JPH0453957B2 - - Google Patents

Info

Publication number
JPH0453957B2
JPH0453957B2 JP57161509A JP16150982A JPH0453957B2 JP H0453957 B2 JPH0453957 B2 JP H0453957B2 JP 57161509 A JP57161509 A JP 57161509A JP 16150982 A JP16150982 A JP 16150982A JP H0453957 B2 JPH0453957 B2 JP H0453957B2
Authority
JP
Japan
Prior art keywords
coating
electrodeposition
component
chromium compound
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57161509A
Other languages
Japanese (ja)
Other versions
JPS5950184A (en
Inventor
Tadayoshi Hiraki
Yoshiaki Myosawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP16150982A priority Critical patent/JPS5950184A/en
Publication of JPS5950184A publication Critical patent/JPS5950184A/en
Publication of JPH0453957B2 publication Critical patent/JPH0453957B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、金属材に、耐食性、付着性、耐糸さ
び性、耐スキヤツプ性、耐水付着性などのすぐれ
た塗膜を形成するための電着塗装法に関するもの
である。 電着塗装は、他の塗装法に比べて塗料のつきま
わり性がすぐれているので、金属材への塗装手段
として多くの分野で採用されている。そして、近
年において、電着塗膜に要求される性能が高水準
なものとなつている。 一般に、電着塗膜の性能は、電着塗料自体の組
成のみならず、電着塗装に先立つて行なう金属材
の前処理法(塗装下地処理)によつても大きく影
響されるのである。 そこで、本発明者は、電着塗膜と前処理被膜と
の関連性について鋭意研究を行なつた結果、クロ
ム化合物、シリカ系およびアルカリ金属化合物を
主成分とする水分散性組成物も前処理として特定
量被覆し、次いで電着塗装を行なうと、形成した
電着塗膜の耐食性、付着性、耐糸さび性、耐スキ
ヤツプ性、耐水付着性などが特にカチオン電着塗
装において、著しく改善できることを見い出し、
本発明を完成したのである。 これまでに、電着塗装の前処理法が数多く提案
されている。たとえば、陽極酸化処理、リン酸塩
処理、クロメート処理などがあり、さらに、リン
酸亜鉛液中に銅イオンを存在させた処理液で処理
する方法、リン酸塩処理液で処理した後、さらに
該処理液にカルシウムイオン、マンガンイオン、
バリウムイオンなどを含有させた処理液で処理す
る方法、リン酸塩処理被膜をさらに希クロム酸洗
浄する方法、水性有機樹脂と水溶性クロム化合物
とを主成分とする処理液で処理する方法などもす
でに公知である。 このような方法で前処理を行なつたのち、電着
塗装すると、塗面状態および電着塗料の塗着効率
が低下することがあつた。これは、電着塗料浴中
にて前記前処理を行なつた被塗物を電着塗装せし
めると、前処理被膜中のクロム化合物が浴中に溶
出するためであり、しかも防食に有用なクロム化
合物が前処理被膜中に当初の10〜30%しか保持さ
れないこと等により、形成した塗膜の性能(耐食
性、付着性、耐糸さび性、耐スキヤツブ性、耐水
付着性など)が近年において要求されている水準
に十分に達していないのが現状である。 本発明はかかる現状に鑑み、特にカチオン型電
着塗膜の性能を前処理法によつて改良することを
目的になされたものであつて、その特徴は、特に
カチオン型電着塗装用前処理液としてこれまで使
用されたことのない特定組成からなる処理液を特
定量被覆するところにあり、その結果、本発明の
目的が達成でき、高性能な電着塗膜を形成させる
ことが可能となつたのである。 すなわち、本発明は、金属材にカチオン型電着
塗料を電着塗装するにあたり、該金属材としてあ
らかじめ、 (A) 3価ならびに6価のクロム化合物からなる混
合クロム化合物 (B) シリカおよびケイ酸塩および、 (C) アルカリ金属化合物 を主成分とし、かつ該(A)成分の混合クロム化合
物中の6価のクロム化合物の含有率がCrO3
して50〜75重量%であり、該(B)成分が該(A)成分
の混合クロム化合物に対して40〜80重量%であ
つて、しかも該(A)成分における6価クロム化合
物(CrO3として)と該(C)成分(水酸化物とし
て)との比が100:20〜100:1(重量比)であ
る水分散性組成物をクロム原子換算で10〜150
mg/m2の塗布量となるように被覆し、100〜250
℃で加熱処理せしめてなる処理金属材を用いる
ことを特徴とする電着塗装方法に関するもので
ある。 本発明の特徴は、カチオン型電着塗装せしめ
る金属材を、あらかじめクロム化合物、シリカ
およびアルカリ金属化合物を主成分とする水分
散性組成物(以下、「前処理剤」と略称する)
を特定量被覆し、加熱処理するところにある。 かかる前処理被膜において、クロム化合物
は、シリカおよびアルカリ金属化合物と共に加
熱処理されているために、水不溶性の形に変換
しているので、すぐれた耐食性を発揮でき、し
かも電着塗料中に溶出することがないために該
塗料のゲル化が防止でき、電着塗膜の外観不良
も認められなくなつた。電着塗装の前処理にク
ロム化合物を用いることは前記したとおりすで
に公知であるが、それによるとクロム化合物は
水溶性であるために、それが電着塗料浴中に溶
出して電着塗料がゲル化したり、さらに電着塗
膜の外観が低下したり、特にカチオン型電着塗
装においては、電着時に発生する水素によつて
防食に有用な6価のクロム化合物が還元され、
十分な耐食性を発揮できないという欠陥を有し
ており、本発明はこのゆな欠陥を電着特性を低
下させることなく解消することができ、カチオ
ン電着塗装時の前処理被膜中の6価のクロムの
保持性が従来に比べて顕著に高めることができ
たのである。また、シリカは、クロム化合物
(6価クロム)を活性な状態に維持する作用が
あるので耐食性を改良でき、さらに処理被膜の
表面を高エネルギー化する効果もあるので電着
塗膜との付着性が著しく向上した。しかし、シ
リカを多量配合したり、また前処理剤の被覆量
を多くしたりすると、前処理被膜の電気抵抗が
高くなつて、電着塗装効率が低下するおそれが
あるので、その配合量及び被覆量を特定した範
囲内に調整する必要がある。また、アルカリ金
属化合物は、前処理剤のPHを調整し、金属機表
面と前処理被膜との付着性を改良し、さらに該
処理被膜の高抵抗性成を付与するのである。 このように、電着塗装に先立つて、上記した
前処理剤を金属剤(被塗物)表面に特定量被覆
し処理すると、電着塗装時に処理被膜中のクロ
ム化合物が当初の少なくとも50〜80%は保持さ
れることとなり、電着塗料浴を劣化させること
がなく、電着塗膜の耐食性および付着性を著し
く向上させることができた。さらに予期せざる
効果として、電着塗膜の耐食性、耐糸さび性、
耐スキヤツブ性、耐水付着性なども著しく改良
できたことがあげられる。かかる技術的効果
は、前記した従来の前処理法によつては得られ
ず、しかも、本発明における前処理を行なつた
金属材に水性塗料を浸漬塗装(非通電)しても
得られなかつたことにもとずいて考慮すれば、
本発明における前処理被膜と電着塗装とが奏効
したものと推察できるのである。 まず、本発明において使用する前処理剤につ
いて説明する。該前処理剤は、電着塗装に先立
つて、被塗物である金属材の表面にあらかじめ
