JPH0454639B2 - - Google Patents

Info

Publication number
JPH0454639B2
JPH0454639B2 JP14604784A JP14604784A JPH0454639B2 JP H0454639 B2 JPH0454639 B2 JP H0454639B2 JP 14604784 A JP14604784 A JP 14604784A JP 14604784 A JP14604784 A JP 14604784A JP H0454639 B2 JPH0454639 B2 JP H0454639B2
Authority
JP
Japan
Prior art keywords
hydrous
agent
micro
explosive
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14604784A
Other languages
Japanese (ja)
Other versions
JPS60131890A (en
Inventor
Takeisa Arita
Shunichi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP59146047A priority Critical patent/JPS60131890A/en
Publication of JPS60131890A publication Critical patent/JPS60131890A/en
Publication of JPH0454639B2 publication Critical patent/JPH0454639B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Cosmetics (AREA)

Description

【発明の詳細な説明】 本発明は、発破の際に問題となる耐死圧性を改
良した含水爆薬組成物に関するものである。 含水爆薬は、ダイナマイトと異なり、ニトログ
リセリンのような爆発性鋭感剤を含有しないため
に気泡または発泡剤が起爆性に関して極めて重要
な役割を果していることはよく知られている。例
えば含水爆薬が深水下で静圧を受けたり、段発発
破の際に前段の爆薬によつて衝撃圧のような動圧
を受けると、気泡や発泡剤が収縮したり破壊され
たりして***などによる起爆が困難となる。従つ
て、これらの問題に対して種々の気泡剤が検討さ
れた。例えば、米国特許第3773573号明細書、特
開昭54−92614号公報のように微小樹脂中空体を
用いて気泡を固定する方法が考えられたが、それ
のみでは例えば水深10m以下のような低い静圧、
または発破の際に問題となる動圧に対しては耐死
圧性を向上することはできなかつた。また、特公
昭45−25798号公報のように無機中空体(例えば
ガラス質微小中空球体)を用いると、静圧に対し
ては殆んど改良できるものの動圧に対しては依然
として問題を残していた。 即ち、段発発破の際、動圧による不発現象(以
下、死圧と略す)をダイナマイト並に減少させる
ことは困難であつた。 尚、含水爆薬とは異なるが、エマルシヨン爆薬
では、特開昭56−109890号公報のように、微小無
機中空体と微小樹脂中空体との混合使用例があ
る。しかしながら、該公報ではあくまで単独の使
用例と並列的に示されているだけであり、特に本
願に示すような効果は記されていない。 本発明は、含水爆薬の発泡剤に着目し、段発発
破の際に発生する死圧に対しダイナマイト並み、
またはそれ以上の耐死圧性を有する含水爆薬の開
発を目的とするものである。 即ち、本発明は、無機酸化酸塩、鋭感剤、可燃
剤、ゲル化剤、発泡剤および水からなる含水爆薬
において、発泡剤が微小無機中空体と微小樹脂多
孔体の組合せからなり、且つ含水爆薬に対する微
小無機中空体の体積比(V1%)と含水爆薬に対
する微小樹脂多孔体の体積比(V2%)が、10≦
V1+V2≦40,0.2≦V2/V1≦5.0の範囲にある含
水爆薬組成物である。 即ち、不十分な耐死圧性しか与えない微小無機
中空体に微小樹脂多孔体を組合せることにより、
従来より困難とされていた含水爆薬の耐死圧性を
著しく向上させることができたのである。 本発明の微小無機中空体とは、例えば、ガラ
ス、シラス、アルミナ、硅砂、ケイ酸ナトリウ
ム、火山岩、真珠岩、黒曜石等から得られるもの
で、粒径は通常、500ミクロン以下であることが
必要である。また、比重は0.3〜0.43の範囲が好
ましい。一方、微小樹脂多孔体とは、熱硬化性樹
脂あるいは熱可塑性樹脂からなるフオーム粒子あ
るいはフオーム粒子を粉砕したもので、ポリスチ
レン、スチレン−アクリロニトリル重合体、ポリ
メタクリル酸メチル等からなるフオーム粒子、ポ
リエチレン、ポリプロピレン、ポリ塩化ビニル、
ポリスチレン、スチレン−アクリロニトリル重合
体、ポリメタクリル酸メチル、ポリウレタン等か
ら得られるフオームを粉砕したもの等がある。粒
径は、通常1000ミクロン以下であることが必要で
あるが、500ミクロン以下が好ましく、更に200ミ
クロン以下のものを用いると、爆轟速度を低下さ
せることなく、優れた耐死圧性を得ることができ
るのでより好ましい。 また、比重は0.02〜0.09の範囲が好ましい。 含水爆薬に対する微小無機中空体と微小樹脂多
孔体の体積比率V1,V2(いずれもパーセント)に
ついては、その和V1+V2が10〜40パーセントの
範囲にあり、且つV2/V1が0.2〜5.0が望ましい。
即ちV1+V2が10パーセント未満では、通常使用
する爆薬の起爆感度として限界であり、40パーセ
ントを越えると製造上の問題が生じる。また、
V2/V1が0.2未満又は5.0を越えると、耐死圧性は
著しく低下する。 本発明に用いられる無機酸化酸塩とは、硝酸ア
ンモニウム、硝酸ナトリウム、硝酸カリウム、硝
酸カルシウム、過塩素酸ナトリウムまたはカリウ
ム、塩素酸ナトリウムまたはカリウム等が挙げら
れる。 無機酸化酸塩の配合量は、硝酸アンモニウムが
主体であり、一般に全体の30〜70%、必要に応じ
て硝酸アンモニウム以外の無機酸化酸塩を全体の
30%以下で含有させてもよい。無機酸化酸塩の配
合量が30%未満だと酸素バランスが大きく負とな
り後ガスが悪くなり、また70%を越えると感度が
悪くなる。 本発明に用いられる鋭感剤としては、水溶性の
ヒドラジン硝酸塩、炭素数1〜3の脂肪族炭化水
素アミン硝酸塩、エタノールアミン硝酸塩、ニト
ロメタン、微粉状の金属アルミ等が挙げられる。
その中でも水溶性の鋭感剤が高爆速を得るために
好ましく、また微粉状の金属アルミを併用するこ
とにより、低温における起爆感度も著しく向上す
る。 鋭感剤の配合量は、一般に全体の5〜60%であ
り、微粉状の金属アルミニウムは、そのうち8%
以下含有させてもよい。鋭感剤の配合量が5%未
満だと感度が悪くなり、60%を越えると酸素バラ
ンスが大きく負となり後ガスが悪くなる。 本発明に用いられる可燃剤とは、酸素バランス
を調整するために加えるもので、石炭粉、ギルソ
ナイト、タイヤ粉末、イオウ等が必要に応じて用
いられる。可燃剤の配合量は、必要に応じて10%
以下含有すれば十分である。 本発明で用いられるゲル化剤は、天然グアーガ
ム、又はヒドロキシエチル、ヒドロキシプロピル
変性等のグアーガム、或いは酸化グアーガム、天
然でん粉、変性でん粉等が用いられる。更に上記
ゲル化剤成分と架橋反応を行なわせるための架橋
剤成分として、酸化ホウ素、シユウ酸アンチモ
ン、ピロアンチモン酸カリ等を挙げることができ
る。ゲル化剤の配合量は、0.5〜5%であれば十
分である。0.5%未満だと含有成分が分離するし、
また5%を越えると感度が悪くなる。 本発明の含水爆薬組成物の製造方法は、従来、
一般的に行われている含水爆薬の製造方法と何ら
異なることはない。例えば、硝酸モノメチルアミ
ン、水、硝安及び前記発泡体の各々を規定量混合
した溶液を30℃に加温したのち、規定量のグアー
ガム、硝酸ナトリウムを加え、ついで規定量の金
属アルミニウム及び架橋剤を均一混合する方法で
ある。 本発明により得られた含水爆薬組成物は、段発
発破のような死圧の発生率が高い条件下に於いて
も、ダイナマイトの場合と同等又はそれ以上の耐
死圧性を示した。 以下に実施例を示す。なお、本発明の砂中死圧
