JPH0455123B2 - - Google Patents

Info

Publication number
JPH0455123B2
JPH0455123B2 JP61171814A JP17181486A JPH0455123B2 JP H0455123 B2 JPH0455123 B2 JP H0455123B2 JP 61171814 A JP61171814 A JP 61171814A JP 17181486 A JP17181486 A JP 17181486A JP H0455123 B2 JPH0455123 B2 JP H0455123B2
Authority
JP
Japan
Prior art keywords
activated carbon
molded body
carbon dioxide
drying
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61171814A
Other languages
Japanese (ja)
Other versions
JPS6330309A (en
Inventor
Yasunari Mukai
Masakazu Yokota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP61171814A priority Critical patent/JPS6330309A/en
Publication of JPS6330309A publication Critical patent/JPS6330309A/en
Publication of JPH0455123B2 publication Critical patent/JPH0455123B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は活性炭成形体の乾燥方法に関し、更に
詳しくは超臨界二酸化炭素を使用する活性炭成形
体の乾燥方法に関する。 〔従来の技術〕 成形後の活性炭成形体には、成形時の成形性を
改良するために、粉末活性炭に水及び有機成形助
剤が添加されており、更に、焼成後の強度を保つ
ために焼結バインダーが添加されている。このよ
うな水分、有機成形助剤及び焼結バインダーを含
んだ成形後の活性炭成形体は強度が十分ではな
く、また吸着性能も劣る。このため、該活性炭成
形体をマイクロ波加熱、熱風加熱などにより105
〜110℃(378〜383K)の温度で乾燥することに
よつて、該活性炭成形体中の大部分の水分を除去
している。しかし、この乾燥工程では有機成形助
剤を完全に除去することはできず、更に、該活性
炭成形体を高温加熱炉などにより非酸化性雰囲気
中で400〜1000℃(673〜1273K)の温度で焼成し
て該活性炭成形体中に残存する水分及び有機成形
助剤を除去することが必要となる。また、これら
の温度での処理後には、該活性炭成形体は非酸化
性雰囲気中で約100℃(373K)まで冷却する冷却
工程が必要となる。これら一連の工程により、成
形後の活性炭成形体の強度及び吸着性能が高めら
れている。 〔発明が解決しようとする問題点〕 しかし、成形後の活性炭成形体を上述の従来法
により乾燥した場合、有機成形助剤が該活性炭成
形体中に残存するため、該活性炭成形体の吸着性
能は原料である粉末活性炭のもつ吸着性能の半分
程度に低下するという欠点を有する。このため、
乾燥後の活性炭成形体を400〜1000℃(673〜
1273K)の高温で焼成して有機成形助剤を除去す
るが、多量の非酸化性雰囲気ガスを通気しながら
焼成するため、エネルギー消費量が大きくなると
いう欠点がある。更に、乾燥条件によつては焼結
段階で活性炭成形体に割れが発生し、製品の歩留
りが悪いという欠点がある。また、製品とするに
は乾燥、焼成及び冷却という工程を必要とするた
め、全工程にかなりの時間を要するという欠点も
ある。 〔問題点を解決するための手段〕 本発明は粉末活性炭、水分、有機成形助剤及び
焼結バインダーからなる成形後の活性炭成形体を
超臨界二酸化炭素と接触させ、該活性炭成形体か
ら水分及び有機成形助剤を同時に抽出し、それに
よつて成形体として強度及び吸着性能が優れた活
性炭成形体を得ることを特徴とする活性炭成形体
の乾燥方法を提供するにある。 〔作 用〕 本発明による活性炭成形体の乾燥方法につい
て、更に詳しく説明する。 乾燥される活性炭成形体は粉末活性炭、水分、
有機成形助剤及び焼結バインダーからなる混合材
料を成形したものである。本発明に従えば、二酸
化炭素の臨界圧力(Pc=7.38MPa)及び臨界温
度[Tc=31.2℃(304.2K)]を超える超臨界二酸
化炭素、好ましくは圧力7.38超〜30MPa及び温度
31.2超〜207℃(304.2超〜480K)、更に好ましく
は圧力8〜15MPa及び温度37〜157℃(310〜
430K)の超臨界二酸化炭素を成形後の活性炭成
形体と接触させることにより、該活性炭成形体中
の水分及び有機成形助剤を同時に効率的に抽出除
去し、該活性炭成形体中に焼結バインダーを残存
させることができ、これにより強度及び吸着性能
の優れた活性炭成形体を得ることができる。更
に、活性炭成形体に耐水性が特に要求される場合
には、成形後の活性炭成形体と、該活性炭成形体
に含まれる焼結バインダーの硬化温度以上の温度
範囲[例えば、焼結バインダーがコロイダルシリ
カ系の場合97℃(370K)前後、シリケート系の
場合157℃(430K)前後など]にある超臨界二酸
化炭素とを接触させることにより、該活性炭成形
体中の水分及び有機成形助剤を同時に効率的に抽
出除去するとともに、該活性炭成形体中に残存す
る焼結バインダーを完全に硬化させることがで
き、これにより強度及び吸着性能はもとより耐水
性に優れた活性炭成形体が得られる。このよう
に、本発明によれば、従来の乾燥及び焼成の各工
程を1つの工程で行なうことができる。更に、本
発明で利用する超臨界二酸化炭素の温度が100℃
(373K)以下であれば、従来の非酸化性雰囲気ガ
ス中での冷却も省略することができる。 また、成形後の活性炭成形体中から水分及び有
機成形助剤を抽出した超臨界二酸化炭素は抽出装
置から抜き出され、その後シリカゲル、活性炭あ
るいはモレキユラーシーブなどの吸着剤に抽出さ
れた水分及び有機成形助剤を吸着させることによ
り、あるいは超臨界二酸化炭素の圧力及び/また
は温度を変化させ、抽出された水分及び有機成形
助剤の二酸化炭素ガス中への溶解度を減少させる
ことにより、抽出された水分及び有機成形助剤と
二酸化炭素ガスとを分離し、二酸化炭素ガスは圧
縮機などにより再加圧し、超臨界二酸化炭素と
し、成形後の活性炭成形体中の水分及び有機成形
助剤の抽出溶媒として再循環使用することができ
る。 〔実施例〕 次に、実施例について本発明を説明する。尚、
本発明において%は特記しない限り重量%を表
す。 実施例 1 圧力8MPa、温度75℃(348K)の超臨界二酸
化炭素を50Kg/時間で流しつつ、水分及び有機成
形助剤を合計で40%含み、焼結バインダーとして
適当量のコロイダルシリカを含む活性炭成形体1
Kgと接触させ、2時間でほとんど全部の水分及び
有機成形助剤を抽出した。吸着性能及び強度など
については第1表に示す。 実施例 2 圧力8Mpa、温度110℃(383K)の超臨界二酸
化炭素を50Kg/時間で流しつつ、実施例1と同様
の組成をもつ活性炭成形体1Kgと接触させ、1時
間でほとんど全部の水分及び有機成形助剤を抽出
するとともに、焼結バインダーとしてのコロイダ
ルシリカを硬化させた。吸着性能及び強度などに
ついては第1表に示す。 第1表に実施例1、実施例2、従来の乾燥方法
及び従来の乾燥・焼成方法によつて得られた活性
炭成形体の性能の比較を示す。但し、原料の粉末
活性炭の吸着性能は、メチレンブルー脱色力220
ml/g(JIS K1470)、ヨウ素吸着量1340mg/g
(JIS K1474)である。