被覆するものであつて、(A)混合クロム化合物、
(B)シリカおよび(C)アルカリ金属化合物を主成分
とする水分散性組成物である。 該(A)成分は、3価および6価クロム化合物か
らなる混合クロム化合物である。該(A)成分の製
造方法は、特に制限されないが、例えば、無水
クロム酸、水溶性クロム酸塩または重クロム酸
ナトリウム(もしくはカリウム)のような重ク
ロム酸塩の一部を還元することによつて得られ
る。還元剤は、有機系が好ましく、例えばデキ
ストローズ、グルコースのような糖類、メタノ
ール、エタノール、エチレングリコール、マン
ニツトール、ソルビトールのようなアルコール
類、ハイドロキノンなどがあげられ、無機系も
使用できる。還元剤は、6価クロム化合物と3
価クロム化合物との割合が所定の範囲内になる
ように計算量加えられ、還元反応を完成させる
ために加熱することが好ましい。本発明におけ
る該(A)成分において、6価のクロム化合物は、
6価のクロム化合物と3価のクロム化合物との
合計量(混合クロム化合物)にもとづいて、
CrO3として50〜75重量%の割合に調整する必
要があり、好ましくは、55〜65重量%である。
また、還元後の前処理剤のPHは1.5〜4.0が好ま
しい。6価のクロム化合物が、上記の50重量%
より少なくなると該前処理剤中で沈澱が生じて
均一な被膜が形成されず、かつ電着塗膜の耐食
性が低下し、一方、75重量%より多くなると加
熱処理時間が長くなり、耐水性も低下するため
に好ましくない。また、上記PHが4.0より高く
なると前処理剤中に凝集沈澱を生ずるおそれが
あり、PHが1.5より低くなると金属剤を腐食す
ることがある。 シリカは、水に溶解するか、またはコロイド
状に分散しうるものであるシリカゾル、シリカ
粉末などのシリカである。該(B)成分は、前記(A)
成分を還元反応によつて生成させたのちに、該
(A)成分と混合するとが望ましい。 該(C)成分は、アルカリ金属化合物であつて、
具体的には水酸化カリウム、炭酸カリウム、炭
酸ナトリウム、水酸化ナトリウムなどがあげら
れる。 そして、(B)成分は、(A)成分における3価およ
び6価のクロム化合物の合計量(混合クロム化
合物)に対して40〜80重量%であつて、40重量
%より少なくなると有効6価クロムの持続性が
低下し、かつ電着塗膜との付着性が劣り、一
方、80重量%より多くなると処理被膜の物理的
強度ならびに電着効率などが低下するので好ま
しくない。特にかかる範囲において親水性の(B)
成分が処理被膜の通電性を十分に発揮せしめ
る。また、(A)成分における6価のクロム化合物
(CrO3として)と(C)成分(水酸化物として)と
の比を、100:20〜100:1(重量比)の範囲内
に調整すべきであつて、(C)成分がこの範囲より
少なくなると処理被膜の形成が不十分となり、
電着塗膜との密着性が低下し、一方、(C)成分が
上記範囲より多くなると電着塗膜の耐水性が低
下するので、いずれも好ましくない。 次に、本発明の電着塗装方法について説明す
る。 本発明において使用できる被塗物である金属
材は、導電性金属であれば何らさしつかえな
く、例えば鉄鋼、亜鉛メツキ鋼板、亜鉛、アル
ミニウムまたはこれらの金属を含む合金などが
あげられる。 該金属材に前記した前処理剤を直接塗布して
もさしつかえないが、あらかじめリン酸塩処理
などを施しておいてもよい。 該金属剤の表面を常法により脱脂洗浄し、必
要に応じてリン酸塩処理を行なつたのち、前述
の前処理剤を特定量被覆するのである。該前処
理剤は、濃度5〜25重量%に調整しておくこと
が好ましく、金属材への塗布量はクロム原子換
算で10〜150mg/m2、好ましくは20〜120mg/m2
とすることが必須である。該前処理液の塗布方
法は、金属材の大きさ、形状などによつて任意
に選択でき、ハケ塗り、スプレー塗装、浸漬塗
装などで塗布される。 金属材に塗布した前処理液を加熱処理する必
要があり、加熱温度は100〜250℃、好ましくは
150〜200℃であつて、加熱時間は10秒〜30分
間。好ましくは20秒〜10分間が適している。加
熱温度が100℃よりも低くなると前処理被膜の
硬化が不十分で6価クロム化合物が電着浴中に
溶出して電着塗料のゲル化、沈澱を生じ、一方
250℃4よりも高くなると防食性に寄与する6
価クロム含量が著しく低下するので好ましくな
いのである。 そして、前処理剤を塗布し、加熱処理せしめ
た金属材にカチオン型電着塗料を電着塗装する
のである。 本発明において、カチオン型電着塗料は、そ
れ自体すでに公知のものが使用でき、前記前処
理法と併用することで奏効し、本発明の目的を
達成できるのである。カチオン型電着塗料とし
ては、例えばエポキシ樹脂を主骨格とし、これ
に分子量の異なるエポキシ樹脂、ビスフエノー
ル型エポキシ樹脂、ノボラツク型エポキシ樹
脂、ウレタンエポキシ樹脂、脂環型エポキシ樹
脂、脂肪族系エポキシ樹脂などを併用したも
の、またはダイマー酸変性、ポリプロピレング
リコールとのエーテル価、脂肪酸とのエステル
化、ポリアミド樹脂とのアダクト、ウレタン
化、アクリル化、カージユラE変性、トリアジ
ン化合物変性、ヘテロ環化合物変性などのエポ
キシ樹脂をビヒクル成分とするカチオン電着塗
料が有用である。さらに、ウレタン系、アクリ
ル系、ビニル系、ポリブタジエン系のカチオン
電着塗料も使用できる。 本発明において、上記前処理を行なつた金属
材へのカチオン型電着塗料の電着塗装条件およ
びで着塗膜の加熱条件などは通常の条件でさし
つかえない。 以下、実施例および比較例について説明す
る。 前処理剤 実施例および比較例において用いた前処理剤
の組成は表−1に示したとおりである。
The present invention relates to an electrodeposition coating method for forming a coating film having excellent corrosion resistance, adhesion, thread rust resistance, skip resistance, water adhesion resistance, etc. on metal materials. Electrodeposition coating has superior paint coverage compared to other coating methods, and is therefore used in many fields as a means of coating metal materials. In recent years, the performance required of electrodeposited coatings has become higher. In general, the performance of an electrodeposition coating film is greatly influenced not only by the composition of the electrodeposition paint itself but also by the pretreatment method (base treatment for coating) performed on the metal material prior to electrodeposition coating. Therefore, as a result of intensive research into the relationship between electrodeposition coatings and pretreatment coatings, the present inventors have discovered that water-dispersible compositions containing chromium compounds, silica, and alkali metal compounds as main components can also be pretreated. By applying a specific amount of cationic electrodeposition coating and then performing electrodeposition coating, the corrosion resistance, adhesion, thread rust resistance, skip resistance, water resistance, etc. of the formed electrodeposition coating can be significantly improved, especially in cationic electrodeposition coating. find out,
