JPH0454225Y2 - - Google Patents

Info

Publication number
JPH0454225Y2
JPH0454225Y2 JP12572088U JP12572088U JPH0454225Y2 JP H0454225 Y2 JPH0454225 Y2 JP H0454225Y2 JP 12572088 U JP12572088 U JP 12572088U JP 12572088 U JP12572088 U JP 12572088U JP H0454225 Y2 JPH0454225 Y2 JP H0454225Y2
Authority
JP
Japan
Prior art keywords
furnace
core tube
temperature
cylindrical heating
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12572088U
Other languages
Japanese (ja)
Other versions
JPH0246869U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12572088U priority Critical patent/JPH0454225Y2/ja
Publication of JPH0246869U publication Critical patent/JPH0246869U/ja
Application granted granted Critical
Publication of JPH0454225Y2 publication Critical patent/JPH0454225Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Furnace Details (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は炉体中心を貫通する通電加熱式の炉心
管を具え、該炉心管内に挿入した被処理材を静置
状態で加熱処理するための高温加熱炉に関するも
のである。
[Detailed description of the invention] (Field of industrial application) This invention is equipped with an electrically heated furnace core tube that passes through the center of the furnace body, and is used to heat-treat the material to be treated that is inserted into the furnace core tube in a stationary state. The present invention relates to a high-temperature heating furnace.

(従来の技術) 従来、セラミツクスウイスカー等を気相反応に
よつて処理原料中で結晶成長させるためには、被
処理原料を1000℃乃至3000℃の高温の雰囲気ガス
中で静置状態にて処理することが出来る通電加熱
式の炉心管を具えた高温加熱炉が多用されてい
る。
(Prior art) Conventionally, in order to grow crystals of ceramic whiskers, etc. in raw materials to be treated through gas phase reactions, the raw materials to be treated are treated in a static state in an atmospheric gas at a high temperature of 1000°C to 3000°C. High-temperature heating furnaces equipped with electrically heated furnace core tubes are widely used.

(考案が解決しようとする問題) しかして、従来のこの種の通電加熱式炉心管を
具備した加熱炉においては、特開昭59−88921号
公報に見られるような横型炉形式のもと、特開昭
61−134582号公報に見られるような竪型炉形式の
ものとがあるが、いずれの場合も通常、炉心管を
1本の炭素質乃至黒鉛質製円筒発熱体によつて構
成し、その周囲を断熱材で囲み、更に外周を炉殻
にて覆うような構造になつているので、炉内温度
分布は炉構造、特に炉心管を構成する炭素質乃至
黒鉛質製の円筒発熱体の材質や断面寸法等によつ
てほぼ定まつてしまうために、炉心管内の温度分
布の調節をきめ細かく行なうことは殆ど不可能に
近かつた。
(Problem to be solved by the invention) However, in a conventional heating furnace equipped with this kind of electrically heated furnace core tube, under the horizontal furnace type as seen in Japanese Patent Application Laid-Open No. 59-88921, Tokukai Akira
There is a vertical furnace type as seen in Publication No. 61-134582, but in either case, the furnace core tube is usually composed of one carbonaceous or graphite cylindrical heating element, and the surrounding Since the structure is such that the core is surrounded by a heat insulating material and the outer periphery is covered by a furnace shell, the temperature distribution inside the furnace depends on the furnace structure, especially the material of the carbonaceous or graphite cylindrical heating element that makes up the furnace core tube. Since the temperature distribution is almost determined by cross-sectional dimensions, etc., it is almost impossible to finely control the temperature distribution within the reactor core tube.

このような欠点を改善するために、例えば特公
昭62−54887号公報に見られるように炉心管自体
を発熱体とせずに、炉心管の周囲に複数個の発熱
体を配設し各発熱体の出力を調節することによつ
て炉心管内の温度分布を適宜調節する方法が提案
されているが、この方法は装置が複雑化すると共
に炉心管そのものを発熱体として使用しないため
に熱効率の点で問題がある。
In order to improve these drawbacks, for example, as seen in Japanese Patent Publication No. 62-54887, instead of using the core tube itself as a heating element, multiple heating elements are arranged around the core tube, and each heating element A method has been proposed in which the temperature distribution within the reactor core tube is appropriately adjusted by adjusting the output of There's a problem.