[Industrial Application Field] The present invention relates to a method of drying an activated carbon molded body, and more particularly to a method of drying an activated carbon molded body using supercritical carbon dioxide. [Prior art] Water and an organic forming aid are added to powdered activated carbon in order to improve the formability during forming, and furthermore, to maintain the strength after firing, the activated carbon formed body after forming is added with water and an organic forming aid. A sintered binder is added. The activated carbon molded body after molding, which contains such moisture, organic molding aid, and sintering binder, does not have sufficient strength and also has poor adsorption performance. For this reason, the activated carbon compact is heated to 105% by microwave heating, hot air heating, etc.
Most of the moisture in the activated carbon molded body is removed by drying at a temperature of ~110°C (378~383K). However, this drying process cannot completely remove the organic forming aid, and the activated carbon molded body is heated in a non-oxidizing atmosphere at a temperature of 400 to 1000°C (673 to 1273K) using a high-temperature heating furnace or the like. It is necessary to remove moisture and organic forming aids remaining in the activated carbon compact by firing. Furthermore, after treatment at these temperatures, the activated carbon compact requires a cooling step in which it is cooled to about 100° C. (373 K) in a non-oxidizing atmosphere. Through this series of steps, the strength and adsorption performance of the activated carbon molded body after molding are improved. [Problems to be Solved by the Invention] However, when the activated carbon molded body after molding is dried by the above-mentioned conventional method, the organic forming aid remains in the activated carbon molded body, so that the adsorption performance of the activated carbon molded body is deteriorated. has the disadvantage that the adsorption performance is reduced to about half that of powdered activated carbon, which is the raw material. For this reason,
After drying, the activated carbon molded body is heated at 400 to 1000℃ (673 to
The organic molding aid is removed by firing at a high temperature (1273K), but the drawback is that it consumes a lot of energy because it is fired while passing through a large amount of non-oxidizing atmospheric gas. Furthermore, depending on the drying conditions, cracks may occur in the activated carbon compact during the sintering stage, resulting in a poor product yield. In addition, since it requires the steps of drying, firing, and cooling to produce a product, it also has the disadvantage that the entire process takes a considerable amount of time. [Means for Solving the Problems] The present invention involves contacting a molded activated carbon body made of powdered activated carbon, moisture, an organic forming aid, and a sintering binder with supercritical carbon dioxide, and removing water and moisture from the activated carbon body. It is an object of the present invention to provide a method for drying an activated carbon molded body, which is characterized in that an organic forming aid is extracted at the same time, thereby obtaining an activated carbon molded body having excellent strength and adsorption performance as a molded body. [Function] The method for drying an activated carbon molded body according to the present invention will be explained in more detail. The activated carbon compact to be dried contains powdered activated carbon, water,
It is molded from a mixed material consisting of an organic molding aid and a sintering binder. According to the invention, supercritical carbon dioxide above the critical pressure (Pc = 7.38 MPa) and critical temperature [Tc = 31.2°C (304.2 K)] of carbon dioxide, preferably at a pressure of more than 7.38 to 30 MPa and a temperature
More than 31.2 to 207°C (more than 304.2 to 480K), more preferably a pressure of 8 to 15 MPa and a temperature of 37 to 157°C (310 to