The present invention was completed. To date, many pretreatment methods for electrodeposition coating have been proposed. Examples include anodic oxidation treatment, phosphate treatment, chromate treatment, etc. In addition, there is a method of treatment with a treatment solution in which copper ions are present in a zinc phosphate solution, and a method of treatment with a treatment solution in which copper ions are present in a zinc phosphate solution, and a method of treatment with a treatment solution in which copper ions are present in a zinc phosphate solution. Calcium ions, manganese ions,
There are also methods of treatment with a treatment solution containing barium ions, etc., a method of further cleaning the phosphate-treated film with dilute chromic acid, and a method of treatment with a treatment solution whose main components are a water-based organic resin and a water-soluble chromium compound. It is already publicly known. If electrodeposition coating is applied after pretreatment in this manner, the condition of the coated surface and the coating efficiency of the electrodeposition paint may deteriorate. This is because when a pretreated object is electrocoated in an electrocoating paint bath, chromium compounds in the pretreated coating are eluted into the bath, and chromium, which is useful for corrosion prevention, is dissolved into the bath. In recent years, the performance of the formed coating film (corrosion resistance, adhesion, thread rust resistance, scab resistance, water resistance, adhesion resistance, etc.) has increased due to the fact that only 10 to 30% of the original compound is retained in the pretreatment film. The current situation is that the standards have not been fully reached. In view of the current situation, the present invention has been made with the purpose of improving the performance of cationic electrodeposition coatings through a pretreatment method, and its characteristics are particularly: pretreatment for cationic electrodeposition coatings; The process involves coating a specific amount of a processing solution with a specific composition that has never been used before, and as a result, the object of the present invention can be achieved and a high-performance electrodeposition coating film can be formed. It was summer. That is, in the present invention, when applying a cationic electrodeposition paint to a metal material, in advance, (A) a mixed chromium compound consisting of trivalent and hexavalent chromium compounds, and (B) silica and silicic acid. salt and (C) an alkali metal compound as a main component, and the content of the hexavalent chromium compound in the mixed chromium compound of the component (A) is 50 to 75% by weight as CrO3 , and the (B) The component is 40 to 80% by weight based on the mixed chromium compound of component (A), and moreover, the hexavalent chromium compound (as CrO 3 ) in component (A) and the component (C) (as hydroxide) ) with a ratio of 100:20 to 100:1 (weight ratio) of 10 to 150 in terms of chromium atoms.
Coat to a coating amount of 100 to 250 mg/ m2 .
