JPH0454825Y2 - - Google Patents

Info

Publication number
JPH0454825Y2
JPH0454825Y2 JP11728289U JP11728289U JPH0454825Y2 JP H0454825 Y2 JPH0454825 Y2 JP H0454825Y2 JP 11728289 U JP11728289 U JP 11728289U JP 11728289 U JP11728289 U JP 11728289U JP H0454825 Y2 JPH0454825 Y2 JP H0454825Y2
Authority
JP
Japan
Prior art keywords
heat
temperature
heat pipe
equalizing plate
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11728289U
Other languages
Japanese (ja)
Other versions
JPH0359044U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11728289U priority Critical patent/JPH0454825Y2/ja
Publication of JPH0359044U publication Critical patent/JPH0359044U/ja
Application granted granted Critical
Publication of JPH0454825Y2 publication Critical patent/JPH0454825Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Devices For Use In Laboratory Experiments (AREA)

Description

【考案の詳細な説明】 「産業上の利用分野」 本考案は、試液を所定温度に加熱して性状変化
等を試験する理化学用恒温槽に関する。
[Detailed Description of the Invention] "Industrial Application Field" The present invention relates to a constant temperature bath for physical and chemical use in which test liquid is heated to a predetermined temperature to test for changes in properties.

「従来の技術」 一般に、この種の理化学用恒温槽は、試液を注
入した試験管等の容器を装着して、該容器内の試
液を予め定めた温度で所定時間加熱をして性状変
化等を試験するために利用されており、例えば実
公昭61−45877号の如きものが知られるところで
ある。実公昭61−45877号の恒温槽は、金属ブロ
ツクをヒータで加熱するようにし、かつ該金属ブ
ロツクに試液が注入された容器を収納する受け穴
を多数設けておくと共に、金属ブロツクの適所
に、下端が上記ヒータに加熱されるようにヒート
パイプを埋設させたものである。そして、ヒータ
の通電による金属ブロツクの加熱と同時にヒート
パイプの下端を加熱し、これによりヒートパイプ
上端がその周囲の金属ブロツクを加熱して、金属
ブロツクの各部位において温度むらが生ずること
を防止し、又、加熱時の立上がり特性の向上を図
かつたものである。
``Prior art'' In general, this type of thermostatic bath for physical and chemical use is equipped with a container such as a test tube filled with a test solution, and heats the test solution in the container at a predetermined temperature for a predetermined period of time to prevent changes in properties. It is used for testing, for example, the one disclosed in Utility Model Publication No. 45877/1983 is known. In the thermostat of Utility Model Publication No. 61-45877, a metal block is heated by a heater, and the metal block is provided with a number of receiving holes for accommodating a container filled with a sample solution. A heat pipe is embedded so that the lower end is heated by the heater. Then, the lower end of the heat pipe is heated at the same time as the metal block is heated by energizing the heater, and this prevents the upper end of the heat pipe from heating the surrounding metal block, thereby preventing temperature unevenness from occurring in each part of the metal block. Furthermore, the rise characteristics during heating are improved.

「考案が解決しようとする課題」 しかしながら、近年、加熱と冷却を繰り返しな
がら試験をする必要性が高まり、この要望を満た
すべくヒータに水管を併設し、加熱時にはヒータ
に通電し、冷却時にはヒータへの通電をオフにし
て水管に冷却水を給水させて利用しているのが現
状で、第7図に一点鎖線で示す如く応答特性が良
くないといつた問題がある。つまり、ヒートパイ
プは、ヒータによる加熱時に金属ブロツクの温度
むらが生じ易い箇所を補填すべく加熱するもの
で、試液が注入された容器に対する加熱では金属
ブロツクが呈する蓄熱効果を利用していることか
ら、この蓄熱効果の存在により応答特性が悪いと
いつた欠点がある。
``Problem that the invention seeks to solve'' However, in recent years, there has been an increasing need to conduct tests while repeatedly heating and cooling, and in order to meet this demand, a water pipe was attached to the heater, and electricity was passed to the heater during heating and to the heater during cooling. At present, cooling water is supplied to the water pipes with the power turned off, but there is a problem in that the response characteristics are not good, as shown by the dashed line in Fig. 7. In other words, the heat pipe heats the metal block to compensate for the temperature unevenness that tends to occur when heated by the heater, and the heat storage effect exhibited by the metal block is used to heat the container into which the sample liquid is injected. However, due to the presence of this heat storage effect, the response characteristics are poor.

