube is used. A continuous measuring device for CO gas concentration, characterized in that it is used as a calibration gas introduction pipe.
JP2166506A 1990-06-25 1990-06-25 Continuous measuring apparatus for concentration of co gas Pending JPH0455749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2166506A JPH0455749A (en) 1990-06-25 1990-06-25 Continuous measuring apparatus for concentration of co gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2166506A JPH0455749A (en) 1990-06-25 1990-06-25 Continuous measuring apparatus for concentration of co gas

Publications (1)

Publication Number Publication Date
JPH0455749A true JPH0455749A (en) 1992-02-24

Family

ID=15832616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2166506A Pending JPH0455749A (en) 1990-06-25 1990-06-25 Continuous measuring apparatus for concentration of co gas

Country Status (1)

Country Link
JP (1) JPH0455749A (en)

Similar Documents

Publication Publication Date Title
US5397442A (en) Sensor and method for accurately measuring concentrations of oxide compounds in gas mixtures
Szabo et al. Correlation of sensing behavior of mixed potential sensors with chemical and electrochemical properties of electrodes
CN205620345U (en) Be used for CO to appear measuring oxygen sensor suddenly
JPS6055777B2 (en) Combustible sensor
JPH0562947B2 (en)
JPH0664004B2 (en) Apparatus and method for measuring oxygen content of gas
EP0432962B1 (en) Flammable gas detection
JPH11501395A (en) Device and method for measuring gaseous components in a gas mixture
US5635627A (en) Carbon monoxide sensor having mercury doped electrodes
EP0236441A1 (en) In-stream gas sensor
JPH0414302B2 (en)
US4663017A (en) Combustibles sensor
JPH0455749A (en) Continuous measuring apparatus for concentration of co gas
CN101027549B (en) Sulfur resistant sensors
JP2775487B2 (en) Oxygen sensor for heat treatment furnace
JP4908683B2 (en) Nitric oxide analyzer and sensor element for measuring nitric oxide
JPH0128338B2 (en)
KR20220028947A (en) Mixed potentiometric type nitrogen oxide sensor using bias voltage
JP2836184B2 (en) Combustible gas measuring device
JP6775814B2 (en) Gas concentration measuring device
JPH0552802A (en) Continuously measuring apparatus for co gas
JP2881947B2 (en) Zirconia sensor
US10161899B2 (en) Oxygen sensor with electrochemical protection mode
RU2780308C1 (en) Potentiometric solid-electrolyte cell
JPH075150A (en) Solid electrolytic sensor device