試験は、下記方法により測定した。 〔砂中死圧試験法〕 盛つた砂中(深さ約80cm)に、瞬発***と
10ms***を装着した爆薬包を一定距離で平行に
埋める。次に両薬包を発破器で同時に点火し、
10ms***を装着した爆薬包が爆発したか否かを
調べる。 尚、試験は二薬包の距離を15cmまたは20cmとす
る。参考として2号榎ダイナマイトは15cmで3/5
〜4/5である。 実施例1〜5及び比較例1〜2 含水爆薬組成物として、次の配合組成を選ん
だ。 硝酸モノメチルアミン 25.0パーセント 硝酸アンモニウム 42.0 〃 硝酸ナトリム 15.0 〃 水 15.0 〃 金属アルミニウム粉 2.0 〃 グアーガム〓 1.0 〃 −−−−−−−−−−−−−−−−−−−−− 発泡剤(外割) 表−1に示す 〓グアーガム;濃化させたのち、架橋剤として
ピロアンチモン酸カリをグアーガムに対し
て1パーセント加える。 上記配合組成で均一に混合された含水爆薬を30
mmφのポリエチチユーブに充填包装したのち、砂
中死圧試験で評価した。その結果を表−1に示
す。 なお、表−1のV1+V2,V2/V1は、 下記式 V1=(ρ/ρ1)×W1 V2=(ρ/ρ2)×W2 から計算により求める(式中、W1:含水爆薬
100gに対する微小無機中空体添加重量(g)、
W2:含水爆薬100gに対する微小樹脂多孔体添加
重量(g)、ρ:含水爆薬の比重、ρ1:微小無機
中空体の比重、ρ2:微小樹脂多孔体の比重)。 実施例6〜10及び比較例3 含水爆薬組成物として次の配合組成を選んだ。 エタノールアミン硝酸塩 28.0パーセント 硝酸アンモニウム 41.2 〃 硝酸カルシウム 13.0 〃 水 14.0 〃 金属アルミニウム粉 2.0 〃 グアーガム 0.7 〃 天然でん粉 1.1 〃 −−−−−−−−−−−−−−−−−−−−− 発泡剤(外割) 表−1に示す 上記配合組成で、均一に混合された含水爆薬を
30mmφのポリエチチユーブに充填包装したのち、
前述の砂中死圧試験で評価した。その結果を表−
1に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydrous explosive composition that has improved dead pressure resistance, which is a problem during blasting. It is well known that, unlike dynamite, hydrous explosives do not contain explosive sensitizers such as nitroglycerin, and therefore bubbles or blowing agents play a very important role in detonation. For example, when a hydrous explosive is subjected to static pressure under deep water, or dynamic pressure such as impact pressure from the previous stage of explosives during stage blasting, the air bubbles and foaming agent contract or break, causing the detonator to explode. It becomes difficult to detonate by such means. Therefore, various foaming agents have been investigated to solve these problems. For example, methods of fixing air bubbles using microscopic resin hollow bodies have been considered, as described in U.S. Patent No. 3,773,573 and Japanese Patent Application Laid-open No. 54-92614. Static pressure,
Furthermore, it was not possible to improve dead pressure resistance against dynamic pressure, which is a problem during blasting. Furthermore, if inorganic hollow bodies (e.g. glass micro hollow spheres) are used as in Japanese Patent Publication No. 45-25798, static pressure can be almost improved, but problems still remain with dynamic pressure. Ta. That is, during stage blasting, it is difficult to reduce the unexplosion phenomenon due to dynamic pressure (hereinafter abbreviated as dead pressure) to the same level as with dynamite. Although different from water-containing explosives, in emulsion explosives, there is an example of the use of a mixture of microscopic inorganic hollow bodies and microscopic resin hollow bodies, as in JP-A-56-109890. However, this publication merely describes a single example of use in parallel, and does not particularly describe the effects as shown in the present application. The present invention focuses on a foaming agent for hydrous explosives, and has achieved the same level of resistance to dead pressure generated during stage blasting as dynamite.
The purpose of this project is to develop hydrous explosives with dead pressure resistance greater than or equal to that. That is, the present invention provides a hydrous explosive consisting of an inorganic oxide salt, a sensitizing agent, a combustible agent, a gelling agent, a blowing agent, and water, in which the blowing agent consists of a combination of minute inorganic hollow bodies and minute resin porous bodies, and The volume ratio of micro inorganic hollow bodies to hydrous explosives (V 1 %) and the volume ratio of micro resin porous bodies to hydrous explosives (V 2 %) are 10≦