The present invention relates to an electrodeposition coating method characterized by using a treated metal material that has been heat-treated at .degree. A feature of the present invention is that metal materials to be coated with cationic electrodeposition are pretreated with a water-dispersible composition (hereinafter abbreviated as "pretreatment agent") containing a chromium compound, silica, and an alkali metal compound as main components.
The process involves coating a specific amount of oxide and heat-treating it. In such a pretreatment film, the chromium compound is heat-treated together with silica and an alkali metal compound, so it is converted into a water-insoluble form, so it can exhibit excellent corrosion resistance and is not eluted into the electrodeposition paint. As a result, the gelation of the paint was prevented, and no defective appearance of the electrodeposited film was observed. As mentioned above, it is already known that chromium compounds are used in pre-treatment for electrodeposition coating, but since chromium compounds are water-soluble, they dissolve into the electrodeposition paint bath and cause the electrodeposition paint to deteriorate. Gelation may occur, and the appearance of the electrodeposited coating may deteriorate. Especially in cationic electrodeposition coatings, hexavalent chromium compounds useful for corrosion prevention may be reduced by the hydrogen generated during electrodeposition.
This invention has the defect of not being able to exhibit sufficient corrosion resistance, and the present invention can eliminate this defect without deteriorating the electrodeposition properties. The retention of this material was significantly improved compared to the conventional method. In addition, silica has the effect of maintaining chromium compounds (hexavalent chromium) in an active state, so it can improve corrosion resistance, and it also has the effect of increasing the energy of the surface of the treated film, so it improves adhesion with electrodeposition coatings. has improved significantly. However, if a large amount of silica is added or the amount of pre-treatment agent coated is increased, the electrical resistance of the pre-treatment film may increase and the electrodeposition coating efficiency may decrease. The amount needs to be adjusted within a specified range. Furthermore, the alkali metal compound adjusts the pH of the pretreatment agent, improves the adhesion between the metal machine surface and the pretreatment coating, and further imparts high resistance to the treatment coating. In this way, if a specific amount of the above-mentioned pre-treatment agent is applied to the surface of the metal material (object to be coated) prior to electrodeposition coating, the chromium compounds in the treated film will be reduced to at least 50 to 80% of the original level during electrodeposition coating. % was maintained, the electrocoated paint bath was not deteriorated, and the corrosion resistance and adhesion of the electrocoated film were significantly improved. Furthermore, unexpected effects include corrosion resistance, thread rust resistance, and
It is also possible to notice significant improvements in scuff resistance, water adhesion resistance, etc. Such a technical effect cannot be obtained by the conventional pretreatment method described above, and furthermore, it cannot be obtained by dip coating (without electricity) with a water-based paint on the pretreated metal material according to the present invention. Considering this,
