JPH0454410A - Conduit length measuring method - Google Patents

Conduit length measuring method

Info

Publication number
JPH0454410A
JPH0454410A JP16283190A JP16283190A JPH0454410A JP H0454410 A JPH0454410 A JP H0454410A JP 16283190 A JP16283190 A JP 16283190A JP 16283190 A JP16283190 A JP 16283190A JP H0454410 A JPH0454410 A JP H0454410A
Authority
JP
Japan
Prior art keywords
pipe
pulse signal
conduit
ultrasonic pulse
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16283190A
Other languages
Japanese (ja)
Inventor
Yoshihisa Asada
義久 浅田
Teruyoshi Tanabe
田辺 輝義
Tsutomu Hayashi
林 孜
Fumihide Kikuchi
文英 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP16283190A priority Critical patent/JPH0454410A/en
Publication of JPH0454410A publication Critical patent/JPH0454410A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To accurately measure the length of a conduit by detecting the temperature distribution in the conduit by an optical fiber type temperature sensor and correcting the transmission speed of an ultrasonic wave pulse signal with this in-conduit temperature distribution. CONSTITUTION:A temperature measurement system 14 which includes the optical fiber type temperature sensor 12 arranged in the conduit 10 detects the temperature distribution. The ultrasonic wave pulse signal sent by a transmitter 16 at one end of the conduit 10 into the conduit is received by a receiver 18 at the other end to detect the transmission time of this ultrasonic wave pulse signal. The transmission speed of the ultrasonic wave pulse signal is corrected with the temperature distribution and the conduit length is measured from the transmission time of the ultrasonic wave pulse signal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、地下に埋設され電カケープル等を布設するの
に用いられる管路の長さを測定する管路長測定方法の改
良に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an improvement in a pipe length measuring method for measuring the length of a pipe buried underground and used for laying electric cables, etc. be.

(従来の技術) 従来から、管路長を測定するために、一方のマンホール
から管路に測量ローブを引き込み、他方のマンホールか
ら引き出して測量ローブの長さを求めていた。
(Prior Art) Conventionally, in order to measure the length of a pipe, a surveying lobe was drawn into the pipe from one manhole and pulled out from the other manhole to determine the length of the surveying lobe.

(発明か解決しようとする8題) しかし、測量ローブは、張力によって伸びか生し管路長
を正確に測定することがてきない。
(8 problems to be solved by the invention) However, the surveying lobe stretches due to tension and cannot accurately measure the length of the pipe.

このため、この管路内に布設すべき電カケープル等を長
めに製造し、現地て余長を切断するのて、極めて不経済
であった。
For this reason, it was extremely uneconomical to manufacture electrical cables and the like to be installed in the conduit in a longer length and then cut the excess length on site.

本発明の目的は、上記の欠点を回避するために、管路長
を正確に測定することかできる方法を提供することにあ
る。
SUMMARY OF THE INVENTION The object of the present invention is to provide a method by which pipe length can be measured accurately in order to avoid the above-mentioned drawbacks.

(課題を解決するための手段) 本発明の第1の解決手段は、管路内に配置された光ファ
イバ分布型温度センサによって管路内温度分布を検出し
、また管路の一端から管路内に向けて発信した超音波パ
ルス信号を管路の他端て受信してこの超音波パルス信号
の伝達時間を検出し、超音波パルス信号の伝達速度を温
度分布で補正しつつ超音波パルス信号の伝達時間から管
路長を測定することを特徴とする管路長測定方法を提供
することにある。
(Means for Solving the Problems) A first solution of the present invention is to detect the temperature distribution in the pipe by an optical fiber distribution type temperature sensor disposed in the pipe, and to detect the temperature distribution in the pipe from one end of the pipe. The ultrasonic pulse signal transmitted inward is received at the other end of the pipe, the transmission time of this ultrasonic pulse signal is detected, and the transmission speed of the ultrasonic pulse signal is corrected based on the temperature distribution. An object of the present invention is to provide a pipe length measuring method characterized by measuring the pipe length from the transmission time of the pipe.

本発明の第2の解決手段は、上記@lの解決手段と実質
的に同じであるが、更に管路内に中空パイプを引き通し
、超音波パルス信号をこの中空パイプ内に通すことを特
徴とする管路長測定方法を提供することにある。
The second solution of the present invention is substantially the same as the solution @l above, but is further characterized in that a hollow pipe is passed through the conduit, and the ultrasonic pulse signal is passed through the hollow pipe. An object of the present invention is to provide a method for measuring pipe length.