The hydrous explosive composition is in the range of V 1 +V 2 ≦40, 0.2≦V 2 /V 1 ≦5.0. That is, by combining a minute resin porous body with a minute inorganic hollow body that provides insufficient dead pressure resistance,
This made it possible to significantly improve the dead pressure resistance of hydrous explosives, which had previously been considered difficult. The micro inorganic hollow bodies of the present invention are obtained from, for example, glass, shirasu, alumina, silica sand, sodium silicate, volcanic rock, nacre, obsidian, etc., and the particle size usually needs to be 500 microns or less. It is. Further, the specific gravity is preferably in the range of 0.3 to 0.43. On the other hand, microporous resin materials are foam particles or pulverized foam particles made of thermosetting resin or thermoplastic resin, such as foam particles made of polystyrene, styrene-acrylonitrile polymer, polymethyl methacrylate, etc. polypropylene, polyvinyl chloride,
Examples include pulverized foams obtained from polystyrene, styrene-acrylonitrile polymers, polymethyl methacrylate, polyurethane, and the like. The particle size usually needs to be 1000 microns or less, but preferably 500 microns or less, and furthermore, if 200 microns or less is used, excellent dead pressure resistance can be obtained without reducing the detonation speed. This is more preferable because it allows Further, the specific gravity is preferably in the range of 0.02 to 0.09. Regarding the volume ratios V 1 and V 2 (both percentages) of the micro inorganic hollow bodies and the micro porous resin bodies to the hydrous explosive, the sum V 1 +V 2 is in the range of 10 to 40%, and V 2 /V 1 is preferably between 0.2 and 5.0.
That is, when V 1 +V 2 is less than 10%, there is a limit to the detonation sensitivity of normally used explosives, and when it exceeds 40%, manufacturing problems occur. Also,
When V 2 /V 1 is less than 0.2 or more than 5.0, dead pressure resistance is significantly reduced. Examples of the inorganic oxidized acid salts used in the present invention include ammonium nitrate, sodium nitrate, potassium nitrate, calcium nitrate, sodium or potassium perchlorate, sodium or potassium chlorate, and the like. The amount of inorganic oxide salts is mainly ammonium nitrate, generally 30 to 70% of the total, and if necessary, inorganic oxide salts other than ammonium nitrate may be added to the total amount.
It may be contained at 30% or less. If the content of the inorganic oxide salt is less than 30%, the oxygen balance will be greatly negative, resulting in poor aftergassing, and if it exceeds 70%, the sensitivity will be poor. Examples of the sensitizing agent used in the present invention include water-soluble hydrazine nitrate, aliphatic hydrocarbon amine nitrate having 1 to 3 carbon atoms, ethanolamine nitrate, nitromethane, fine powder metal aluminum, and the like.
Among these, water-soluble sensitizers are preferable in order to obtain a high detonation velocity, and the combined use of finely powdered metal aluminum significantly improves detonation sensitivity at low temperatures. The amount of sensitizing agent is generally 5 to 60% of the total, and fine powder metal aluminum accounts for 8% of the total amount.
The following may be included. If the amount of the sensitizer is less than 5%, the sensitivity will be poor, and if it exceeds 60%, the oxygen balance will be greatly negative and the aftergas will be bad. The combustible agent used in the present invention is added to adjust the oxygen balance, and coal powder, gilsonite, tire powder, sulfur, etc. are used as necessary. The amount of combustible agent added is 10% as necessary.