本考案は通電加熱式炉心管を使用した高温加熱
炉における上記した問題点を改善し、その被処理
材の焼成目的に応じて、適切且つ容易に炉心管内
の温度分布を調節することが出来るような加熱炉
を提供することを目的とするものである。
The present invention improves the above-mentioned problems in high-temperature heating furnaces using electrically heated furnace core tubes, and makes it possible to appropriately and easily adjust the temperature distribution within the furnace core tube according to the purpose of firing the material to be treated. The purpose of this invention is to provide a heating furnace that is suitable for heating.

(課題を解決するための手段) 本考案は炉体中心部にそれを貫通するように通
電加熱式の炉心管を設けて、該炉心管内に挿入さ
れた被処理材を加熱処理し得るようにした加熱炉
であつて、該炉心管が複数個の炭素質乃至黒鉛質
製の円筒発熱体によつて構成され、かつ各円筒発
熱体の隣接部を炭素質乃至黒鉛質製のニツプルに
よつて接続したことを特徴とする高温加熱炉であ
る。
(Means for Solving the Problems) The present invention provides an electrically heated furnace core tube that penetrates through the center of the furnace body, so that the material to be treated inserted into the furnace core tube can be heat-treated. A heating furnace in which the furnace core tube is constituted by a plurality of cylindrical heating elements made of carbonaceous or graphite, and the adjacent part of each cylindrical heating element is connected by nipples made of carbonaceous or graphite. This is a high-temperature heating furnace that is characterized by being connected.

即ち、本考案は通電発熱体としての炭素質乃至
黒鉛質材料がその断面寸法の変化により、また炭
材の焼成度に応じて、炭素質のものから準黒鉛質
を経て黒鉛質のものに至るまで微妙にその発熱特
性が変わることを利用し、炉心管を構成する円筒
発熱体を炭素質乃至黒鉛質製の一本物の円筒体で
構成せずに複数個の円筒体に分割し、各円筒発熱
体を炭素質乃至黒鉛質材によつて作られたニツプ
ルによつて繋ぎ合わせて炉心管を構成し、各円筒
発熱体およびニツプルの材質や寸法を適宜変える
ことによつて、炉心管内温度分布を所望の温度プ
ロフイールが得られるようにしたものである。
In other words, the present invention allows the carbonaceous to graphite material used as the current heating element to change from carbonaceous to quasi-graphitic to graphitic depending on the change in its cross-sectional dimension and the degree of firing of the carbonaceous material. Taking advantage of the fact that the heating characteristics of the reactor core tube change slightly, the cylindrical heating element that makes up the reactor core tube is divided into multiple cylindrical bodies instead of a single solid cylinder made of carbonaceous or graphite. A core tube is constructed by connecting heating elements with nipples made of carbonaceous or graphite material, and by appropriately changing the materials and dimensions of each cylindrical heating element and nipple, the temperature distribution within the core tube can be adjusted. to obtain the desired temperature profile.

従つて本考案において円筒発熱体及びニツプル
に使用される材料としては炭材を適宜の粘結材と
混合し、成形後焼成して得られた炭素質のものか
ら、これを更に高温で処理することによつて黒鉛
化して得られた準黒鉛質または黒鉛質材料に至る
までの通電発熱材の一切を指すものであることは
言うまでもない。
Therefore, in the present invention, the material used for the cylindrical heating element and the nipple is a carbonaceous material obtained by mixing carbonaceous material with an appropriate caking material, molding and firing, and then processing this at a higher temperature. Needless to say, the term refers to all electrical heating materials including quasi-graphitic or graphitic materials obtained by graphitization.

本考案は竪型炉または横型炉等その形式を問わ
ず適用することができるが、横型高温加熱炉に適
用した場合を例にとつて本考案の概要を図面に基
づいて説明する。
Although the present invention can be applied to any type of furnace, such as a vertical furnace or a horizontal furnace, the outline of the present invention will be explained based on the drawings, taking as an example the case where it is applied to a horizontal high-temperature heating furnace.

