JPH0453843A - Production of porous high-molecular material for use in artificial muscle - Google Patents

Production of porous high-molecular material for use in artificial muscle

Info

Publication number
JPH0453843A
JPH0453843A JP2163235A JP16323590A JPH0453843A JP H0453843 A JPH0453843 A JP H0453843A JP 2163235 A JP2163235 A JP 2163235A JP 16323590 A JP16323590 A JP 16323590A JP H0453843 A JPH0453843 A JP H0453843A
Authority
JP
Japan
Prior art keywords
freezing
rate
artificial muscle
molecular material
thawing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2163235A
Other languages
Japanese (ja)
Other versions
JPH0621179B2 (en
Inventor
Makoto Suzuki
誠 鈴木
Masahiko Matsuzawa
松澤 雅彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2163235A priority Critical patent/JPH0621179B2/en
Publication of JPH0453843A publication Critical patent/JPH0453843A/en
Publication of JPH0621179B2 publication Critical patent/JPH0621179B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a porous high-molecular material for use in artificial muscle with sufficient stretchability and strength by employing specific conditions in a process in which said material is prepared by repeating freezing and thawing where an aqueous mixed solution of PVA and a polyelectrolyte is freezed and then thawed at ordinary temperature. CONSTITUTION:A mixed aqueous solution of PVA and a polyelectrolyte (e.g. a mixture of polyacrylic acid and polyallylamine hydrochloride) is freezed and then thawed at ordinary temperature. This vroceclure is repeated two or more times to obtain a porous high-molecular material for artificial muscle. In this method, the rate at which the mixed solution temperature drops immediately before freezing is adjusted depending on the pore size of the porous high- molecular material to be formed so that it will be lowered as the pore size increases.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、人工筋肉の材料の製造方法に関するもので
あり、ロボットや医療機器、義肢等の駆動源たる小型ア
クチュエータとして利用し得る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing artificial muscle material, and can be used as a small actuator as a drive source for robots, medical equipment, artificial limbs, etc.

[従来の技術] ある種の高分子材料は、浸される環境溶液を、酸−アル
カリ、或いは水−アルコール、或いは水アセトン等のよ
うに交換すると可逆的に伸縮する性質をもつ。このよう
な高分子材料はメカノケミカル材料と称され、ソフトで
軽い小型高効率アクチュエータとしての応用が期待され
ており、例えば特願昭60−254042、特願昭60
254043等がある。
[Prior Art] Certain polymeric materials have the property of reversibly expanding and contracting when the environmental solution in which they are immersed is exchanged, such as acid-alkali, water-alcohol, or water-acetone. Such polymeric materials are called mechanochemical materials, and are expected to be used as soft, light, compact, and highly efficient actuators.
254043 etc.

[発明が解決しようとする課題] メカノケミカル材料においては、応答性と出力密度(単
位体積当りの出力)の向上をはかることが、従来から大
きな課題である。
[Problems to be Solved by the Invention] In mechanochemical materials, improving responsiveness and output density (output per unit volume) has traditionally been a major issue.

応答性については、環境溶液との接触面積を増加させる
べく、材料は細m雑状若しくは1illl状に形成され
るが、これらの材料を束ねて人工筋肉として用いようと
するときには材料同士が密着してしまい、環境溶液を交
換したときの溶液の浸透性が悪く、応答性は未だ充分と
はいえない。
In terms of responsiveness, materials are formed into thin shapes or 1ill shapes in order to increase the contact area with environmental solutions, but when these materials are bundled and used as an artificial muscle, it is difficult for the materials to come into close contact with each other. Therefore, when the environmental solution is replaced, the permeability of the solution is poor, and the responsiveness is still not sufficient.

この応答性の問題を解決するために、メカノケミカル材
料を単に細繊維状若しくは薄膜状に形成するのでなくて
、更に、多数の貫通孔を材料のほぼ全面に均一に分散形
成することが考えられる。
In order to solve this responsiveness problem, it is conceivable to form mechanochemical materials not only in the form of fine fibers or thin films, but also to form a large number of through holes uniformly distributed over almost the entire surface of the material. .

これにより束ねた材料の内層まで環境溶液を浸透させ稈
る。
This allows the environmental solution to penetrate into the inner layer of the bundled material.

しかし一方、多数のn通孔を形成すれば、材料の強度が
低下し、出力密度が低下する恐れがある。
However, on the other hand, if a large number of n-through holes are formed, the strength of the material may decrease, and the output density may decrease.