It is sufficient to contain the following. As the gelling agent used in the present invention, natural guar gum, guar gum modified with hydroxyethyl or hydroxypropyl, oxidized guar gum, natural starch, modified starch, etc. are used. Furthermore, examples of the crosslinking agent component for carrying out a crosslinking reaction with the gelling agent component include boron oxide, antimony oxalate, potassium pyroantimonate, and the like. It is sufficient that the gelling agent be added in an amount of 0.5 to 5%. If it is less than 0.5%, the components will separate,
Moreover, if it exceeds 5%, the sensitivity will deteriorate. The method for producing the hydrous explosive composition of the present invention has conventionally been
There is no difference from the commonly used manufacturing method for hydrous explosives. For example, a solution in which specified amounts of monomethylamine nitrate, water, ammonium nitrate, and the above foam are mixed is heated to 30°C, then specified amounts of guar gum and sodium nitrate are added, and then specified amounts of metallic aluminum and a crosslinking agent are added. This method involves uniform mixing. The hydrous explosive composition obtained according to the present invention exhibited dead pressure resistance equivalent to or higher than that of dynamite even under conditions such as stage blasting where the dead pressure generation rate is high. Examples are shown below. Note that the dead pressure test in sand of the present invention was measured by the following method. [Dead pressure test method in sand] An instantaneous detonator and
Explosive packages equipped with 10ms detonators are buried in parallel at a fixed distance. Next, ignite both cartridges at the same time with a blaster,
Investigate whether an explosive package equipped with a 10ms detonator explodes. In addition, in the test, the distance between the two medicine packages was 15 cm or 20 cm. For reference, No. 2 Enoki dynamite is 15cm and 3/5
~4/5. Examples 1 to 5 and Comparative Examples 1 to 2 The following formulations were selected as the hydrous explosive compositions. Monomethylamine nitrate 25.0% Ammonium nitrate 42.0 Sodium nitrate 15.0 Water 15.0 Metal aluminum powder 2.0 Guar gum 1.0 −−−−−−−−−−−−−−−−−−−−− Foaming agent (external ) Shown in Table 1 Guar gum: After thickening, 1% of potassium pyroantimonate is added to the guar gum as a crosslinking agent. 30% of water-containing explosives uniformly mixed with the above composition.
After filling and packaging in a mmφ polyethylene tube, it was evaluated by a dead pressure test in sand. The results are shown in Table-1. In addition, V 1 +V 2 and V 2 /V 1 in Table 1 are calculated from the following formula V 1 = (ρ/ρ 1 )×W 1 V 2 = (ρ/ρ 2 )×W 2 (formula Medium, W 1 : Hydrous explosive
Weight of micro inorganic hollow bodies added to 100g (g),
W 2 : weight (g) of microporous resin material added to 100 g of hydrous explosive, ρ: specific gravity of hydrous explosive, ρ 1 : specific gravity of micro inorganic hollow material, ρ 2 : specific gravity of microscopic porous resin material). Examples 6 to 10 and Comparative Example 3 The following composition was selected as the hydrous explosive composition. Ethanolamine nitrate 28.0% Ammonium nitrate 41.2 Calcium nitrate 13.0 Water 14.0 Metallic aluminum powder 2.0 Guar gum 0.7 Natural starch 1.1 −−−−−−−−−−−−−−−−−−−−− Blowing agent (External division) Hydrous explosives uniformly mixed with the above compounding composition shown in Table 1.
After filling and packaging in a 30mmφ polyethylene tube,
It was evaluated using the dead pressure test in sand described above. Table the results.
Shown in 1. 【table】