(作用) このように、超音波パルス信号の管路内の伝達時間とそ
の伝達速度とから管路の長さを測定するが、特に超音波
パルス信号の伝達速度は温度によって変化するので管路
内の温度分布を光ファイ八型温度センサによって検出し
、この管路内温度分布によって超音波パルス信号の伝達
速度を補正しているのて、管路長を正確に測定すること
かてきる。また、例えば、管路内に曲かりかあってその
曲かり部分に泥水等が溜っていると、超音波パルス信号
の伝達速度か変化するが、超音波パルス信号を管路内に
引き通した中空パイプに通すと、超音波パルス信号は泥
水等を通ることがないのて泥水等によって測定に悪影響
を与えることかなくなる。
(Function) In this way, the length of the conduit is measured from the transmission time of the ultrasonic pulse signal in the conduit and its transmission speed. The temperature distribution within the tube is detected by an optical fiber 8 type temperature sensor, and the transmission speed of the ultrasonic pulse signal is corrected based on this temperature distribution within the tube, making it possible to accurately measure the length of the tube. Also, for example, if there is a bend in the pipe and muddy water accumulates around the bend, the transmission speed of the ultrasonic pulse signal will change, but the transmission speed of the ultrasonic pulse signal will change. When passed through a hollow pipe, the ultrasonic pulse signal does not pass through muddy water or the like, so that the measurement is not adversely affected by muddy water or the like.

(実施例) 本発明の実施例を図面を参照して詳細に説明すると、第
1図は本発明に係る管路長測定方法を実施する装置を系
統的に示し、この方法は。
(Example) An example of the present invention will be described in detail with reference to the drawings. FIG. 1 systematically shows an apparatus for carrying out a pipe length measuring method according to the present invention.

基本的には、長さを測定すべき管路lO内の温度分布T
dを検出し、また管路10の一端から管路10内に向け
て発信した超音波パルス信号を管路10の他端で受信し
てこの超音波パルス信号の伝達時間Ttを検出し、超音
波パルス信号の伝達速度Vtを温度分布Tdで補正しつ
つ超音波パルス信号の伝達時間Ttから管路長りを測定
することにある。
Basically, the temperature distribution T in the pipe lO whose length is to be measured
d, and an ultrasonic pulse signal transmitted from one end of the pipe 10 into the pipe 10 is received at the other end of the pipe 10, and the transmission time Tt of this ultrasonic pulse signal is detected. The purpose of this method is to measure the pipe length from the transmission time Tt of the ultrasonic pulse signal while correcting the transmission speed Vt of the sonic pulse signal using the temperature distribution Td.

温度分布Tdは、管路10内に配置された光ファイ八型
温度センサ12を含む温度測定システム14によって検
出される。この光ファイバ型温度測定システム14は、
管路10内に引き通された光ファイバ型温度センサ12
の一端から光パルスを入射し、光ファイバ中で発生する
ラマン散乱光強度を検出することにより温度情報を検出
し、また光パルスの入射後ラマン散乱光が検出されるま
での遅れ時間から距離情報を検出し、この温度情報と距
離情報とから管路lOに沿った温度分布Tdを測定する
ことができる公知の測定システムである。
The temperature distribution Td is detected by a temperature measurement system 14 that includes a fiber-optic temperature sensor 12 located within the conduit 10. This optical fiber type temperature measurement system 14 is
Optical fiber type temperature sensor 12 passed through the pipe 10
Temperature information is detected by inputting a light pulse from one end of the optical fiber and detecting the intensity of the Raman scattered light generated in the optical fiber, and distance information is also obtained from the delay time from the input of the light pulse until the Raman scattered light is detected. This is a known measurement system that can detect the temperature information and measure the temperature distribution Td along the conduit lO from this temperature information and distance information.

第4図は、この光ファイバ型温度測定システム14で検
出された温度分布Tdの一例を示し、この温度分布Td
の一部Pを拡大して示すと、第5図に示すように、温度
は階段状に変化していることか解る。
FIG. 4 shows an example of the temperature distribution Td detected by this optical fiber type temperature measurement system 14.
When a part P is enlarged and shown in FIG. 5, it can be seen that the temperature changes stepwise.