It can be inferred that the pretreatment film and electrodeposition coating in the present invention were effective. First, the pretreatment agent used in the present invention will be explained. The pretreatment agent is one that is coated on the surface of the metal material to be coated prior to electrodeposition coating, and includes (A) a mixed chromium compound;
This is a water-dispersible composition containing (B) silica and (C) an alkali metal compound as main components. Component (A) is a mixed chromium compound consisting of trivalent and hexavalent chromium compounds. The method for producing component (A) is not particularly limited, but for example, by reducing a portion of a dichromate such as chromic anhydride, water-soluble chromate, or sodium (or potassium) dichromate. You can get it by twisting it. The reducing agent is preferably an organic type, such as sugars such as dextrose and glucose, alcohols such as methanol, ethanol, ethylene glycol, mannitol, and sorbitol, and hydroquinone, and inorganic types can also be used. The reducing agent is a hexavalent chromium compound and a
It is preferable to add a calculated amount so that the ratio with the valent chromium compound is within a predetermined range, and to heat it to complete the reduction reaction. In the component (A) in the present invention, the hexavalent chromium compound is
Based on the total amount of hexavalent chromium compound and trivalent chromium compound (mixed chromium compound),
It is necessary to adjust the proportion as CrO3 to 50 to 75% by weight, preferably 55 to 65% by weight.
Further, the pH of the pretreatment agent after reduction is preferably 1.5 to 4.0. Hexavalent chromium compound is 50% by weight of the above
If the amount is less than 75% by weight, precipitation will occur in the pretreatment agent and a uniform film will not be formed, and the corrosion resistance of the electrodeposited film will decrease.On the other hand, if it is more than 75% by weight, the heat treatment time will be longer and the water resistance will be reduced. unfavorable because it reduces Furthermore, if the PH is higher than 4.0, there is a risk of agglomeration and precipitation occurring in the pretreatment agent, and if the PH is lower than 1.5, the metal agent may be corroded. Silica is silica such as silica sol, silica powder, etc. that can be dissolved in water or colloidally dispersed. The component (B) is the above-mentioned (A)
After the components are produced by a reduction reaction,
It is preferable to mix it with component (A). The component (C) is an alkali metal compound,
Specific examples include potassium hydroxide, potassium carbonate, sodium carbonate, and sodium hydroxide. Component (B) is 40 to 80% by weight based on the total amount of trivalent and hexavalent chromium compounds (mixed chromium compound) in component (A), and if it is less than 40% by weight, it is effective hexavalent chromium compound. The durability of chromium decreases and the adhesion with the electrodeposition coating film becomes poor. On the other hand, if it exceeds 80% by weight, the physical strength and electrodeposition efficiency of the treated film decrease, which is not preferable. Particularly in this range, hydrophilic (B)
The components allow the treated film to exhibit sufficient electrical conductivity. In addition, the ratio of the hexavalent chromium compound (as CrO 3 ) in component (A) and component (C) (as hydroxide) is adjusted within the range of 100:20 to 100:1 (weight ratio). If the amount of component (C) is less than this range, the formation of the treated film will be insufficient.