そこで、本考案は上記事情に鑑み、加熱と冷却
とを繰り返し温度制御をするのに好適な立上がり
及び降下特性を呈する理化学用恒温槽を提供せん
とするものである。
Therefore, in view of the above-mentioned circumstances, the present invention aims to provide a constant temperature bath for physical and chemical use that exhibits rise and fall characteristics suitable for temperature control through repeated heating and cooling.

「課題を解決しようとする手段並びに作用」 本考案は、上記目的を達成すべくなされたもの
で、各ドーナツ形状のヒートパイプの中央孔に試
液が注入された容器を装着し、加熱部により均熱
プレートを加熱させれば、均熱プレート上に接合
する各ヒートパイプが加熱される。各ヒートパイ
プは良好な熱伝導性を呈しかつ容器を囲繞してい
ることから、容器内の試液を良好な立上がりで加
熱する。一方、加熱部による加熱を停止させて冷
却部により均熱プレートを冷却させれば、均熱プ
レートによりヒートパイプが冷却され、ヒートパ
イプの良好な降下特性を利用して容器内の試液が
直ちに冷却されるものである。
"Means and effects for solving the problem" The present invention was made to achieve the above-mentioned object.A container filled with a sample liquid is attached to the center hole of each donut-shaped heat pipe, and the heating part is used to evenly distribute the sample liquid. When the heat plate is heated, each heat pipe connected to the heat equalizing plate is heated. Since each heat pipe exhibits good thermal conductivity and surrounds the container, it heats the sample liquid in the container with a good rise. On the other hand, if heating by the heating section is stopped and the soaking plate is cooled by the cooling section, the heat pipe is cooled by the soaking plate, and the sample liquid in the container is immediately cooled down using the heat pipe's good descending characteristics. It is something that will be done.