超音波パルス信号の伝達時間Ttは、管路lOの一端に
配置された超音波パルス信号の送信器16と管路lOの
他端に配置された超音波パルス信号の受信器18とを含
む信号処理回路20によって測定される。信号処理回路
20は、超音波パルス信号の送信器16と超音波パルス
信号の受信器18との同期をとる外に、受信器18で受
信された信号を増幅し、検波して送信器16から信号を
送信してから受信するまての伝達時間Ttを計算する。
The transmission time Tt of the ultrasonic pulse signal is a signal including an ultrasonic pulse signal transmitter 16 disposed at one end of the conduit lO and an ultrasonic pulse signal receiver 18 disposed at the other end of the conduit lO. Measured by processing circuit 20. In addition to synchronizing the ultrasonic pulse signal transmitter 16 and the ultrasonic pulse signal receiver 18, the signal processing circuit 20 amplifies and detects the signal received by the receiver 18 and outputs the signal from the transmitter 16. The transmission time Tt from when a signal is transmitted to when it is received is calculated.

尚、超音波パルス信号の減衰をなくすために、ts1図
に示すように、送信器16及び受信器18のセンサ16
a及び18aは管路lOに対して密封手段28によって
密封するのが好ましい。
In addition, in order to eliminate attenuation of the ultrasonic pulse signal, the sensor 16 of the transmitter 16 and receiver 18 is
Preferably, a and 18a are sealed to the conduit lO by sealing means 28.

判定回路22は、このようにして計算された伝達時間T
tと温度分布Tdと超音波パルス信号の伝達速度Vtと
を入力し、既にのべたように超音波パルス信号の伝達速
度Vtを温度分布Tdて補正し、異なる補正伝達速度ご
とに細分し、この細分された距離ごとに補正伝達速度と
それに相応する超音波パルス信号の伝達時間とから各細
分ごとの距離を求め、これらを集計して全体の管路長り
を測定する。指示器24は、このようにして求められた
管路長りを適宜の方法で指示する。
The determination circuit 22 determines the transmission time T calculated in this way.
t, the temperature distribution Td, and the transmission speed Vt of the ultrasonic pulse signal, correct the transmission speed Vt of the ultrasonic pulse signal using the temperature distribution Td as described above, subdivide it into different corrected transmission speeds, and The distance for each subdivision is determined from the corrected transmission speed and the corresponding transmission time of the ultrasonic pulse signal for each subdivision, and these are totaled to measure the total pipe length. The indicator 24 indicates the pipe length determined in this way by an appropriate method.

尚、第1図及び第2図において符号26は信号処理回路
20と判定回路22と指示器24とを含む測定装置全体
を示す。
In FIGS. 1 and 2, reference numeral 26 indicates the entire measuring device including the signal processing circuit 20, the determination circuit 22, and the indicator 24.

本発明の具体例において、例えば、300〜400mの
長い管路を測定する場合に、超音波パルス信号としては
搬送周波数が25kHzのものか用いられる。超音波パ
ルス信号の伝達速度Vtは管路内温度の変化Δ1(0℃
に対する温度変化)によって次の通り変化する。
In a specific example of the present invention, for example, when measuring a long pipeline of 300 to 400 m, a carrier frequency of 25 kHz is used as the ultrasonic pulse signal. The transmission speed Vt of the ultrasonic pulse signal is determined by the change in temperature inside the pipe Δ1 (0°C
It changes as follows depending on the temperature change).

Vt=331.5(■/sec、)+ 0.6(m/s
ec、)xΔを従って、管路lOの温度が第6図に示す
ような温度分布で変化するとすると、判定回路22は、
次の式で示すようにして管路長りを計算する。尚、この
式ででは管路内を伝達する補正前の超音波パルス信号の
伝達時間、L、、L、、Lff−−−一−は、第6図に
示すように管路内温度Tか変化する位置を順次示し、ま
たTr、T2 、 T3−−−−−は位置L+ 、Lm
 、L3て変化する前の管路内温度をそれぞれ示し、更
にLm3はり、+L、+L、を示し、Lゎは管路端から
温度測定点までの距離である。
Vt=331.5(■/sec, )+0.6(m/s
ec,)
Calculate the pipe length as shown in the following formula. In this equation, the transmission time of the ultrasonic pulse signal before correction, L, , L, , Lff, which is transmitted inside the pipe, is determined by the temperature T in the pipe as shown in FIG. The changing positions are shown sequentially, and Tr, T2, T3---- are the positions L+, Lm
, L3 indicate the temperature inside the pipe before changing, and Lm3, +L, +L, respectively, and Lゎ is the distance from the end of the pipe to the temperature measurement point.