この発明は上記の如き事情に鑑みてなされたものであっ
て、環境溶液を交換したときの溶液の浸透効果をあげる
に充分な大きさの孔径のn通孔を細[雑状若しくは薄膜
状のメカノケミカル材料にほぼ均一に分布させて形成す
ることができ、従って、応答速度を人工筋肉として適用
し得るに充分に速くすることができ、かつ人工筋肉の使
用目的によって孔径の大きさと孔壁部分の力学的特性を
コントロールして必要な伸縮性と強度を保有させること
ができる人工筋肉用多孔性高分子祠料の製造方法を提供
することを目的とするものである。
This invention was made in view of the above-mentioned circumstances, and consists of forming n-through pores with a diameter sufficiently large to enhance the permeation effect of the solution when exchanging the environmental solution. It can be formed in a mechanochemical material with almost uniform distribution, and therefore the response speed can be made fast enough to be applied as an artificial muscle. The object of the present invention is to provide a method for producing a porous polymer abrasive material for artificial muscles, which can control the mechanical properties of the material and maintain the necessary elasticity and strength.

[課題を解決するための手段] この目的に対応して、この発明の人工筋肉用多孔性高分
子材料の製造方法は、ポリビニルアルコールと高分子電
解質との混合水溶液を、凍結させてから常温で解凍する
凍結・解凍過程を2回以上繰返す人工筋肉用多孔性高分
子材料の製造方法において、前記凍結する直前の被凍結
物の温度降下速度を前記人工筋肉用多孔性高分子材料に
形成されるべきマクロ孔の孔径の大小に応じて前記孔径
が大きいほど遅くなるように調整することを特徴として
いる。
[Means for Solving the Problems] Corresponding to this object, the method for producing a porous polymer material for artificial muscles of the present invention involves freezing a mixed aqueous solution of polyvinyl alcohol and a polymer electrolyte, and then cooling it at room temperature. In a method for producing a porous polymeric material for artificial muscle in which a freezing/thawing process of thawing is repeated twice or more, the temperature drop rate of the object to be frozen immediately before freezing is adjusted to It is characterized in that the speed is adjusted so that the larger the hole diameter is, the slower the speed is, depending on the size of the macropore diameter.

[作用] このように構成された人工筋肉用多孔性高分子材料の製
造方法においては、混合溶液は凍結・解凍過程を2回以
上繰返される。凍結するときに相分離が起り、水分が凝
集した凝集域が形成され、一方、その周囲では高分子化
合物の濃度が上昇する。これを解凍して再び凍結すると
、相分離が更に進み、水分の凝集域が拡大し、その周囲
では高分子化合物の濃度が更に1胃する。こうして凍結
・解凍過程を、2回駅上好ましくは10回程度以上繰返
すと、水分の凝集域は孔となり、孔の回りには孔壁が形
成される。
[Function] In the method for manufacturing the porous polymer material for artificial muscles configured as described above, the mixed solution undergoes a freezing/thawing process twice or more. During freezing, phase separation occurs, forming an agglomerated area where water aggregates, while the concentration of polymer compounds increases around this area. When this is thawed and refrozen, phase separation further progresses, the region of water aggregation expands, and the concentration of the polymer compound further increases around this region. When the freezing and thawing process is repeated twice, preferably about 10 times or more, the areas where water condenses become pores, and pore walls are formed around the pores.

ここで重要なことは各凍結・解凍過程において、凍結直
前の温度降下速度は、形成しようとする人工筋肉用多孔
性高分子材料の使用目的に応じて遅速を調整されること
である。
What is important here is that in each freezing/thawing process, the rate of temperature drop immediately before freezing is adjusted according to the purpose of use of the porous polymeric material for artificial muscle to be formed.

すなわち、荷重がかかった状態で収縮して負荷等を駆動
する目的に使用する場合は、大きな収縮力をすなわち機
械的強度を望むほど、また初期応答性がよいことを望む
ほど、前記凍結直前の温度時下速度を理<(小さく)さ
れる。
In other words, when used for the purpose of driving a load by contracting under a load, the higher the contraction force, that is, the higher the mechanical strength, and the better the initial response, the higher the temperature immediately before freezing. When the temperature decreases, the speed decreases.

これは、凍結速度がRくなるにつれ、凍結後の材料中の
相分離がよりよく進行して1つ1つの水分の凝集域がよ
りよく拡大し、同時にその凝集域の周囲の高分子を含む
部分は濃度がより高くなるため架橋が促進され易くなり
、連通気泡のフオーム状から次第に密な壁を形成するか
らだと考えられる。従って凍結した材料を解凍したとき
、水分の凝集域は孔となり、その孔径は温度降下速度が
小さいほど、大きくなり、かつ孔の周囲には温度降下速
度が小さいほど緻密な孔壁が形成される。
This is because as the freezing rate increases, the phase separation in the material after freezing progresses more rapidly, and each moisture aggregation region expands, and at the same time, the surrounding macromolecules in the aggregation region are included. It is thought that this is because the concentration in the part becomes higher, so crosslinking is more likely to be promoted, and the foam shape of open cells gradually becomes denser. Therefore, when a frozen material is thawed, the areas where water condenses become pores, and the smaller the temperature drop rate, the larger the pore diameter becomes, and the smaller the temperature drop rate, the denser the pore walls are formed around the pores. .