「実施例」 以下に、本考案に係る理化学用恒温槽の実施例
を図面に基づき説明する。まず、第1図乃至第7
図に示す第1実施例について説明すれば、第1図
において1はペルチエ素子である。ペルチエ素子
1には放熱フイン2を有して、該放熱フイン2に
向けてフアン3から給風できるようになつてい
る。又、ペルチエ素子1は、AC電源から直流電
源回路4及び極性切換器5を介して直流電源が給
電可能になつており、かつこの給電量が均熱プレ
ート6の温度を温度センサー7によつて検出し、
均熱プレート6の温度を予め設定した温度に保持
すべく温度調節器8で制御できるようになつてい
る。温度調節器8による制御はスイツチング動作
によるオンオフ制御に限らず、サイリスタを用い
ての位相制御であつても可能である。ペルチエ素
子1上には均熱プレート6を固設する。均熱プレ
ート6は熱伝導性の良好なアルミ等の板材を用
い、ペルチエ素子1の熱の授受を効率良く行うこ
とはもとより、全領域での温度むらを防ぐための
ものである。均熱プレート6上には第1図及び第
2図に示す如く複数のヒートパイプ9を立設す
る。ヒートパイプ9は第3図に示す如く、ドーナ
ツ形状になつていて、内部には気液相変化をして
熱輸送する作動液10と、該作動液10を循環さ
せるためのウイツク11とが封入されていて、第
3図に流れを矢印で示す如く一部を加熱すると、
作動液10が気化熱を得て蒸気となり、他の箇所
との圧力差により移動をし、他の箇所へ移動する
と該箇所で放熱して凝縮し、ここで液化してウイ
ツク11中にしみ込んで上記加熱箇所に移動して
以後繰り返すようになつている。従つて加熱箇所
から放熱箇所に向けて熱輸送するもので、かつヒ
ートパイプ9の両端の温度差がその長さに拘らず
ほとんど生じないといつた優れた伝熱特性をもつ
ている。ヒートパイプ9をドーナツ形状に形成す
る場合は、ウイツク11を収納させた状態で、小
径筒状の内壁9aの上下の立上がり縁部9cを大
径筒状の外壁9bの上下両端に溶接する。作動液
10の封入は、予め内壁9aの立上がり縁部9c
に付設しておいた細管12を通じて内壁9aと外
壁9bとの間に注入し、注入後細管12を封止す
るようにしてある。更にヒートパイプ9に強度を
持たせる場合は、第4図に示す如く、内壁9aの
下側の立上がり縁部9cと外壁9bの下端とを更
に外径方向に延出させて溶接させることもでき
る。上記ヒートパイプ9の均熱プレート6への取
付けは第5図に示す如く、均熱プレート6の上面
に雌ねじ穴13を設けておき、一方ヒートパイプ
の外面下部に雄ねじ14を形成し、該雄ねじ14
を雌ねじ穴13に螺着させて行う。その他、第6
図に示す如く、ヒートパイプ9の下端を均熱プレ
ート6の上面に溶接やロー付けにより固設させる
こともできる。ヒートパイプ9の中央孔は試験管
等の容器15を装着する受入れ穴9dとして利用
するが、試験管等の如く底部が丸いものにあつて
は、第5図に二点鎖線で示す如く該底部が密着で
きるように、熱伝導性の良好な材質のもので、受
座16を詰めることもできる。均熱プレート6上
に立設された複数のヒートパイプ9の周囲には第
1図に示す如く断熱材17を敷設する。
"Example" Below, an example of the constant temperature bath for physical and chemical use according to the present invention will be described based on the drawings. First, Figures 1 to 7
To explain the first embodiment shown in the figure, numeral 1 in FIG. 1 is a Peltier element. The Peltier element 1 has a heat radiation fin 2 to which air can be supplied from a fan 3. Further, the Peltier element 1 can be supplied with DC power from an AC power supply via a DC power supply circuit 4 and a polarity switch 5, and the amount of power supplied can be used to adjust the temperature of the equalizing plate 6 by a temperature sensor 7. detect,
The temperature of the soaking plate 6 can be controlled by a temperature regulator 8 to maintain it at a preset temperature. Control by the temperature regulator 8 is not limited to on/off control by switching operation, but may also be phase control using a thyristor. A heat equalizing plate 6 is fixedly mounted on the Peltier element 1. The heat equalizing plate 6 is made of a plate material such as aluminum having good thermal conductivity, and is used not only to efficiently transfer heat to and from the Peltier element 1 but also to prevent temperature unevenness in the entire area. A plurality of heat pipes 9 are erected on the heat equalizing plate 6 as shown in FIGS. 1 and 2. As shown in FIG. 3, the heat pipe 9 has a donut shape, and a working fluid 10 for transporting heat through a gas-liquid phase change and a wick 11 for circulating the working fluid 10 are sealed inside. If you heat a part of it as shown by the arrow in Figure 3,
The working fluid 10 gains heat of vaporization and becomes steam, and moves due to the pressure difference with other locations. When it moves to another location, it radiates heat and condenses at that location, where it liquefies and soaks into the wick 11. It moves to the above-mentioned heating point and repeats thereafter. Therefore, the heat pipe 9 transports heat from the heating point to the heat radiation point, and has excellent heat transfer characteristics such that there is almost no difference in temperature between both ends of the heat pipe 9 regardless of its length. When the heat pipe 9 is formed into a donut shape, the upper and lower rising edges 9c of the small-diameter cylindrical inner wall 9a are welded to the upper and lower ends of the large-diameter cylindrical outer wall 9b with the heat pipe 9 housed. The hydraulic fluid 10 is sealed in advance at the rising edge 9c of the inner wall 9a.
The liquid is injected between the inner wall 9a and the outer wall 9b through a thin tube 12 attached to the tube, and the thin tube 12 is sealed after injection. If the heat pipe 9 is to have further strength, the lower rising edge 9c of the inner wall 9a and the lower end of the outer wall 9b may be further extended in the outer radial direction and welded, as shown in FIG. . To attach the heat pipe 9 to the heat equalizing plate 6, as shown in FIG. 14
This is done by screwing into the female screw hole 13. Others, 6th
As shown in the figure, the lower end of the heat pipe 9 can also be fixed to the upper surface of the heat equalizing plate 6 by welding or brazing. The center hole of the heat pipe 9 is used as a receiving hole 9d into which a container 15 such as a test tube is attached, but if the bottom is round, such as a test tube, the bottom is used as shown by the two-dot chain line in FIG. The seat 16 can also be filled with a material with good thermal conductivity so that it can be tightly attached. A heat insulating material 17 is laid around the plurality of heat pipes 9 erected on the heat equalizing plate 6 as shown in FIG.