Both are unfavorable, since the adhesion to the electrodeposited coating will decrease, and if the amount of component (C) exceeds the above range, the water resistance of the electrodeposition coating will decrease. Next, the electrodeposition coating method of the present invention will be explained. The metal material to be coated that can be used in the present invention may be any conductive metal, such as steel, galvanized steel, zinc, aluminum, or alloys containing these metals. The metal material may be directly coated with the pretreatment agent described above, but it may also be subjected to phosphate treatment or the like in advance. After the surface of the metal agent is degreased and cleaned by a conventional method and treated with phosphate if necessary, it is coated with a specific amount of the above-mentioned pretreatment agent. The pretreatment agent is preferably adjusted to a concentration of 5 to 25% by weight, and the amount applied to the metal material is 10 to 150 mg/m 2 , preferably 20 to 120 mg/m 2 in terms of chromium atoms.
It is essential to do so. The method of applying the pretreatment liquid can be arbitrarily selected depending on the size, shape, etc. of the metal material, and may be applied by brush painting, spray painting, dip painting, etc. It is necessary to heat-treat the pre-treatment liquid applied to the metal material, and the heating temperature is 100-250℃, preferably
The temperature is 150 to 200℃, and the heating time is 10 seconds to 30 minutes. Preferably, 20 seconds to 10 minutes is suitable. If the heating temperature is lower than 100℃, the pretreatment film will not be sufficiently cured, and hexavalent chromium compounds will be eluted into the electrodeposition bath, causing gelation and precipitation of the electrodeposition paint.
When the temperature is higher than 250℃4, it contributes to corrosion resistance6
This is undesirable because the valent chromium content is significantly reduced. Then, a cationic electrodeposition paint is applied by electrodeposition onto the metal material, which has been coated with a pretreatment agent and subjected to heat treatment. In the present invention, any known cationic electrodeposition paint can be used, and when used in combination with the pretreatment method described above, it is effective and the object of the present invention can be achieved. Examples of cationic electrodeposition paints include epoxy resin as a main skeleton, and epoxy resins with different molecular weights, bisphenol epoxy resins, novolac epoxy resins, urethane epoxy resins, alicyclic epoxy resins, and aliphatic epoxy resins. etc., or dimer acid modification, ether value with polypropylene glycol, esterification with fatty acids, adduct with polyamide resin, urethanization, acrylation, Cardilla E modification, triazine compound modification, heterocyclic compound modification, etc. Cationic electrodeposition paints containing epoxy resin as a vehicle component are useful. Furthermore, urethane-based, acrylic-based, vinyl-based, and polybutadiene-based cationic electrodeposition paints can also be used. In the present invention, the conditions for electrodeposition of the cationic electrodeposition paint on the pretreated metal material and the conditions for heating the deposited coating film may be under normal conditions. Examples and comparative examples will be described below. Pretreatment Agent The composition of the pretreatment agent used in the Examples and Comparative Examples is as shown in Table-1.