By bringing supercritical carbon dioxide (430K) into contact with the activated carbon molded body after molding, water and organic forming aids in the activated carbon molded body are simultaneously extracted and removed efficiently, and the sintered binder is added to the activated carbon molded body. can remain, thereby making it possible to obtain an activated carbon molded body with excellent strength and adsorption performance. Furthermore, if the activated carbon molded body is particularly required to have water resistance, the temperature range of the activated carbon molded body after molding and the sintered binder contained in the activated carbon molded body or higher [for example, if the sintered binder is a colloidal By contacting supercritical carbon dioxide at a temperature of around 97°C (370K) for silica-based products and around 157°C (430K) for silicate-based products, the water and organic forming aids in the activated carbon compact are simultaneously removed. In addition to efficient extraction and removal, it is possible to completely harden the sintered binder remaining in the activated carbon molded body, thereby obtaining an activated carbon molded body that has excellent strength and adsorption performance as well as water resistance. As described above, according to the present invention, the conventional drying and baking steps can be performed in one step. Furthermore, the temperature of supercritical carbon dioxide used in the present invention is 100°C.
(373K) or less, the conventional cooling in a non-oxidizing atmosphere gas can be omitted. In addition, the supercritical carbon dioxide that has extracted water and organic molding aids from the activated carbon molded body after molding is extracted from an extraction device, and then transferred to an adsorbent such as silica gel, activated carbon, or molecular sieve to absorb the extracted water and the organic molding aid. The extracted water and organic forming aids are extracted by adsorbing them or by changing the pressure and/or temperature of the supercritical carbon dioxide to reduce the solubility of the extracted water and organic forming aids in the carbon dioxide gas. Separate the moisture and organic forming aid from carbon dioxide gas, repressurize the carbon dioxide gas using a compressor, etc. to make supercritical carbon dioxide, and extract the moisture and organic forming aid from the activated carbon compact after forming. It can be recycled and used as a solvent. [Example] Next, the present invention will be explained with reference to an example. still,
In the present invention, % represents weight % unless otherwise specified. Example 1 While flowing supercritical carbon dioxide at a pressure of 8 MPa and a temperature of 75°C (348 K) at a rate of 50 kg/hour, activated carbon containing a total of 40% of water and an organic forming aid and an appropriate amount of colloidal silica as a sintering binder was produced. Molded body 1
Kg and almost all the water and organic molding aids were extracted in 2 hours. The adsorption performance, strength, etc. are shown in Table 1. Example 2 Supercritical carbon dioxide at a pressure of 8 MPa and a temperature of 110°C (383 K) was brought into contact with 1 kg of activated carbon having the same composition as in Example 1 while flowing at a rate of 50 kg/hour, and almost all the moisture and moisture was removed in 1 hour. While extracting the organic molding aid, colloidal silica as a sintering binder was cured. The adsorption performance, strength, etc. are shown in Table 1. Table 1 shows a comparison of the performance of the activated carbon molded bodies obtained by Example 1, Example 2, the conventional drying method, and the conventional drying/calcination method. However, the adsorption performance of the powdered activated carbon used as the raw material is methylene blue decolorization power of 220.
ml/g (JIS K1470), iodine adsorption amount 1340mg/g
(JIS K1474).