上記構成の理化学用恒温槽において、まず容器
15内の試液15aを第7図に示すA点にまで加
熱する場合は、ペルチエ素子1に通電して該ペル
チエ素子1の発熱作用で均熱プレート6を加熱す
る。ペルチエ素子1は発熱作用を効果的に行うた
めに発熱箇所と反対側の箇所を冷却する必要性が
あり、この冷却を効果的に行うべく放熱フイン2
にフアン3から給風するようにしたが、放熱フイ
ン2より充分放熱できる場合にはフアン3を必要
としない。均熱プレート6は各部で温度むらが生
じないように全領域に亘たり均熱化を図り、この
熱でヒートパイプ9の下端を加熱する。ヒートパ
イプ9は上記の如く長さの如何に拘らず略同じ温
度になるといつた特性を呈していることから、こ
の温度で容器15、延いては容器15内の試液1
5aを加熱する。設定温度の保持は温度センサー
7で均熱プレート6の温度を測定しながらペルチ
エ素子1への給電量を制御する。ここで第7図に
実線で示す如く、更に低い温度のB点に設定換え
をした時(温度調節器8に予め温度プロフイール
を設定してあつて自動調節する場合も含む)、極
性切換器5がペルチエ素子1への通電極性を逆に
して、発熱から冷却に切換える。ペルチエ素子1
は均熱プレート6を冷却し、該均熱プレート6の
冷却によりヒートパイプ9の下端を冷却する。ヒ
ートパイプ9は、上記加熱時とは逆に下端が放熱
箇所となり他側からの熱を凝縮熱として放出さ
せ、これによりヒートパイプ9全体の温度が設定
温度まで直ち低下し、この結果容器15内の試液
15aが冷却される。予め設定した温度に維持す
るには、上記と同様に均熱プレート6の温度を温
度センサー7で測定しながらペルチエ素子1への
給電量、更には極性の切換えを制御する。設定温
度をA〜C点で三段に切換えた場合の温度プロフ
イールは、第7図に実線で示す通りの実験結果が
得られ、従来の金属ブロツク利用の恒温槽の一点
鎖線で示す温度プロフイールと比較すると、立上
がり特性及び降下特性が急峻で優れた特性のもの
が得られた。
In the thermostatic bath for physics and chemistry with the above configuration, when first heating the reagent 15a in the container 15 to point A shown in FIG. heat up. In order for the Peltier element 1 to effectively generate heat, it is necessary to cool the part on the opposite side of the heat generating part.
Although the fan 3 is used to supply air, the fan 3 is not necessary if heat can be sufficiently radiated from the heat radiation fins 2. The heat equalizing plate 6 attempts to equalize the temperature over the entire area so that temperature unevenness does not occur in each part, and uses this heat to heat the lower end of the heat pipe 9. As described above, the heat pipe 9 exhibits the characteristic that it reaches approximately the same temperature regardless of its length.
Heat 5a. To maintain the set temperature, the amount of power supplied to the Peltier element 1 is controlled while measuring the temperature of the heat equalizing plate 6 with the temperature sensor 7. Here, as shown by the solid line in FIG. 7, when the setting is changed to a lower temperature point B (this also includes cases where the temperature profile is set in advance in the temperature controller 8 and automatic adjustment is performed), the polarity switch 5 The current polarity to the Peltier element 1 is reversed to switch from heat generation to cooling. Peltier element 1
cools the heat equalizing plate 6, and cooling the heat equalizing plate 6 cools the lower end of the heat pipe 9. The lower end of the heat pipe 9 serves as a heat dissipation point, contrary to the heating described above, and the heat from the other side is released as condensation heat. As a result, the temperature of the entire heat pipe 9 immediately decreases to the set temperature, and as a result, the temperature of the entire heat pipe 9 decreases to the set temperature. The test liquid 15a inside is cooled. In order to maintain the preset temperature, the amount of power supplied to the Peltier element 1 and further the switching of the polarity are controlled while measuring the temperature of the heat equalizing plate 6 with the temperature sensor 7 in the same manner as described above. The temperature profile when the set temperature is switched in three steps at points A to C gives the experimental results as shown by the solid line in Figure 7, and is different from the temperature profile shown by the dashed-dotted line of the conventional constant temperature bath using a metal block. By comparison, it was found that the rise and fall characteristics were steep and excellent.