その結果初期応答性のよい、荷重がかかったときの収縮
率の高い、強度のあるメカノケミカルな人工筋肉用多孔
性高分子材料が形成される。
As a result, a strong mechanochemical porous polymeric material for artificial muscles with good initial response, high contraction rate under load, and strength is formed.

荷重がかからない状態での収縮率が大きいことを望むほ
ど、またその動作の完了までの時間が短いことを望むほ
ど(このような用途としてはセンサー、デイスプレィ材
料等が考えられる)、凍結直前の温度降下速度は速く(
大きく)される。
The higher the contraction rate under no load is desired, and the shorter the time required to complete the operation (such applications include sensors, display materials, etc.), the lower the temperature just before freezing. The descent speed is fast (
(largely)

この場合は、凍結・解凍を繰返すことにより、孔が多数
形成されるが相分離があまり進ます多孔は孔径が小さく
なる。また、孔壁はそれほど緻密な層にならないため、
出来た材料中に環境溶液の浸透の遅い部分がなく、平衡
に達するまでの時間は比較的短くなり、動作の完了は孔
径が大きい場合より速くなる。また、荷重がかからない
状態での収縮性は孔径が大きい場合よりよくなる。
In this case, many pores are formed by repeated freezing and thawing, but the pores whose phase separation progresses too much have a smaller pore diameter. In addition, since the pore walls do not form a very dense layer,
There are no slow-penetrating areas of environmental solutions in the resulting material, the time to reach equilibrium is relatively short, and the completion of operations is faster than with larger pore sizes. In addition, the shrinkability under no load is better than when the pore diameter is large.

[実施例] 以下、この発明の詳細を一実施例を示す図面について説
明する。
[Example] Hereinafter, details of the present invention will be explained with reference to drawings showing an example.

第1図はこの発明の人工筋肉用多孔性高分子材料の製造
方法を示す説明図である。
FIG. 1 is an explanatory diagram showing a method for producing a porous polymer material for artificial muscles according to the present invention.

まず、原料である混合水溶液2を用意する。混合水溶液
2はポリビニルアルコールと高分子電解質の混合水溶液
であって、ここに、高分子電解質としては (I>酸性高分子電解質と塩基性の高分子電解質のうち
の一方 <II)酸性高分子電解質と塩基性高分子電解質の両方 の2通りが考えられ、各場合について所定のモル比で混
合する(前記特願昭60−254042、特願昭60−
254043参照)。
First, a mixed aqueous solution 2 as a raw material is prepared. The mixed aqueous solution 2 is a mixed aqueous solution of polyvinyl alcohol and a polymer electrolyte, where the polymer electrolyte is (I>one of an acidic polymer electrolyte and a basic polymer electrolyte<II) an acidic polymer electrolyte. and a basic polymer electrolyte, and each case is mixed at a predetermined molar ratio (see the above-mentioned Japanese Patent Application No. 60-254042, Japanese Patent Application No. 1987-
254043).

混合水溶液2としては良く攪拌した、好ましくは良く攪
拌して更に後述する養生を行ったものを使用し、1膜成
形用の型内に密封する。このような型を実現する方法と
しては、例えば、2枚のガラス板の闇に、成形しようと
する薄膜の股厚分の高さ(例えば110μm)のスペー
サを介してキャスティングする方法、をとることができ
る。
As the mixed aqueous solution 2, a well-stirred solution, preferably well-stirred and further cured as described below, is used, and the solution is sealed in a mold for forming one film. A method for realizing such a mold is, for example, to cast between two glass plates through a spacer with a height equal to the crotch thickness of the thin film to be molded (for example, 110 μm). I can do it.

これに、凍結・解凍過程を2回以上好ましくは10回程
度繰返す。このとき凍結は例えばfii度降下速度が−
o、ooi℃/秒〜−100℃/秒になるように零下1
0℃乃至零下270℃の環境下で放置して行う。しかし
−1000℃/秒でも使用可能と考えられる。このよう
な低下を得るためには例えば液体窒素、液体ヘリウム等
を使用することができる。また解凍は例えば常温下で放
置して行い、その後乾燥して人工筋肉用多孔性材料を得
るものである。
Then, the freezing/thawing process is repeated two or more times, preferably about 10 times. At this time, for example, the freezing rate is -
o, ooi℃/second to -100℃/second below zero 1
The test is carried out by being left in an environment of 0°C to 270°C below zero. However, it is considered possible to use it even at -1000°C/sec. For example, liquid nitrogen, liquid helium, etc. can be used to obtain such a reduction. Further, the material is thawed by being left at room temperature, for example, and then dried to obtain a porous material for artificial muscles.