〔発明の効果〕〔Effect of the invention〕

本発明によれば、第1表に示すように、従来の
乾燥及び/または焼成により得られる活性炭成形
体に比較して、強度及び吸着性能の優れた活性炭
成形体が得られる。また、本発明によれば、焼結
バインダーの硬化温度以下の温度の超臨界二酸化
炭素で処理しても、ある程度の耐水性のある活性
炭成形体が得られ、焼結バインダーの硬化温度以
上の超臨界二酸化炭素で処理すれば、完全に耐水
性のある活性炭成形体が得られる。このため、従
来の乾燥及び焼成の各工程が、1つの工程でしか
も低温で行えるという利点があり、更に、従来の
焼成及び冷却の工程に必要とされていた非酸化性
雰囲気ガスが不要となるため、省エネルギーが図
られるとともに、活性炭成形体の製造に要する時
間の短縮が可能となる。また、二酸化炭素ガス自
体が非酸化性雰囲気ガスのため、活性炭成形体の
発火の心配がない。
According to the present invention, as shown in Table 1, activated carbon molded bodies can be obtained that have superior strength and adsorption performance compared to activated carbon molded bodies obtained by conventional drying and/or calcination. Further, according to the present invention, even if treated with supercritical carbon dioxide at a temperature below the curing temperature of the sintered binder, an activated carbon molded body having a certain degree of water resistance can be obtained, Treatment with critical carbon dioxide gives completely water-resistant activated carbon compacts. This has the advantage that the conventional drying and firing steps can be performed in one step at low temperatures, and furthermore, the non-oxidizing atmosphere gas required in the conventional firing and cooling steps is no longer required. Therefore, it is possible to save energy and shorten the time required to manufacture the activated carbon compact. Furthermore, since carbon dioxide gas itself is a non-oxidizing atmospheric gas, there is no fear that the activated carbon compact will catch fire.