第8図は、第2実施例を示し、上記ペルチエ素
子1に代えてヒータ18及び冷却水管19を用い
たものである。上記第1実施例と同じ部材には同
一符号を付して説明すれば、上記均熱プレート6
にヒータ18を埋設させてある。ヒータ18は温
度センサー7によつて均熱プレート6の温度を測
定しながら温度調節器8によつて給電量が制御さ
れる電源回路20から給電されるようになつてい
る。均熱プレート6の下面には上記冷却水管19
を付設させてある。冷却水管19への給水の制御
は、上記温度調節器8により動作が制御される電
磁バルブ21で行われるようになつている。そし
て、上記第2実施例の理化学用恒温槽では、容器
15を設定温度にまで上げる時に、ヒータ18に
通電させて均熱プレート6を加熱し、又逆に、所
定の温度にまで下げるには、ヒータ18への通電
を遮断し、電磁バルブ21を開いて元栓から冷却
水管19内に給水させて、均熱プレート6を冷却
し、延いては容器15内の試液15aを冷却す
る。以後の設定温度の保持はヒータ18への通電
量を制御して行い、この時併わせて冷却水管19
への給水を制御して設定温度を保持させることも
できる。第2実施例の温度プロフイールも、第7
図に実線で示すものと同様に従来のものに比較し
て急峻な立上がり及び降下の特性が得られる。
FIG. 8 shows a second embodiment, in which a heater 18 and a cooling water pipe 19 are used in place of the Peltier element 1. The same members as those in the first embodiment will be described with the same reference numerals.
A heater 18 is embedded in the. The heater 18 is configured to be supplied with power from a power supply circuit 20 whose amount of power is controlled by a temperature controller 8 while the temperature of the heat equalizing plate 6 is measured by a temperature sensor 7 . The cooling water pipe 19 is located on the lower surface of the heat equalizing plate 6.
has been attached. Water supply to the cooling water pipe 19 is controlled by an electromagnetic valve 21 whose operation is controlled by the temperature regulator 8. In the physical and chemical constant temperature bath of the second embodiment, when the temperature of the container 15 is raised to the set temperature, the heater 18 is energized to heat the soaking plate 6, and conversely, when the temperature is lowered to the predetermined temperature, the heater 18 is energized to heat the soaking plate 6. Then, the power to the heater 18 is cut off, the electromagnetic valve 21 is opened, and water is supplied from the main valve into the cooling water pipe 19 to cool the soaking plate 6 and, in turn, the sample liquid 15a in the container 15. Subsequently, the set temperature is maintained by controlling the amount of electricity supplied to the heater 18, and at the same time, the cooling water pipe 19 is
It is also possible to maintain the set temperature by controlling the water supply to the tank. The temperature profile of the second example is also the same as that of the seventh example.
Similar to what is shown by the solid line in the figure, steeper rise and fall characteristics can be obtained compared to the conventional one.