第1図は同一材質、同一断面寸法を有する2個
の円筒発熱体によつて構成した炉心管を設けた横
型加熱炉の縦断面概念図を示したものであつて、
図において1は横型炉の鋼製炉殻である。2は断
熱材層であつて、本例においてはその内層を炭素
質耐火物とし、外層をシリカ−アルミナ系のフア
イバー状断熱材としたが、断熱層の構成はこれに
限るものでなく、被処理材の加熱処理温度に応じ
適宜の断熱材が選択される。3は炉体中心部を貫
通する炉心管であつて、本例においては炉心管3
は2個の黒鉛質円筒発熱体3a、3bを炉の中央
部において突き合わせるように構成されている。
FIG. 1 shows a conceptual longitudinal cross-sectional view of a horizontal heating furnace equipped with a core tube composed of two cylindrical heating elements made of the same material and having the same cross-sectional dimensions.
In the figure, 1 is a steel furnace shell of a horizontal furnace. 2 is a heat insulating material layer, and in this example, the inner layer is made of carbonaceous refractory and the outer layer is made of silica-alumina fiber-like heat insulating material, but the structure of the heat insulating layer is not limited to this. An appropriate heat insulating material is selected depending on the heat treatment temperature of the material to be treated. 3 is a furnace core tube that passes through the center of the furnace body, and in this example, the furnace core tube 3
The furnace is constructed so that two graphite cylindrical heating elements 3a and 3b are butted against each other in the center of the furnace.

4は黒鉛質材料製のニツプルであつて、炉心管
3を構成する2個の円筒発熱体3aおよび3bの
突き合わせ箇所を覆うようにしてネジ込み、また
は擦り合わせにすることによつて両者を電気的に
連結し、接続部Aを形成する。なお擦り合わせの
場合には、相互の擦り合わせ面にカーボンセメン
トなどの高温用耐熱導電性接着材を施せば一層効
果的である。
Numeral 4 is a nipple made of graphite material, which is screwed in so as to cover the abutting points of the two cylindrical heating elements 3a and 3b constituting the furnace tube 3, or by rubbing them together to connect them with electricity. to form a connecting part A. In addition, in the case of rubbing, it is more effective if a high-temperature heat-resistant conductive adhesive such as carbon cement is applied to the mutually rubbing surfaces.

また炉心管3を形成する円筒発熱体3a,3b
およびニツプル4の構成材として黒鉛質のものを
使用する代わりに無煙炭素等の炭素質のものや準
黒鉛化質のものを使用することも出来、それぞれ
の材質や断面寸法を変えることによつて、通電加
熱に際しての炉心管内の温度分布を任意に変化さ
せることが出来る。
Further, cylindrical heating elements 3a and 3b forming the furnace core tube 3
In addition, instead of using graphite as the constituent material of the nipple 4, carbonaceous materials such as smokeless carbon or quasi-graphitic materials can be used, and by changing the materials and cross-sectional dimensions of each material, , it is possible to arbitrarily change the temperature distribution within the furnace core tube during electrical heating.

5,5′は炉心管3の両端部に設けられた通電
端子である。通電端子5,5′は水冷ジヤツケツ
ト等のホルダーを介して取り付けることが電源保
護の見地から望ましい。
Reference numerals 5 and 5' designate current-carrying terminals provided at both ends of the furnace tube 3. From the viewpoint of power protection, it is desirable to attach the current-carrying terminals 5, 5' via a holder such as a water-cooling jacket.

6,6′は炉心管3の炉外部分の加熱を防止す
るために炉心管3の炉殻貫通両端部において施さ
れた水冷装置、7,7′は炉心管3を炉殻1と電
気的に絶縁するための絶縁材である。
6 and 6' are water cooling devices installed at both ends of the core tube 3 through the furnace shell in order to prevent heating of the outside part of the core tube 3; It is an insulating material for insulating.

8,8′は炉心管3の両端末を密封するための
蓋体であつて、炉心管内部を観察、または放射温
度計等によつて測温し得るように覗き窓形式いな
つている。9は炉心管内に反応性ガスまたは不活
性ガス等の雰囲気調整用ガスを導入するための送
気孔、10はその排気孔である。11は被処理試
料であつて、図示の如く磁性ボート等の適宜の耐
熱容器に入れるか、または試料自体を直接炉心管
3内の適切な箇所に挿入し、加熱処理を行なう。
Numerals 8 and 8' are lids for sealing both ends of the core tube 3, and are shaped like viewing windows so that the inside of the core tube can be observed or the temperature can be measured with a radiation thermometer or the like. 9 is an air supply hole for introducing an atmosphere adjusting gas such as a reactive gas or an inert gas into the reactor core tube, and 10 is an exhaust hole thereof. Reference numeral 11 denotes a sample to be treated, which is placed in an appropriate heat-resistant container such as a magnetic boat as shown in the figure, or the sample itself is inserted directly into an appropriate location within the reactor core tube 3 for heat treatment.