ここで、本発明の重要なポイントは、各回の凍結の直前
の被凍結物の温度降下速度の遅・速を、人工筋肉用多孔
性材料に形成されるべき孔のうち径の大きいマクロ孔の
孔径の大・小に応じて調整し、孔径が大きい程各回の凍
結のM前の温度時下速度を遅くすることである。
Here, the important point of the present invention is to determine the slowness and speed of the temperature drop of the frozen object immediately before each freezing of macropores with large diameters among the pores to be formed in the porous material for artificial muscles. It is adjusted according to the size of the pore diameter, and the larger the pore diameter, the slower the rate of temperature drop before each freezing M.

後述する実験により、凍結の直前の被凍結物の温度降下
速度が遅いほど結果として人工筋肉用多孔性材料に形成
されるマクロ孔の孔径が大きくなり、これによって初期
応答性が向上し、またそのマクロ孔の孔壁の壁は孔径が
大きいほど緻密になって荷重がかかった状態での収縮力
が大きくなり、すなわち機械的強度が大きくなることが
わかっており、また凍結の直前の被凍結物の温度降下速
度が速いほど、人工筋肉用多孔性材料の荷重がかからな
い状態での伸縮性が向上し、動作の完了が速くなること
がわかっているので、人工筋肉用多孔性材料の使用目的
に応じて凍結直前の温度時下速度を選択する。
The experiments described below have shown that the slower the temperature drop rate of the frozen object immediately before freezing, the larger the macropore diameter formed in the porous material for artificial muscles, which improves the initial response. It is known that the larger the pore diameter, the more dense the pore walls of macropores are, and the greater the contraction force under load, which means the mechanical strength is greater. It has been shown that the faster the temperature drop rate of the porous material for artificial muscle, the better the unloaded stretchability of the porous material for artificial muscle, and the faster the completion of movement. Depending on the temperature, select the speed at which the temperature is just before freezing.

[実験例] (1)混合水溶液2の組成 ポリビニルアルコール(製品名クラレ117H。[Experiment example] (1) Composition of mixed aqueous solution 2 Polyvinyl alcohol (product name: Kuraray 117H).

分子量74,800.ケン化度99.6%以上)と、ポ
リアクリルII(製品名SP2.  分子口約170.
000> 、ポリアリルアミン塩M塩(日東紡製、 分
子口約60.000>をそれぞれ1.74:0.245
:0.26のベースモル比で混合し、良く攪拌する。
Molecular weight 74,800. saponification degree of 99.6% or more), polyacrylic II (product name SP2. molecular mouth approximately 170.
000>, polyallylamine salt M salt (manufactured by Nittobo, molecular mouth approximately 60,000>, respectively 1.74:0.245
: Mix at a base molar ratio of 0.26 and stir well.

(2)養生条件 養生とは、所定の温度範囲に保ちつつ所定時間放置する
過程をいうものとし、ここでは養生の温度として25℃
、養生の時間は11日間とした。
(2) Curing conditions Curing refers to the process of keeping the temperature within a specified range and leaving it for a specified period of time.Here, the curing temperature is 25℃.
The curing time was 11 days.

この養生条件を選定した根拠は第6図に示すように、こ
の養生条件のとき生成ゲルの出力密痩が最大となるから
である。ここに第6図は、ゲル化する際に1軸延伸を施
し、一方向に弾性を高めた材料において実験した結果を
示しており、拘束方向とは延伸方向に荷重を加えた場合
で、垂直方向とは延伸方向と垂直に荷重を加えた場合の
特性である。
The reason for selecting this curing condition is that, as shown in FIG. 6, the output density of the produced gel is maximized under this curing condition. Figure 6 shows the results of an experiment on a material that has been uniaxially stretched during gelation to increase its elasticity in one direction. The direction is the characteristic when a load is applied perpendicular to the stretching direction.

(3)上記(1)、(2)を満たす混合水溶液2を厚さ
110μmのスペーサを介して0.8j*厚さの2枚の
ガラス板で挟み厚さ10μmのポリ塩化ビニリデンフィ
ルムで密封したものに対して凍結・解凍過程を行うので
あるが、凍結直前の温度降下速度を変えるために次のA
、B、Cの3つの凍結方法を用いた。
(3) Mixed aqueous solution 2 that satisfies (1) and (2) above was sandwiched between two 0.8j*thick glass plates via a 110 μm thick spacer and sealed with a 10 μm thick polyvinylidene chloride film. The process of freezing and thawing something is carried out, but in order to change the rate of temperature drop just before freezing, the following A
Three freezing methods were used: , B, and C.