尚、第1実施例では0℃以下まで降下する温度
プロフイールの制御動作が可能であるが、第2実
施例においては0℃以上の温度プロフイールの制
御動作が可能である。又上記ヒートパイプ9は、
縦向きにして使用し、あるいは作動液10の液質
などの条件によつてはウイツク11を有しないも
のでも充分な熱輸送の効果が得られる。
In the first embodiment, it is possible to control a temperature profile that drops to 0°C or lower, but in the second embodiment, it is possible to control a temperature profile that is 0°C or higher. In addition, the heat pipe 9 is
A sufficient heat transport effect can be obtained even when used vertically or without the wick 11 depending on conditions such as the quality of the working fluid 10.

「考案の効果」 以上の如く、本考案に係る理化学用恒温槽によ
れば、加熱部により加熱され、又冷却部により冷
却される均熱プレートを介してドーナツ形状のヒ
ートパイプを加熱し、又冷却し、これによりドー
ナツ形状のヒートパイプの中央孔に装着した容器
を、該ヒートパイプにて加熱し、又冷却するよう
にしたものであるから、急峻な立上がり及び降下
特性を呈する温度を容器内の試液中に加えること
ができ、特に試液に加える温度が高温と低温とを
所定時間毎に繰り返して行う実験には頗る好適で
利用上極めて便利である。
"Effect of the invention" As described above, according to the constant temperature bath for physics and chemistry according to the invention, the donut-shaped heat pipe is heated via the soaking plate which is heated by the heating part and cooled by the cooling part, and This heat pipe heats and cools the container attached to the center hole of the donut-shaped heat pipe, so the temperature inside the container exhibits steep rise and fall characteristics. It is particularly suitable for experiments in which the temperature at which the test solution is added is repeatedly high and low at predetermined intervals, and is extremely convenient for use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る理化学用恒温槽の第1実
施例を示す断面図、第2図は第1図の理化学用恒
温槽の平面図、第3図は第1図のヒートパイプの
縦断面図、第4図は第1図のヒートパイプの他の
溶着形式を示す要部断面図、第5図は均熱プレー
トに対するヒートパイプの取付け方法を示す要部
断面図、第6図は均熱プレートに対するヒートパ
イプの他の取付け方法を示す要部断面図、第7図
は第1実施例の理化学用恒温槽と従来の理化学用
恒温槽とを比較した温度プロフイールを示す図、
第8図は第2実施例の理化学用恒温槽の構造を示
す断面図である。 1……ペルチエ素子、6……均熱プレート、9
……ヒートパイプ、9d……受入れ穴、15……
容器、17……断熱材、18……ヒータ、19…
…冷却水管。
Fig. 1 is a cross-sectional view showing the first embodiment of the constant temperature bath for physical and chemical use according to the present invention, Fig. 2 is a plan view of the constant temperature bath for physical and chemical use shown in Fig. 1, and Fig. 3 is a longitudinal cross-section of the heat pipe shown in Fig. 1. 4 is a sectional view of the main part showing another welding type of the heat pipe shown in Fig. 1, FIG. 5 is a sectional view of the main part showing a method of attaching the heat pipe to the heat equalizing plate, and FIG. 7 is a cross-sectional view of a main part showing another method of attaching a heat pipe to a heat plate; FIG. 7 is a diagram showing a temperature profile comparing the physical and chemical constant temperature bath of the first embodiment with a conventional physical and chemical constant temperature bath;
FIG. 8 is a sectional view showing the structure of a constant temperature bath for physical and chemical use according to the second embodiment. 1... Peltier element, 6... Soaking plate, 9
...Heat pipe, 9d...Reception hole, 15...
Container, 17...Insulating material, 18...Heater, 19...
...Cooling water pipe.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 加熱部と冷却部とを併設させた上部に均熱プレ
ートを添着し、該均熱プレート上には下面を接触
させてドーナツ形状のヒートパイプを適数個立設
し、かつ均熱プレート上に各ヒートパイプの周囲
を埋めるべく断熱材を敷設すると共に、各ヒート
パイプの中央孔に試液が注入された容器を脱着自
在に挿入させてなることを特徴とする理化学用恒
温槽。
A heat equalizing plate is attached to the upper part where the heating section and the cooling section are installed together, and an appropriate number of donut-shaped heat pipes are erected on the heat equalizing plate with their lower surfaces in contact with each other. A constant temperature bath for physics and chemistry, characterized in that a heat insulating material is laid around each heat pipe to fill it, and a container filled with a test liquid is removably inserted into the center hole of each heat pipe.
JP11728289U 1989-10-05 1989-10-05 Expired JPH0454825Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11728289U JPH0454825Y2 (en) 1989-10-05 1989-10-05