以上、本例ではバツチ式横型高温加熱炉につい
て示したが、特開昭58−502096号公報に示される
ような連続式高温加熱炉に適用し得るものであ
り、また竪型炉形式の高温加熱炉にも適用し得る
ものであることは云うまでもない。
In this example, a batch-type horizontal high-temperature heating furnace has been shown, but it can also be applied to a continuous-type high-temperature heating furnace as shown in Japanese Patent Application Laid-Open No. 58-502096. Needless to say, it can also be applied to furnaces.

(作用) 第1図において例示した本考案の加熱炉は、通
電加熱式の炉心管3を2本の同一材質でかつ同一
断面寸法を有する黒鉛質円筒発熱体3a,3bに
よつて形成し、各円筒発熱体3a,3bの突き合
わせ部分を黒鉛質ニツプル4によつて連結し接続
部Aを形成している。従つてニツプルの長さを適
宜に採ることによつて通電時に接続部Aの電気抵
抗を任意に調節することが出来る。例えば、従来
の1本物の黒鉛質円筒発熱体にて構成した炉心管
を使用した加熱炉の場合には炉心管内の温度分布
は炉心管中央部において最高温度が得られ、最高
温度域の範囲は極めて狭いものであるのに対し、
例示の本考案の加熱炉においてはニツプル4の長
さを長くして接続部Aの巾を広く採ることによつ
てこの部分の電気抵抗を減少させることが出来る
ので、接続部A、即ち炉心管中央部付近内の発熱
量が減少し高温均熱帯の巾を広げることが可能と
なる。
(Function) The heating furnace of the present invention illustrated in FIG. 1 has an electrically heated furnace core tube 3 formed by two graphite cylindrical heating elements 3a and 3b made of the same material and having the same cross-sectional dimensions. The abutting portions of the respective cylindrical heating elements 3a and 3b are connected by a graphite nipple 4 to form a connecting portion A. Therefore, by appropriately selecting the length of the nipple, it is possible to arbitrarily adjust the electrical resistance of the connecting portion A during energization. For example, in the case of a conventional heating furnace that uses a core tube composed of a single real graphite cylindrical heating element, the temperature distribution inside the core tube has the highest temperature at the center of the core tube, and the range of the maximum temperature range is Although it is extremely narrow,
In the illustrated heating furnace of the present invention, by increasing the length of the nipple 4 and widening the width of the connection part A, the electrical resistance of this part can be reduced. The amount of heat generated in the vicinity of the center decreases, making it possible to expand the width of the high-temperature soaking zone.

また上記の例は左右の円筒発熱体を同一材質に
よつて構成した場合の例を示したものであるが、
左右お円筒発熱体の材質を変え、例えば右側の円
筒発熱体3aの材質に無煙炭質のものを使用し、
左側の円筒発熱体3bの材質に準黒鉛質のものを
使用するなどして右側の円筒発熱体3aの電気比
抵抗を左側の円筒発熱体3bのそれより高くする
ときは、炉心管内の最高温度域は中央より右側に
移り、温度勾配も左側がなだらかで右側がシヤー
プなプロフイールとすることも出来る。
Furthermore, the above example shows an example in which the left and right cylindrical heating elements are made of the same material.
Change the material of the left and right cylindrical heating elements, for example, use an anthracite material for the right cylindrical heating element 3a,
When making the electric resistivity of the right cylindrical heating element 3a higher than that of the left cylindrical heating element 3b by using quasi-graphitic material for the left cylindrical heating element 3b, the maximum temperature in the core tube The area shifts to the right side from the center, and the temperature gradient can also be profiled so that it is gentle on the left side and sharp on the right side.