A:40um厚みのポリエチレン袋に入れ零下50℃に
冷却したエタノールに投入して凍結B : 2411厚
みのシリコンゴム板で作った60″”X35”X95″
l′の箱に入れ、−50℃の冷凍庫内で凍結 C:厚さ4履の同原料のゲルに包埋して零下50℃の冷
凍庫内で凍結 上にの各々の方法で凍結し、常温で解凍する、凍結・解
凍過程を10回繰返してゲルを作製した。
A: Put it in a 40 um thick polyethylene bag and put it in ethanol cooled to -50℃ and freeze. B: 60" x 35" x 95" made from a 2411 thick silicone rubber plate.
C: Embedded in a 4-layer thick gel made of the same material, frozen in a freezer at -50°C using each method, and frozen at room temperature. A gel was prepared by repeating the freezing/thawing process 10 times.

凍結・解凍の繰返し回数として10回を選定したのは、
本来更に回数を増す方が強い材料となるのだが、それぞ
れの作製法を比較する上で最低必要と考えられるこの数
を選んだ(第7図参照)。このとぎ各々原液中に熱電対
(銅−コンスタンタン50μm径)を差込み温度を測定
したところ凍結直前の温度降下速度は、 Aニー3.78 [”C/秒] Bニー7.66x102[”C/秒] C;−3,29X10’[”C/秒] であった(第8図参照)。
The reason why we selected 10 times as the number of repetitions of freezing and thawing was because
Originally, increasing the number of times would make the material stronger, but this number was chosen as it was considered to be the minimum required when comparing the various manufacturing methods (see Figure 7). When we measured the temperature by inserting a thermocouple (copper-constantan diameter 50 μm) into each stock solution, the temperature drop rate just before freezing was A knee 3.78 ["C/sec] B knee 7.66 x 102 ["C/sec] seconds] C; -3,29X10'[''C/second] (see Figure 8).

これらのゲルの微細4113mを調べるため、ゲル膜の
微小片を液体窒素のスラッシュ(slush)に入れて
急速に凍結し、これを−15℃に保ち真空ポンプで減圧
し、1晩かけて水分を背革させ乾燥した。この際にゲル
のサイズはΔ、B、Cそれぞれ元の72%、65%、7
0%に収縮した。
In order to examine the microscopic 4113m of these gels, microscopic pieces of the gel film were quickly frozen in a slush of liquid nitrogen, kept at -15°C, depressurized with a vacuum pump, and allowed to evaporate overnight. The backs were dried. At this time, the gel sizes are 72%, 65%, and 7% of the original size for Δ, B, and C, respectively.
It shrank to 0%.

これを金蒸着して得た82M写真におけるA。A in the 82M photograph obtained by gold vapor deposition of this.

B、Cの各々のマクロ孔の孔径は、Aはほぼ1μm以下
、Bはほぼ1〜2μm1Cはほぼ2μTrL以上となっ
ていて、凍結直前の温度降下の遅・速にマクロ孔の孔径
の大・小が対応していて、凍結直前の温度降下速度が遅
いほど孔径が大きくなることがわかった。
The pore diameters of each of the macropores in B and C are approximately 1 μm or less for A, approximately 1 to 2 μm for B, and approximately 2 μTrL or more for 1C. It was found that the smaller the pore diameter, the slower the rate of temperature drop just before freezing, the larger the pore diameter.

第9図(a)(b)(c)は各々A、B、Cを金蒸着し
たものの組織拡大図である これらマクロ孔lll造の相違によってもたらされるゲ
ルの特性を第2図、第3図、第4図及び第5図に示す。
Figures 9 (a), (b), and (c) are enlarged views of the structures of gold-deposited A, B, and C. Figures 2 and 3 show the gel properties caused by the differences in macropore structure. , shown in FIGS. 4 and 5.

第2図は平衡収縮率に達するまでの収縮率の経時変化を
荷重1に9/aiをかけた場合について示したものであ
り、このようにして達した平衡収縮率を、荷重の大きさ
を種々変化させた場合について示したのが、第3図であ
る。
Figure 2 shows the change in shrinkage rate over time until the equilibrium shrinkage rate is reached when load 1 is multiplied by 9/ai. FIG. 3 shows various changes.

第3図によれば、荷重をかけない場合は凍結直前の温度
降下速度の速いほど収縮率が大きく、荷重がかかるとそ
の傾向は逆転し、凍結直前の温度降下速度の遅いほど収
縮率が大きくなり、凍結直前の温度降下速度の一番遅い
Cは荷重の増加に伴う収縮率の減少が少ないことがわか
る。
According to Figure 3, when no load is applied, the faster the rate of temperature drop just before freezing, the higher the shrinkage rate, and when a load is applied, the trend is reversed, and the slower the rate of temperature drop just before freezing, the higher the shrinkage rate. It can be seen that C, which has the slowest temperature drop rate just before freezing, has a smaller decrease in shrinkage rate as the load increases.