【表】 実施例 1〜4 上記前処理剤で金属材表面を被覆した後加熱処
理し、次いで電着塗装を行なつた。これらの詳細
は表−2に示したとおりである。
[Table] Examples 1 to 4 The surface of a metal material was coated with the above-mentioned pretreatment agent and then heat-treated, followed by electrodeposition coating. The details are shown in Table-2.

【表】 比較例 1〜12 表−3に示した。【table】 Comparative examples 1 to 12 It is shown in Table-3.

【表】【table】

【表】 塗膜性能試験結果 上記の実施例および比較例で得た塗装鋼板の塗
膜性能について試験した結果は表−4のとおりで
あつた。
[Table] Coating film performance test results Table 4 shows the results of testing the coating film performance of the coated steel plates obtained in the above Examples and Comparative Examples.

【表】【table】

【表】 表−4において (※1) 塗面状態:目視観察による。 (※2) 耐食性:ナイフを用いて、塗膜面に素
地に達するように対角線状(×字状)に傷を入
れ、JIS.Z.2371によつて800時間塩水フンム試
験を行ない、ナイフ傷からの錆およびフクレ巾
(カツト部)、平面部のフクレの状態(平面部)
を調べた。表中の◎はフクレなどを全く認めら
れない、○はフクレがわずか発生、△はフクレ
が多く発生、×はフクレがほぼ全面に発生した
ことを示す。 (※3) 耐スキヤブ性:電着塗装した塗板に、
中塗塗料および上塗塗料(いずれもアミノール
アルキド系)を塗装(乾燥膜厚、計80〜90μ)
し、加熱硬化させ、該塗面に、重さ4.8gの矢
じりを1mの高さから落下させて、素地面に達
する点状の傷をつける。これを海岸で6ケ月間
暴露したのち、上記傷から発生したサビ、フク
レの巾を調べた。 (※4) 耐糸さび性:ナイフを用いて塗膜面に
素地に達する傷を入れ、塩水フンム試験48時間
行なつた後、塗面を純水洗浄し、風乾した塗板
を温度40℃、相対湿度85%の糸さび試験器に入
れ、480時間後に発生した糸さびの長さを示し
た。 (※5) 付着性:ナイフを用いて塗膜面に、素
地に達するように傷を入れて大きさ1×1mmの
ゴバン目を100個作り、その表面に粘着セロハ
ンテープを貼着し、これを急激にはがした後に
残存するゴバン目状の塗膜を数えた。表中の分
子は残存数である。 (※6) 40℃耐水付着性:40℃恒温水槽に400
時間浸漬した後、直ちに、ナイフを用いて塗膜
面に素地に達する2mm間隔のゴバン目100個を
刻み、粘着セロハンテープをはりつけ急速には
がしとる。ゴバン目部分の残数から付着性をゴ
バン目残数/100で示した。
[Table] In Table-4 (*1) Painted surface condition: Based on visual observation. (*2) Corrosion resistance: Using a knife, make diagonal (x-shaped) scratches on the coating surface to reach the substrate, and perform an 800-hour salt water hump test according to JIS.Z.2371. Rust and blisters from (cut part), condition of blisters on flat part (flat part)
I looked into it. In the table, ◎ indicates that no blisters were observed, ○ indicates that only a few blisters occurred, △ indicates that many blisters occurred, and × indicates that blisters occurred almost on the entire surface. (*3) Squib resistance: Electrodeposited coating plate,
Apply intermediate coating and top coating (both aminol alkyd-based) (dry film thickness, total 80 to 90μ)
The coated surface is heated and cured, and an arrowhead weighing 4.8 g is dropped from a height of 1 m to make point-like scratches that reach the base surface. After this was exposed on the beach for 6 months, the extent of rust and blisters that had developed from the scratches was examined. (*4) Thread rust resistance: Use a knife to make scratches on the coating surface that reach the substrate, perform a salt water hump test for 48 hours, wash the coating surface with pure water, and air dry the coating at a temperature of 40℃. The yarn was placed in a thread rust tester with a relative humidity of 85%, and the length of thread rust that occurred after 480 hours was shown. (*5) Adhesiveness: Use a knife to make scratches on the coating surface to reach the substrate, making 100 goblets with a size of 1 x 1 mm, and attach adhesive cellophane tape to the surface. After rapidly peeling off the coating, the remaining scratch-like paint film was counted. The numerator in the table is the remaining number. (*6) 40℃ water resistance adhesion: 400℃ in a constant temperature water bath at 40℃
After soaking for an hour, immediately use a knife to cut 100 gobbles at 2 mm intervals on the coating surface, reaching the substrate, and then apply adhesive cellophane tape and quickly peel it off. The adhesion was expressed as the number of leftovers/100 based on the number of leftovers.