また第2図は本考案におけるの炉心管の他の構
成を示すものを例示した要部縦断面図であるが、
この例示においては炉心管13を構成する2個の
円筒発熱体13aと13bとを間隙をおいて設置
し、この間隙を含めて両円筒発熱体をニツプル1
4にて連結したものであつて、この例示において
両円筒発熱体及び13a,13b及びニツプル1
4を全て黒鉛質の如き同一材質にて構成しても炉
心管中央における高温均熱帯域の巾を相当程度広
げることが出来るが、例えば円筒発熱体13a,
13bの材質を無煙炭質にて、またニツプル14
をより電気比抵抗の小さい黒鉛質にて形成し、且
つニツプル14の断面寸法を円筒発熱体13a,
13bのそれより小さく採るようにすれば、一層
巾広い高温均熱帯域を形成させることが出来る。
以上は炉心管を2個の炭素質円筒体によつて構成
したものについて示したが、円筒発熱体の数は2
個に限るものでなく、例えば第3図にその要部縦
断面を示す如く、3個あるいはそれ以上の個数の
円筒発熱体を使用して各円筒発熱体をニツプルに
よつて連結し、それぞれの材質、断面寸法を変え
ることによつて炉心管に種々異なる温度プロフイ
ールを与えることが可能である。
Moreover, FIG. 2 is a longitudinal cross-sectional view of the main part illustrating another configuration of the furnace core tube in the present invention.
In this example, two cylindrical heating elements 13a and 13b constituting the core tube 13 are installed with a gap between them, and both cylindrical heating elements including this gap are connected to the nipple 1.
4, and in this example, both cylindrical heating elements, 13a, 13b and nipple 1
4 are all made of the same material such as graphite, the width of the high-temperature soaking zone at the center of the furnace tube can be considerably widened.
The material of 13b is anthracite, and the nipple 14
is made of graphite having a lower electrical resistivity, and the cross-sectional dimensions of the nipple 14 are made similar to that of the cylindrical heating element 13a,
If it is made smaller than that of 13b, a wider high-temperature soaking zone can be formed.
The above description is based on the case where the core tube is composed of two carbonaceous cylinders, but the number of cylindrical heating elements is 2.
For example, three or more cylindrical heating elements are used, each cylindrical heating element is connected by a nipple, and each cylindrical heating element is By changing the material and cross-sectional dimensions, it is possible to give the reactor core tube various different temperature profiles.

第3図は、同一断面寸法の3個の円筒発熱体2
3a,23b,23cを2個のニツプル24,2
4′を使用して連結することによつて構成した炉
心管23であつて、この例示において全ての円筒
発熱体の材質を同一材質にいた場合においてもニ
ツプルの材質、断面寸法を接続部2A,2A′の
電気抵抗が大きくなるように形成すれば、より広
い高温均熱帯が得られ、逆に電気抵抗が小さくな
るようにすればシヤープな高温域を得ることが出
来るし、また更に一方の接続部と他の接続部との
電気抵抗比を変えることによつて、一方の温度勾
配がシヤープで、他方の温度勾配がなだらかな温
度プロフイールを得ることも出来る。
Figure 3 shows three cylindrical heating elements 2 with the same cross-sectional dimensions.
3a, 23b, 23c into two nipples 24, 2
4', and in this example, even if all the cylindrical heating elements are made of the same material, the material and cross-sectional dimensions of the nipples are the same as that of the connecting part 2A, If the electrical resistance of 2A' is made to be large, a wider high-temperature soaking zone can be obtained, and conversely, if the electrical resistance is made to be small, a sharp high-temperature region can be obtained. By changing the electrical resistance ratio between the connecting portion and the other connecting portion, it is possible to obtain a temperature profile in which one side has a sharp temperature gradient and the other side has a gentle temperature gradient.

勿論本例においても、ニツプルとともに各円筒
発熱体の材質並びに断面寸法に変化させることに
よつてより多様性のある温度プロフイールを持つ
た高温加熱炉を設計製作し得るものであることは
云うまでもない。
Of course, in this example as well, it is possible to design and manufacture a high-temperature heating furnace with more diverse temperature profiles by changing the material and cross-sectional dimensions of each cylindrical heating element as well as the nipple. do not have.

第4図は3個の円筒発熱体33a,33b,3
3cを用いて、これらを2個のニツプル34,3
4′によつて連結して炉心管33を構成したもの
の他の実施態様を示すものの例示である。
Figure 4 shows three cylindrical heating elements 33a, 33b, 3.
3c, connect these to two nipples 34, 3
This is an example of another embodiment of the furnace core tubes 33 which are connected by 4'.