第4図はゲル膜に加えた引張応力と歪の関係を示す。第
4図によれば凍結直前の温度時下速度が遅いほど歪が小
さく、弾力性にすぐれるすなわち高弾性率となることが
わかる。
FIG. 4 shows the relationship between tensile stress and strain applied to the gel film. According to FIG. 4, it can be seen that the slower the lowering speed at the temperature immediately before freezing, the smaller the strain and the better the elasticity, that is, the higher the elastic modulus.

第3図、第4図から、凍結直前の温度降下速度がRいは
ど剛くて弾性率が大きいゲルになることがわかる。
From FIGS. 3 and 4, it can be seen that the rate of temperature drop immediately before freezing is R, which results in a gel that is stiff and has a large elastic modulus.

更に第5図はアセトン注入時からの収縮過程の時間変化
を示す。これは荷重をかけていない場合の時間応答であ
る。
Further, FIG. 5 shows the time change of the contraction process from the time of acetone injection. This is the time response when no load is applied.

収縮過程の初期にはCの応答性が良い。C has good responsiveness at the beginning of the contraction process.

これは、Cの孔径の大きいことによって初期応答が良く
なっていることを示す。
This indicates that the initial response is improved due to the large pore size of C.

反面、第5図では収縮過程の終期にはCの応答性が悪く
なっている。これはCの緻密部の応答がRかったためと
と考えられる。緻密部の偏在が少ない場合には収縮過程
の終期の応答性も向上すると考えられる。
On the other hand, in FIG. 5, the responsiveness of C becomes worse at the end of the contraction process. This is considered to be because the response of the dense part of C was R. It is thought that when the uneven distribution of the compact part is small, the responsiveness at the end of the contraction process is also improved.

[発明の効果] 以上の説明から明らかな通り、この発明によれば、環境
溶液を交換したときの溶液の浸透効果をあげるに充分な
大きさの孔径の貫通孔を細繊維状若しくは簿膜状のメカ
ノケミカル材料にほぼ均一に分布させて形成することが
でき、従って、応答速度(初期、及び終期)を人工筋肉
として適用し得るに充分に速くすることができ、かつ人
工筋肉の使用目的によってすなわち荷重下の収縮性を目
的とするか荷重をかけない状態での収縮性を目的とする
かによって孔径の大きさと孔壁部分の力学的特性をコン
トロールして必要な伸縮性と強度を保有させることがで
きる人工筋肉用多孔性高分子材料の製造方法を得ること
ができる。
[Effects of the Invention] As is clear from the above description, according to the present invention, the through-holes are formed in the form of fine fibers or membranes with a pore size sufficient to increase the permeation effect of the solution when exchanging the environmental solution. Therefore, the response speed (initial and final stages) can be made fast enough to be applied as an artificial muscle, and depending on the intended use of the artificial muscle. In other words, the size of the pore diameter and the mechanical properties of the pore wall are controlled to maintain the necessary elasticity and strength, depending on whether the objective is shrinkability under load or without load. A method for producing a porous polymer material for artificial muscle can be obtained.

時間と温度の関係を示す図、及び第9図(a)。A diagram showing the relationship between time and temperature, and FIG. 9(a).