Claims (1)

【特許請求の範囲】 1 粉末活性炭、水分、有機成形助剤及び焼結バ
インダーからなる成形後の活性炭成形体を超臨界
二酸化炭素と接触させ、該活性炭成形体から水分
及び有機成形助剤を同時に抽出し、それによつて
成形体としての強度及び吸着性能が優れた活性炭
成形体を得ることを特徴とする活性炭成形体の乾
燥方法。 2 超臨界二酸化炭素の温度範囲を活性炭成形体
に含まれる焼結バインダーの硬化温度以上とする
特許請求の範囲第1項記載の乾燥方法。
[Scope of Claims] 1. A molded activated carbon body consisting of powdered activated carbon, water, an organic forming aid, and a sintering binder is brought into contact with supercritical carbon dioxide, and moisture and an organic forming aid are simultaneously removed from the activated carbon formed body. 1. A method for drying an activated carbon molded body, the method comprising: extracting the activated carbon, thereby obtaining an activated carbon molded body having excellent strength and adsorption performance as a molded body. 2. The drying method according to claim 1, wherein the temperature range of the supercritical carbon dioxide is equal to or higher than the curing temperature of the sintered binder contained in the activated carbon compact.
JP61171814A 1986-07-23 1986-07-23 Method for drying activated carbon compact Granted JPS6330309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61171814A JPS6330309A (en) 1986-07-23 1986-07-23 Method for drying activated carbon compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61171814A JPS6330309A (en) 1986-07-23 1986-07-23 Method for drying activated carbon compact

Publications (2)

Publication Number Publication Date
JPS6330309A JPS6330309A (en) 1988-02-09
JPH0455123B2 true JPH0455123B2 (en) 1992-09-02

Family

ID=15930224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61171814A Granted JPS6330309A (en) 1986-07-23 1986-07-23 Method for drying activated carbon compact

Country Status (1)

Country Link
JP (1) JPS6330309A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2155746B1 (en) * 1998-07-23 2001-12-01 Univ Salamanca PROCEDURE AND APPARATUS FOR THE PRODUCTION OF ACTIVE CARBON.

Also Published As

Publication number Publication date
JPS6330309A (en) 1988-02-09

Similar Documents

Publication Publication Date Title
CA2442243A1 (en) Method of making shaped activated carbon
CN113213892A (en) Method for preparing sintered brick from aluminum ash end ash
JPH0455123B2 (en)
CN106747574B (en) A kind of microwave kiln Si2N2O wave transparent-heat-insulation integrative inner lining material and preparation method thereof
CN107021764B (en) High-temperature sillimanite brick and production method thereof
KR101323109B1 (en) Porous lightweight ceramics and manufacturing method of the same
CN101875557A (en) Method for producing large-size thin ceramic bricks by microwave and hot air composite drying
JPS55118995A (en) Method of coke calcination
CN107365140B (en) Firing method based on improved honeycomb ceramic rapid firing temperature curve
CN108975877A (en) The method of one heavy metal species slag manufacture building materials brick
CN110922205A (en) Porous cordierite and preparation method thereof
CN107098678A (en) Low thermal coefficient of expansion porous ceramics and preparation method thereof
US4341724A (en) Method for the manufacture of ceramic products
CN105753461B (en) Spontaneous glaze ceramics once-firing method
CN1236848C (en) Method for manufacturing aluminum glue drying agent
DE60203198D1 (en) METHOD FOR THE PRODUCTION OF SILICON CARBIDE CERAMICS FROM PLANT PROPAGERS
CN102060547A (en) Method for one-time sintering of piezoelectric ceramic
CN110128108B (en) Method for preparing sintered water permeable brick by using waste alumina adsorbent and sludge
KR102144386B1 (en) Exothermic material for microwave susceptor and manufacturing method thereof
CN105418139A (en) Vinyl resin sand-based permeable brick and manufacturing method thereof
SU947137A1 (en) Method for roasting porous ceramic products
CN106747560A (en) A kind of porous thermal insulating composite ceramic material
SU767068A1 (en) Ceramic mass
CN1007518B (en) Utilize rice husk or wood chip to make the method for charcoal
JP2002080230A (en) Synthetic quarts powder, method of manufacturing the same and synthetic quarts crucible