本例においては、中央の円筒発熱体33cの断
面寸法を他の2個の円筒発熱体33aおよび33
bに比べて小さくしてある。このように、部分的
に円筒発熱体の断面寸法を小さくとることによつ
て特にそれぞれの円筒発熱体の材質を変えること
なく、この部分の電気抵抗を大きくしてシヤープ
な温度勾配を持つた狭い均熱帯域の温度分布を有
するものとすることが出来る。またこの逆に中央
の円筒発熱体33cの断面寸法を他の2個の円筒
発熱体の寸法よりも大きくすれば、均熱帯の広い
温度分布のものを得ることが出来る。
In this example, the cross-sectional dimension of the central cylindrical heating element 33c is set to be the same as that of the other two cylindrical heating elements 33a and 33.
It is smaller than b. In this way, by partially reducing the cross-sectional dimensions of the cylindrical heating element, the electric resistance of this part can be increased without changing the material of each cylindrical heating element, and a narrow space with a sharp temperature gradient can be created. It can have a temperature distribution in a soaking zone. Conversely, if the cross-sectional dimension of the central cylindrical heating element 33c is made larger than the dimensions of the other two cylindrical heating elements, a wide temperature distribution in the soaking zone can be obtained.

以上述べた様に本考案の高温加熱炉においては
炉心管は複数個の炭素質乃至黒鉛質製の円筒発熱
体とこれらを連結する炭素質乃至黒鉛質製のニツ
プルとによつて構成されており、これら各円筒発
熱体の材質や断面寸法、ニツプルの材質や断面寸
法、長さ等を適切に選定することによつて、炉心
管各部の電気抵抗値を所望の設計値にほぼ一致さ
せて、希望する温度プロフイールを有する高温加
熱炉を容易に製作することが出来るので極めて効
果的である。
As described above, in the high-temperature heating furnace of the present invention, the furnace core tube is composed of a plurality of cylindrical heating elements made of carbonaceous or graphite and nipples made of carbonaceous or graphite that connect them. By appropriately selecting the material and cross-sectional dimensions of each of these cylindrical heating elements, the material, cross-sectional dimension, length, etc. of the nipple, the electrical resistance value of each part of the furnace tube can be made to almost match the desired design value, This method is extremely effective because a high-temperature heating furnace having a desired temperature profile can be easily manufactured.

(実施例) 直径780mm、1260mmの円筒形の鋼製炉殻を有す
る横型炉の炉体中心に外径102mm、内径76mm、長
さ1000mmの2個の黒鉛質製の円筒発熱体を外径
142mm、内径102mm、長さ300mmの黒鉛製ニツプル
によつてその突き合わせ部を覆うようにして、擦
り合わせ接触面にカーボンセメントを施して密着
連結して構成した炉心管を貫通させ、炉心管と炉
殻間の空間に断熱層としてカーボンブラツク粉末
を充填して断熱層を形成させて第1図に示すよう
な横形高温加熱炉を作成しこれに通電昇温させ
た。
(Example) Two graphite cylindrical heating elements with an outer diameter of 102 mm, an inner diameter of 76 mm, and a length of 1000 mm were placed in the center of the furnace body of a horizontal furnace having a cylindrical steel furnace shell with a diameter of 780 mm and a diameter of 1260 mm.
A graphite nipple measuring 142 mm, inner diameter 102 mm, and length 300 mm is used to cover the abutting part, and the core tube, which has been tightly connected with carbon cement applied to the rubbing contact surface, is passed through, and the core tube and furnace are connected. Carbon black powder was filled in the space between the shells as a heat insulating layer to form a heat insulating layer to create a horizontal high temperature heating furnace as shown in FIG. 1, which was then heated by electricity.

炉心管中央部における外壁表面温度(熱電対に
て測定)を1700℃の所望温度に保持するために必
要な電流は1290Aであり、このときの炉電圧(通
電端子間の電圧)は6.31V、また所要電力は
8.1KWであつた。
The current required to maintain the outer wall surface temperature at the center of the furnace tube (measured with a thermocouple) at the desired temperature of 1700°C is 1290A, and the furnace voltage (voltage between current-carrying terminals) at this time is 6.31V. Also, the required power is
It was 8.1KW.

また炉内の温度分布を測定したところ、第5図
の炉内等温線図で示したように炉内における1500
℃以上の高温帯域は炉心管の中央を中心に約50cm
以上あつた。
In addition, when we measured the temperature distribution inside the furnace, we found that 1500
The high temperature zone above ℃ is about 50cm centered on the center of the furnace tube.
That's all.