(b)、(c)は各々試料A、B、Cの組織拡大図であ
る。
(b) and (c) are enlarged views of the tissues of samples A, B, and C, respectively.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係わる人工筋肉用多孔性
高分子材料の製造方法を示す説明図、第2図は1Kg/
aiの荷重をかけた状態で人工筋肉用多孔性高分子材料
の試料をアセトンに浸してからの時間と収縮率の関係を
示すグラフ、第3図は試料にかけた荷重と平衡収縮率の
関係を示すグラフ、第4図は試料に加えた応力と歪の関
係を示すグラフ、第5図は試料の収縮過程の時間変化を
示すグラフ、第6図は試料にかけた荷重と出力密度の関
係を拘束方向と垂直方向とについて示す図、第7図は荷
重と収縮率の関係を凍結・解凍過程の回数別に示すグラ
フ、第8図はA、B、Cの凍結時の第2図 時間(朴) 弔 5 図 時間 (SEC) 第3図 荷 i(kgイ/crn2 ) 第 図 第6図 渦 重 ¥掌側 咀・畷(?) 3、補正をする者 事件との関係  特許出願人 住所   東京都千代田区霞が関1丁目3番1号(11
4)氏名   工業技術院長   杉 浦  賢5、補
正命令の日付 平成2年9月10日(平成2年9月25日発送)7、補
正の内容
FIG. 1 is an explanatory diagram showing a method for manufacturing a porous polymer material for artificial muscles according to an embodiment of the present invention, and FIG.
A graph showing the relationship between the time and contraction rate after a sample of a porous polymer material for artificial muscle is immersed in acetone under a load of ai. Figure 3 shows the relationship between the load applied to the sample and the equilibrium contraction rate. Figure 4 is a graph showing the relationship between stress and strain applied to the sample, Figure 5 is a graph showing time changes in the shrinkage process of the sample, and Figure 6 is a graph showing the relationship between the load applied to the sample and power density. Figure 7 is a graph showing the relationship between load and shrinkage rate according to the number of times of freezing and thawing process. Figure 8 is a graph showing the relationship between the direction and the vertical direction. Figure 8 is the graph showing the time when A, B, and C are frozen. Funeral 5 Fig. Time (SEC) Fig. 3 Load i (kg i/crn2) Fig. Fig. 6 Eddy heavy ¥ Palm side Tsui/Nawate (?) 3. Relationship with the amended person case Patent applicant address Tokyo 1-3-1 Kasumigaseki, Chiyoda-ku (11
4) Name Ken Sugiura, Director of the Agency of Industrial Science and Technology 5 Date of amendment order September 10, 1990 (shipped on September 25, 1990) 7 Contents of amendment

Claims (2)

【特許請求の範囲】[Claims] (1)ポリビニルアルコールと高分子電解質との混合水
溶液を、凍結させてから常温で解凍する凍結・解凍過程
を2回以上繰返す人工筋肉用多孔性高分子材料の製造方
法において、前記凍結する直前の被凍結物の温度降下速
度を前記人工筋肉用多孔性高分子材料に形成されるべき
マクロ孔の孔径の大小に応じて前記孔径が大きいほど遅
くなるように調整することを特徴とする人工筋肉用多孔
性高分子材料の製造方法
(1) In a method for producing a porous polymeric material for artificial muscles in which a freezing/thawing process of freezing a mixed aqueous solution of polyvinyl alcohol and a polymer electrolyte and then thawing it at room temperature is repeated two or more times, immediately before freezing, For artificial muscles, the rate of temperature drop of the object to be frozen is adjusted according to the size of the macropores to be formed in the porous polymeric material for artificial muscles, so that the larger the pore size is, the slower the temperature decrease rate is. Method for manufacturing porous polymeric material
(2)前記凍結する直前の被凍結物の前記温度降下速度
は−0.01℃/秒以下−100℃/秒以上であること
を特徴とする特許請求の範囲第1項記載の人工筋肉用多
孔性高分子材料の製造方法(3)第1回目の前記凍結・
解凍過程の前に前記混合水溶液を密閉状態で常温に保つ
養生過程を含むことを特徴とする特許請求の範囲第1項
記載の人工筋肉用多孔性高分子材料の製造方法
(2) The artificial muscle according to claim 1, wherein the temperature drop rate of the object to be frozen immediately before freezing is -0.01°C/sec or less -100°C/sec or more Manufacturing method of porous polymeric material (3) First freezing and
The method for producing a porous polymeric material for artificial muscle according to claim 1, which includes a curing step of keeping the mixed aqueous solution at room temperature in a sealed state before the thawing step.
JP2163235A 1990-06-21 1990-06-21 Method for producing porous polymeric material for artificial muscle Expired - Lifetime JPH0621179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2163235A JPH0621179B2 (en) 1990-06-21 1990-06-21 Method for producing porous polymeric material for artificial muscle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2163235A JPH0621179B2 (en) 1990-06-21 1990-06-21 Method for producing porous polymeric material for artificial muscle

Publications (2)

Publication Number Publication Date
JPH0453843A true JPH0453843A (en) 1992-02-21
JPH0621179B2 JPH0621179B2 (en) 1994-03-23

Family

ID=15769905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2163235A Expired - Lifetime JPH0621179B2 (en) 1990-06-21 1990-06-21 Method for producing porous polymeric material for artificial muscle

Country Status (1)

Country Link
JP (1) JPH0621179B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552115A (en) * 1986-02-06 1996-09-03 Steris Corporation Microbial decontamination system with components porous to anti-microbial fluids
WO2000066191A1 (en) * 1999-05-04 2000-11-09 Porex Surgical, Inc. Porous polyvinyl alcohol freeze-thaw hydrogel
WO2001057121A1 (en) * 2000-02-03 2001-08-09 Menicon Co., Ltd. Spongy molding comprising water-soluble polymeric material and method of controlling pores thereof
US9907663B2 (en) 2015-03-31 2018-03-06 Cartiva, Inc. Hydrogel implants with porous materials and methods
US10350072B2 (en) 2012-05-24 2019-07-16 Cartiva, Inc. Tooling for creating tapered opening in tissue and related methods
US10376368B2 (en) 2011-05-26 2019-08-13 Cartiva, Inc. Devices and methods for creating wedge-shaped recesses
US10758374B2 (en) 2015-03-31 2020-09-01 Cartiva, Inc. Carpometacarpal (CMC) implants and methods