Claims (1)

【特許請求の範囲】 1 金属材にカチオン型電着塗料を電着塗装する
にあたり、該金属材としてあらかじめ、 (A) 3価ならびに6価のクロム化合物からなる混
合クロム化合物 (B) シリカおよび、 (C) アルカリ金属化合物 を主成分とし、かつ該(A)成分の混合クロム化合物
中の6価のクロム化合物の含有率がCrO3として
50〜75重量%であり、該(B)成分が該(A)成分の混合
クロム化合物に対して40〜80重量%であつて、し
かも該(A)成分における6価クロム化合物(CrO3
として)と該(C)成分(水酸化物として)との比が
100:20〜100:1(重量比)である水分散性組成
物をクロム原子換算で10〜150mg/m2の塗布量と
なるように被覆し、100〜250℃で加熱処理せしめ
てなる処理金属材を用いることを特徴とする電着
塗装方法。
[Claims] 1. When applying a cationic electrodeposition paint to a metal material by electrodeposition, the metal material contains (A) a mixed chromium compound consisting of trivalent and hexavalent chromium compounds, (B) silica, and (C) The main component is an alkali metal compound, and the content of hexavalent chromium compound in the mixed chromium compound of component (A) is CrO 3 .
50 to 75% by weight, and the (B) component accounts for 40 to 80% by weight based on the mixed chromium compound of the (A) component, and the hexavalent chromium compound (CrO 3
) and the (C) component (as hydroxide) is
A treatment in which a water-dispersible composition having a ratio of 100:20 to 100:1 (weight ratio) is coated with a coating amount of 10 to 150 mg/m 2 in terms of chromium atoms, and then heat-treated at 100 to 250°C. An electrodeposition coating method characterized by the use of metal materials.
JP16150982A 1982-09-16 1982-09-16 Electrodeposition painting method Granted JPS5950184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16150982A JPS5950184A (en) 1982-09-16 1982-09-16 Electrodeposition painting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16150982A JPS5950184A (en) 1982-09-16 1982-09-16 Electrodeposition painting method

Publications (2)

Publication Number Publication Date
JPS5950184A JPS5950184A (en) 1984-03-23
JPH0453957B2 true JPH0453957B2 (en) 1992-08-28

Family

ID=15736407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16150982A Granted JPS5950184A (en) 1982-09-16 1982-09-16 Electrodeposition painting method

Country Status (1)

Country Link
JP (1) JPS5950184A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2743633B2 (en) * 1991-02-09 1998-04-22 住友金属工業株式会社 Chromated steel sheet and method for producing the same
DE69432398T2 (en) * 1993-12-28 2003-11-27 Kanegafuchi Chemical Ind Additive for thermoplastic resins and flame retardant resin compositions

Also Published As

Publication number Publication date
JPS5950184A (en) 1984-03-23

Similar Documents

Publication Publication Date Title
EP0308563B1 (en) Process for providing a precoated steel sheet having improved corrosion resistance and formability
JP3221882B2 (en) A simplified method for producing a lacquer coating having good corrosion resistance and good adhesion and a workpiece obtained by the method
JP5230428B2 (en) Water-based treatment liquid for Sn-based plated steel sheet having excellent corrosion resistance and paint adhesion and method for producing surface-treated steel sheet
JP3418177B2 (en) Surface-treated steel sheet for fuel tank and method for producing the same
US4537837A (en) Corrosion resistant metal composite with metallic undercoat and chromium topcoat
JP2839111B2 (en) Chromate treatment method for galvanized steel sheet
JPH10501027A (en) Method for coating a phosphated metal substrate
JPH10251509A (en) Metal surface treating solution and surface treated metal plate
JPH0813154A (en) Zinc-containing metal plated steel sheet composite body excellent in coating suitability and its production
JPH05117869A (en) Metallic surface treating agent for forming composite film
US4971635A (en) Low-cure coating composition
JPH041070B2 (en)
JPH0453957B2 (en)
JPS642670B2 (en)
WO1993005199A1 (en) Aluminum alloy sheet for automotive body and production thereof
JP2619626B2 (en) High corrosion resistant surface treated steel sheet for cationic electrodeposition coating
JPH04202781A (en) Aluminum alloy sheet excellent in scratch resistance and corrosion resistance and its production
JPH10176280A (en) Chromate treating solution and surface treated metallic sheet
JP2753666B2 (en) Resin-coated steel sheet with excellent electrodeposition coating properties
JPH0474872A (en) Organic composite coated steel sheet having excellent corrosion resistance
JPH055905B2 (en)
JPH06136597A (en) Surface-treated al or al alloy material excellent in corrosion resistance after coating
JPH0153110B2 (en)
JPH0536503B2 (en)
JP2005146294A (en) Inorganic-organic composite-treated galvanized steel sheet