(比較例) 外径102mm、内径76mm、長さ2000mmの黒鉛質製
の円筒発熱体からなる一本物の炉心管を使用し
て、実施例と同様の横型高温加熱炉を作成し、実
施例と同様の昇温試験を実施したところ、炉心管
中央の外壁表面温度を1700℃に保持するために必
要な電流は1250Aであつたが、この時の炉電圧は
6.55V、また所要電力は8.2KWであつた。
(Comparative example) A horizontal high-temperature heating furnace similar to the example was created using a single core tube made of graphite cylindrical heating element with an outer diameter of 102 mm, an inner diameter of 76 mm, and a length of 2000 mm. When a similar temperature increase test was conducted, the current required to maintain the outer wall surface temperature at the center of the furnace tube at 1700°C was 1250A, but the furnace voltage at this time was
6.55V, and the required power was 8.2KW.

また第6図の炉内等温線図が示すように炉内に
おける1500℃以上の高温帯域はわずかに30cm足ら
ずであつた。
Furthermore, as shown in the furnace isotherm diagram in Figure 6, the high temperature zone of 1500°C or higher in the furnace was only less than 30 cm.

(考案の効果) 本考案は上記したように通電加熱式の炉心管を
有する加熱炉において、炉心管を構成する炭素質
乃至黒鉛質製の円筒発熱体を1本物で構成するこ
となく、複数個の円筒発熱体を使用し、その接続
部を炭素質乃至黒鉛質製のニツプルによつて連結
して構成したのものであり、このように構成する
ことによつて次に示すような効果が得られる。
(Effects of the invention) As described above, the present invention provides a heating furnace having an electrically heated furnace core tube, in which multiple cylindrical heating elements made of carbonaceous or graphite that constitute the furnace core tube are used instead of one piece. It uses a cylindrical heating element, and its connection part is connected by a nipple made of carbonaceous or graphite.By configuring it in this way, the following effects can be obtained. It will be done.

1 炉心管内の高温帯域を1本物炉心管に比べ広
くすることができる。
1. The high-temperature zone within the reactor core tube can be made wider than in a single real reactor core tube.

2 炉心管を構成する複数個の円筒発熱体やニツ
プルの材質、断面寸法等を変化させることによ
つて炉内温度分布を任意に変えることが出来
る。
2. The temperature distribution in the furnace can be arbitrarily changed by changing the material, cross-sectional dimensions, etc. of the plurality of cylindrical heating elements and nipples that make up the furnace core tube.

3 炉心管を構成する円筒発熱体が分割的であつ
て、寸法が小さいので加工が容易で精度を高く
することが出来る。
3. The cylindrical heating element constituting the furnace core tube is segmental and small in size, making it easy to process and highly accurate.

4 炉心管(円筒発熱体)の交換が部分的に行な
い得るので経済的である。
4. It is economical because the core tube (cylindrical heating element) can be partially replaced.

5 炉心管(円筒発熱体)が分割的であるのでそ
の清掃や酸化防止剤の塗布も容易に行ない得
る。
5. Since the furnace core tube (cylindrical heating element) is divided, it can be easily cleaned and coated with antioxidant.

6 大型炉の場合には炉心管の組立てや分解を炉
内で行ない得るので大型炉心管の設置および撤
去作業が容易に行ない得る。
6. In the case of a large reactor, the assembly and disassembly of the reactor core tube can be carried out within the reactor, making it easy to install and remove the large reactor core tube.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は横型加熱炉において2個の円筒発熱体
を使用して炉心管を構成した本考案の高温加熱炉
の要部縦断面概念図である。第2図は2個の円筒
発熱体によつて構成された本考案における炉心管
の他の実施態様を示すものの要部縦断面図、第3
図は3個の円筒発熱体によつて構成された本考案
における炉心管の1実施態様を示すものの、また
第4図は他の実施態様を示すものの要部縦断面図
である。第5図は実施例における、また第6図は
比較例における炉内等温線図である。 1……鋼製炉殻、2……断熱層、3,13,2
3,33……炉心管、3a,3b,13a,13
b,23a,23b,23c,33a,33b,
33c……円筒発熱体、4,14,24,34…
…ニツプル、5,5′……通電端子、6,6′……
水冷装置、7,7′……絶縁材、8,8′……蓋
体、9……送気孔、10……排気孔、11……被
処理試料、A,1A,2A,2A′……接続部。
FIG. 1 is a conceptual longitudinal cross-sectional view of the main parts of a high-temperature heating furnace of the present invention in which a core tube is constructed using two cylindrical heating elements in a horizontal heating furnace. Fig. 2 is a longitudinal cross-sectional view of a main part of another embodiment of the furnace core tube according to the present invention, which is constructed of two cylindrical heating elements;
The figure shows one embodiment of the furnace core tube according to the present invention, which is constituted by three cylindrical heating elements, and FIG. 4 is a longitudinal cross-sectional view of a main part of another embodiment. FIG. 5 is an in-furnace isotherm diagram in the example, and FIG. 6 is an in-furnace isotherm diagram in a comparative example. 1... Steel furnace shell, 2... Heat insulation layer, 3, 13, 2
3, 33...core tube, 3a, 3b, 13a, 13
b, 23a, 23b, 23c, 33a, 33b,
33c... Cylindrical heating element, 4, 14, 24, 34...
...Nipple, 5, 5'... Current-carrying terminal, 6, 6'...
Water cooling device, 7, 7'... Insulating material, 8, 8'... Lid, 9... Air supply hole, 10... Exhaust hole, 11... Sample to be processed, A, 1A, 2A, 2A'... Connection part.