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552115A (en) * 1986-02-06 1996-09-03 Steris Corporation Microbial decontamination system with components porous to anti-microbial fluids
US5833935A (en) * 1994-01-28 1998-11-10 Steris Corporation Microbial decontamination system with components porous to anti-microbial fluids
WO2000066191A1 (en) * 1999-05-04 2000-11-09 Porex Surgical, Inc. Porous polyvinyl alcohol freeze-thaw hydrogel
US6268405B1 (en) 1999-05-04 2001-07-31 Porex Surgical, Inc. Hydrogels and methods of making and using same
WO2001057121A1 (en) * 2000-02-03 2001-08-09 Menicon Co., Ltd. Spongy molding comprising water-soluble polymeric material and method of controlling pores thereof
US11278411B2 (en) 2011-05-26 2022-03-22 Cartiva, Inc. Devices and methods for creating wedge-shaped recesses
US10376368B2 (en) 2011-05-26 2019-08-13 Cartiva, Inc. Devices and methods for creating wedge-shaped recesses
US11944545B2 (en) 2011-05-26 2024-04-02 Cartiva, Inc. Implant introducer
US10350072B2 (en) 2012-05-24 2019-07-16 Cartiva, Inc. Tooling for creating tapered opening in tissue and related methods
US10758374B2 (en) 2015-03-31 2020-09-01 Cartiva, Inc. Carpometacarpal (CMC) implants and methods
US10973644B2 (en) 2015-03-31 2021-04-13 Cartiva, Inc. Hydrogel implants with porous materials and methods
US9907663B2 (en) 2015-03-31 2018-03-06 Cartiva, Inc. Hydrogel implants with porous materials and methods
US11717411B2 (en) 2015-03-31 2023-08-08 Cartiva, Inc. Hydrogel implants with porous materials and methods
US11839552B2 (en) 2015-03-31 2023-12-12 Cartiva, Inc. Carpometacarpal (CMC) implants and methods
US10952858B2 (en) 2015-04-14 2021-03-23 Cartiva, Inc. Tooling for creating tapered opening in tissue and related methods
US11020231B2 (en) 2015-04-14 2021-06-01 Cartiva, Inc. Tooling for creating tapered opening in tissue and related methods
US11701231B2 (en) 2015-04-14 2023-07-18 Cartiva, Inc. Tooling for creating tapered opening in tissue and related methods

Also Published As

Publication number Publication date
JPH0621179B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
Zhang et al. Anisotropic tough poly (vinyl alcohol) hydrogels
JP5190323B2 (en) Molding method of organic / inorganic composite hydrogel
KR101537565B1 (en) Claylinked polymer gels in new physical forms, methods for their formation and uses thereof
US6099791A (en) Methods of manufacture of multiaxially oriented fluoropolymer films
US5202025A (en) Porous membrane and method for preparing the same
JPS63273651A (en) Production of fine porous membrane of polyolefin having ultra-high molecular weight
JPH04506638A (en) polymer material
JPH0453843A (en) Production of porous high-molecular material for use in artificial muscle
KR20160079629A (en) Polymer gel, and method of preparing the same
CA2642271A1 (en) Foam material product
KR102110885B1 (en) Temperature Responsive Soft Actuator and Method for Manufacturing the Same
US11660431B2 (en) Combined osmotic and hydrogel cervical dilators and method of making same
US7151120B2 (en) Degradable porous materials with high surface areas
US4753761A (en) Method for production of expansible macromolecular material and porous macromolecular membrane
Duan et al. Tendon-inspired anti-freezing tough gels
Dong et al. A high-performance GelMA–GelMA homogeneous double-network hydrogel assisted by 3D printing
JP5103630B2 (en) Method for producing gel having liquid crystal structure and gel having liquid crystal structure produced by this method
WO2021198448A1 (en) Lead-free three-component piezoelectric polymer composite
JP2010149024A (en) Method of manufacturing microcapsule, microcapsule and optical sheet and skin material
KR101846053B1 (en) Hydrophilic silicone composite and method of manufacturing the same
KR102442292B1 (en) Hydrogel comprising coating layer and manufacturing method thereof
JP2626697B2 (en) Preparation of thermosensitive gel
JPH0398632A (en) Separation membrane and separation method
KR20210131199A (en) Method for reconstructing hydrogel
JPH0696645B2 (en) Method for producing reversible shrinkable polymer gel film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term