L=τ(L、/L、り(331,5÷ 0.6丁□) 
◆τ(L2/L++)(331,5◆0.6T*)◆τ
(L+/L+3)(:131.s ◆0.6T、)=(
τ/Lx3)  ΣL、 (331,5十〇、l1Tn
)但しΣLI、−L、3である。
L = τ (L, /L, ri (331,5 ÷ 0.6 tons □)
◆τ(L2/L++)(331,5◆0.6T*)◆τ
(L+/L+3)(:131.s ◆0.6T,)=(
τ/Lx3) ΣL, (331,500, l1Tn
) However, ΣLI, -L, 3.

次に、第3図は本発明の他の実施例を示し、この実施例
では管路lOにU字形の曲がり部分10aかあってこの
曲がり部分10aに泥水等が溜っている場合に管路lO
内にこの管路の内径よりも小さな外径の中空パイプ30
を先端から水が入らないように密封した状態で引き通し
、その後この中空パイプ30の両端に送信器16及び受
信器18を密封して取付け、前の実施例と同様にして測
定する。このようにすると。
Next, FIG. 3 shows another embodiment of the present invention. In this embodiment, the pipe lO has a U-shaped bent part 10a, and when muddy water or the like is accumulated in this bent part 10a, the pipe lO
A hollow pipe 30 with an outer diameter smaller than the inner diameter of this conduit
The hollow pipe 30 is passed through in a sealed state to prevent water from entering from the tip, and then the transmitter 16 and the receiver 18 are attached to both ends of the hollow pipe 30 in a sealed manner, and measurements are made in the same manner as in the previous example. If you do it like this.

超音波パルス信号が泥水に触れることがなく、従って超
音波パルス信号が水によって反射されたり一部入射した
りして泥水による影響を受けることなく、管路長りを測
定することができる。尚、中空パイプ30は金属または
非金属のいずれでもよいか、可撓性を持たせるために非
金属製であるのが好ましい。
The ultrasonic pulse signal does not come into contact with muddy water, and therefore the pipe length can be measured without being affected by the muddy water due to the ultrasound pulse signal being reflected by water or partially incident on the water. Note that the hollow pipe 30 may be made of metal or non-metal, and is preferably made of non-metal in order to have flexibility.

(発明の効果) 本発明によれば、上記のように、超音波パルス信号の管
路内の伝達時間を検出し、また超音波パルス信号の伝達
速度は管路内温度分布によって補正し、この補正された
伝達速度と伝達時間とから管路長を正確に測定すること
ができ、従って管路内に布設すべき布設物を長めに製造
する必要がなく経済的であり、また超音波パルス信号を
管路内に引き通した中空パイプに通して測定すると、管
路内に泥水等があってもこの泥水等によって影響を受け
ることがなく管路を精度よく測定することができる実益
がある。
(Effects of the Invention) According to the present invention, as described above, the transmission time of the ultrasonic pulse signal in the conduit is detected, and the transmission speed of the ultrasonic pulse signal is corrected based on the temperature distribution in the conduit. The length of the pipe can be accurately measured from the corrected transmission speed and transmission time, which is economical since there is no need to manufacture long structures to be installed in the pipe, and the ultrasonic pulse signal When measured through a hollow pipe drawn into the pipe, there is a practical benefit in that even if there is muddy water in the pipe, the pipe is not affected by the muddy water, etc., and the pipe can be measured accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る管路長測定方法を実施する装置の
概略系統図、第2図は第1図の装置の詳細な系統図、第
3図は本発明の他の実施例の要部の断面図、第4図及び
第5図は管路内温度分布を示す線図及びその一部の拡大
図、第6図は管路内温度の変化する状態の一部を一層拡
大して示す線図である。
FIG. 1 is a schematic system diagram of an apparatus for implementing the pipe length measuring method according to the present invention, FIG. 2 is a detailed system diagram of the apparatus shown in FIG. 1, and FIG. 3 is a summary of another embodiment of the present invention. Figures 4 and 5 are diagrams showing the temperature distribution inside the pipe and an enlarged view of a part thereof, and Figure 6 is a further enlarged view of a part of the state where the temperature inside the pipe changes. FIG.