Claims (1)

【特許請求の範囲】 1 無機酸化酸塩、鋭感剤、可燃剤、ゲル化剤、
発泡剤および水からなる含水爆薬において、発泡
剤が500ミクロン以下の微小無機中空体と1000ミ
クロン以下の微小樹脂多孔体との組合せからな
り、且つ含水爆薬に対する微小無機中空体の体積
比(V1パーセント)と、含水爆薬に対する微小
樹脂多孔体の体積比(V2パーセント)が 10≦V1+V2≦40 0.2≦V2/V1≦5.0 の範囲にあることを特徴とする含水爆薬組成物。
[Claims] 1. Inorganic oxidizing acid salt, sensitizing agent, combustible agent, gelling agent,
In a hydrous explosive consisting of a blowing agent and water, the blowing agent is composed of a combination of micro inorganic hollow bodies of 500 microns or less and micro resin porous bodies of 1000 microns or less, and the volume ratio of the micro inorganic hollow bodies to the hydrous explosive (V 1 A hydrous explosive composition characterized in that the volume ratio (V 2 percent) of the microporous resin to the hydrous explosive is in the range of 10≦V 1 +V 2 ≦40 0.2≦V 2 /V 1 ≦5.0. .
JP59146047A 1984-07-16 1984-07-16 Aqueous explosive composition Granted JPS60131890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59146047A JPS60131890A (en) 1984-07-16 1984-07-16 Aqueous explosive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59146047A JPS60131890A (en) 1984-07-16 1984-07-16 Aqueous explosive composition