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11728289U JPH0454825Y2 (en) 1989-10-05 1989-10-05

Publications (2)

Publication Number Publication Date
JPH0359044U JPH0359044U (en) 1991-06-10
JPH0454825Y2 true JPH0454825Y2 (en) 1992-12-22

Family

ID=31665503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11728289U Expired JPH0454825Y2 (en) 1989-10-05 1989-10-05

Country Status (1)

Country Link
JP (1) JPH0454825Y2 (en)

Also Published As

Publication number Publication date
JPH0359044U (en) 1991-06-10

Similar Documents

Publication Publication Date Title
US4012770A (en) Cooling a heat-producing electrical or electronic component
JPH0454825Y2 (en)
US6018138A (en) Floor-heating method and radiating pipe for use in floor heating
KR101684327B1 (en) Complex Specifics Testing Apparatus for Thermoelectric Element
KR20190072763A (en) Dish with function of adjusting temperature
KR101681493B1 (en) Suscepter and temperature variable apparatus of susceptor
JP3660369B2 (en) Liquid temperature controller for temperature chamber
CN209803069U (en) Temperature control system for column oven of liquid chromatograph
KR20170075366A (en) Driving method of thermoelectric element and driving apparatus of thermoelectric element
KR20190030070A (en) A temperature control apparatus for a fluid using thermoelectric element
FR2520096A1 (en) Temp. controlling container for bottle - using Peltier effect with thermocouple elements between aluminium container base and air heat exchanger
JPH1011155A (en) Water temperature stabilizing device for water tank
JPH043628Y2 (en)
KR102490973B1 (en) Apparatus For Heating Electrolytic water
JPH0140154Y2 (en)
JP2936356B2 (en) Heating toilet seat
CN108488891A (en) A kind of flat-plate heat pipe heating end of combination semiconductor
JPS6145877Y2 (en)
JP3009285U (en) Cooling structure suitable for heat transfer
RU2310901C2 (en) Device for thermal stabilization of several objects at different temperature levels
JPH0429408Y2 (en)
JPH019467Y2 (en)
KR200255678Y1 (en) Bed cooling and heating device using thermo electric module
JPH03178341A (en) Thermostatic tank and method for operating the same
JP2019033008A (en) Fluid heating apparatus, fluid heating system, and temperature control method of fluid heating apparatus