Claims (2)

【特許請求の範囲】[Claims] (1)管路内に配置された光ファイバ分布型温度センサ
によって管路内温度分布を検出し、また前記管路の一端
から管路内に向けて発信した超音波パルス信号を管路の
他端で受信して前記超音波パルス信号の伝達時間を検出
し、前記超音波パルス信号の伝達速度を前記温度分布で
補正しつつ前記伝達時間から管路長を測定することを特
徴とする管路長測定方法。
(1) The temperature distribution inside the pipe is detected by an optical fiber distribution type temperature sensor placed inside the pipe, and an ultrasonic pulse signal transmitted from one end of the pipe into the pipe is transmitted to the other end of the pipe. A conduit characterized in that the transmission time of the ultrasonic pulse signal is detected by receiving the ultrasonic pulse signal at the end thereof, and the length of the conduit is measured from the transmission time while correcting the transmission speed of the ultrasonic pulse signal using the temperature distribution. How to measure length.
(2)、前記管路内に中空パイプを引き通し、前記超音
波パルス信号を前記中空パイプ内に通すことを特徴とす
る請求項第1項に記載の管路長測定方法。
(2) The pipe length measuring method according to claim 1, characterized in that a hollow pipe is passed through the pipe line, and the ultrasonic pulse signal is passed through the hollow pipe.
JP16283190A 1990-06-22 1990-06-22 Conduit length measuring method Pending JPH0454410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16283190A JPH0454410A (en) 1990-06-22 1990-06-22 Conduit length measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16283190A JPH0454410A (en) 1990-06-22 1990-06-22 Conduit length measuring method

Publications (1)

Publication Number Publication Date
JPH0454410A true JPH0454410A (en) 1992-02-21

Family

ID=15762073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16283190A Pending JPH0454410A (en) 1990-06-22 1990-06-22 Conduit length measuring method

Country Status (1)

Country Link
JP (1) JPH0454410A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189823A (en) * 1995-01-06 1996-07-23 Nanno Kensetsu Kk Distance measuring apparatus for tunnel by sound wave

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189823A (en) * 1995-01-06 1996-07-23 Nanno Kensetsu Kk Distance measuring apparatus for tunnel by sound wave

Similar Documents

Publication Publication Date Title
US5531099A (en) Underground conduit defect localization
RU2744070C1 (en) Method for monitoring the presence of water and/or sludge in a long-distance cable duct channel of a fiber-optic transmission line
CN106287238A (en) A kind of gas pipeline leakage detection device
JPH0454410A (en) Conduit length measuring method
JP3210491B2 (en) Inner diameter measurement method
JP3786770B2 (en) Piping structure inspection method
JPS59142485A (en) Range finding system
JPH0526400A (en) Conduit monitoring device
CN115371794B (en) Underground pipe gallery ground surface construction event positioning method based on distributed optical fiber sensor
JPH04355613A (en) Measuring method for self-propelled damage detector of transmission line
JPH071168B2 (en) A method for investigating in-pipe conditions using reflected sound waves
SU1710930A1 (en) Method of determining leakage point in pipeline
JPS61202158A (en) Inspecting device for inside of pipe
JPS637335B2 (en)
JPH0468439B2 (en)
JP2002196074A (en) Device for inspecting inside of conduit line
JP3535679B2 (en) Method for judging multiple reflection signals in a pipe in an ultrasonic line survey system
JPS60356A (en) Testing device of heat transfer pipe
JPS63313087A (en) Method for detecting buried metallic pipe or the like
JPS63179274A (en) Method for detecting underground position of tip of propulsion tube using radio wave
JPH075123A (en) Method for inspecting inside of pipe
JPH03296613A (en) Measuring apparatus of outer diameter of steel pipe
JPH04190106A (en) Method and apparatus for measuring pipe length
CA2292009C (en) Underground conduit defect localization
JPS57175253A (en) Detector for position in tube