Claims (1)

【実用新案登録請求の範囲】 1 炉体中心部にそれを貫通するように通電加熱
式の炉心管を設けて、該炉心管内に挿入された
被処理材を加熱処理し得るようにした加熱炉で
あつて、該炉心管が複数個の炭素質乃至黒鉛質
製の円筒発熱体によつて構成され、かつ各円筒
発熱体の隣接部を炭素質乃至黒鉛質製のニツプ
ルによつて接続したことを特徴とする高温加熱
炉。 2 加熱炉が竪型式である請求項1記載の高温加
熱炉。 3 加熱炉が横型式である請求項1記載の高温加
熱炉。
[Claims for Utility Model Registration] 1. A heating furnace in which an electrically heated furnace core tube is provided in the center of the furnace body so as to pass through the furnace body, and a material to be treated inserted into the furnace core tube can be heat-treated. The core tube is composed of a plurality of cylindrical heating elements made of carbonaceous or graphite, and adjacent parts of each cylindrical heating element are connected by nipples made of carbonaceous or graphite. A high-temperature heating furnace featuring 2. The high-temperature heating furnace according to claim 1, wherein the heating furnace is of a vertical type. 3. The high-temperature heating furnace according to claim 1, wherein the heating furnace is of a horizontal type.
JP12572088U 1988-09-28 1988-09-28 Expired JPH0454225Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12572088U JPH0454225Y2 (en) 1988-09-28 1988-09-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12572088U JPH0454225Y2 (en) 1988-09-28 1988-09-28

Publications (2)

Publication Number Publication Date
JPH0246869U JPH0246869U (en) 1990-03-30
JPH0454225Y2 true JPH0454225Y2 (en) 1992-12-18

Family

ID=31376575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12572088U Expired JPH0454225Y2 (en) 1988-09-28 1988-09-28

Country Status (1)

Country Link
JP (1) JPH0454225Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6469030B2 (en) * 2016-02-16 2019-02-13 邦廣 畠山 Carbon heater component connected ultra high temperature furnace

Also Published As

Publication number Publication date
JPH0246869U (en) 1990-03-30

Similar Documents

Publication Publication Date Title
JP4285789B2 (en) Vertical electric furnace
JPH0454225Y2 (en)
US3406275A (en) Furnace having fingers interdigitatedly engaged with its heating elements
JP2953744B2 (en) Heat treatment equipment
JPS6327435Y2 (en)
US4056678A (en) Electric heating furnace
US3403212A (en) Electric furnace having a heating element of carbon or graphite for producing temperatures under high pressures
JPS6463781A (en) External heating type rotary furnace
EP0062356B1 (en) Inductive heating device and method utilizing a heat insulator and workpieces heated thereby
US2959661A (en) Electric band type heater
US6941774B2 (en) Optical fiber preform-heating furnace
JPH0136883Y2 (en)
Pring The electric furnace
JP3612788B2 (en) Heater heater temperature control device
JPH027435Y2 (en)
US3399266A (en) Graphite heating element assembly and furnaces containing same
JPS62144333A (en) Heater
SU1576823A1 (en) High-temperature electric furnace
JPS6452393A (en) High temperature heating furnace by carbon heating body
JP2598053Y2 (en) Electric resistance furnace
SU877797A1 (en) Graphite heater
US855441A (en) Cooling-jacket for electric-furnace electrodes.
JPS6133518Y2 (en)
JP2000281444A (en) Cylindrical graphite material and its production
PL170386B1 (en) Vacuum-type heat treatment furnace