Publications (2)

Publication Number Publication Date
JPS60131890A JPS60131890A (en) 1985-07-13
JPH0454639B2 true JPH0454639B2 (en) 1992-08-31

Family

ID=15398896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59146047A Granted JPS60131890A (en) 1984-07-16 1984-07-16 Aqueous explosive composition

Country Status (1)

Country Link
JP (1) JPS60131890A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117129U (en) * 1982-02-01 1983-08-10 株式会社アワクメ cleaning rotating brush

Also Published As

Publication number Publication date
JPS60131890A (en) 1985-07-13

Similar Documents

Publication Publication Date Title
US3770522A (en) Emulsion type explosive composition containing ammonium stearate or alkali metal stearate
CA1149173A (en) Water-in-oil emulsion explosive composition
JPS6214518B2 (en)
JPH0633212B2 (en) Water-in-oil emulsion explosive composition
US3249474A (en) Explosive composition containing inorganic salts and coated metal
US4693763A (en) Wet loading explosive
US3713919A (en) Chemical foaming of water-bearing explosives with n,n'-dimitrosopentamethylene-tetramine
US3235425A (en) Slurry-type blasting compositions containing ammonium nitrate and smokeless powder
US4367103A (en) Explosive composition
US3653992A (en) Aqueous slurry salt type explosives containing nitrato-alkanol as sensitizer component and manufacture thereof
US3496040A (en) Aqueous ammonium nitrate slurry explosive compositions containing hexamethylenetetramine
US3390032A (en) Gelled aqueous slurry explosive composition containing as a gas generating agent a carbonate or bicarbonate with a nitrite
US3160535A (en) Free flowing granular explosive composition of controlled particle size
US4637848A (en) High density gel explosive
US3449181A (en) Aqueous slurry type explosive containing the combination of nitrite and sulfamate and/or sulfamic acid as aeration agent
US3108917A (en) Tnt-tetraborate gelled aqueous explosive slurry
US3457126A (en) Aqueous explosive composition containing a porous water insoluble synthetic organic polymeric cellular material
US3617404A (en) Slurryxplosives containing the combination of nitrogen-base salt and hard solid particles as sensitizer
JPH0454639B2 (en)
KR100508230B1 (en) Cast explosive composition with microballoons
JP3984383B2 (en) Method for producing water-in-oil type emulsion explosive composition
JPH0454638B2 (en)
US3390030A (en) Aqueous slurry blasting composition of non-explosive ingredients containing silicon ad an aeration agent
CS200185B2 (en) Explosive composition
US3390031A (en) Gelled aqueous slurry explosive composition containing an inorganic nitrite

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term