JPH0453140A - Processing of silicon single crystalline wafer - Google Patents

Processing of silicon single crystalline wafer

Info

Publication number
JPH0453140A
JPH0453140A JP15930290A JP15930290A JPH0453140A JP H0453140 A JPH0453140 A JP H0453140A JP 15930290 A JP15930290 A JP 15930290A JP 15930290 A JP15930290 A JP 15930290A JP H0453140 A JPH0453140 A JP H0453140A
Authority
JP
Japan
Prior art keywords
wafer
silicon single
processing
region
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15930290A
Other languages
Japanese (ja)
Inventor
Isao Yoshioka
功 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15930290A priority Critical patent/JPH0453140A/en
Publication of JPH0453140A publication Critical patent/JPH0453140A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • H01L21/3225Thermally inducing defects using oxygen present in the silicon body for intrinsic gettering

Abstract

PURPOSE:To stably control the depth of defect-free region which will become an element forming region by executing first the intrinsic gettering(IG) process and then executing extrinsic gettering(EG) process for a silicon single crystalline wafer formed by the Czochralski method. CONSTITUTION:A defect-free region 2 is formed in an element forming region of the surface 1a of a silicon single crystalline wafer and a defective region 3 of oxygen precipitated substance in a wafer 1 by the IG processing to the silicon single crystalline wafer 1. Practically, oxygen in an element forming region provided between the surface 1a of wafer 1 and a region near the surface 1a is removed through the external diffusion by executing high temperature heat treatment at 1100 deg.C for three hours for the silicon single crystalline wafer 1 in order to form integrating oxygen only within the wafer 1. Next, the wafer 1 is subjected to low temperature heat treatment at 650 deg.C to form oxygen precipitated core within the wafer 1. Moreover, the oxygen precipitated core in the wafer 1 is grown to oxygen precipitated substance in order to form a defective region 3 through the high temperature heat treatment at 1000 deg.C. A silicon single crystalline wafer 1 can be obtained by forming a defective region 4 at the rear surface 1b of the wafer 1 with the EG process to the wafer 1 by the polysilicon coating method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、シリコン単結晶ウェハを1G処理とEC処理
を併用するゲッタリング処理に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to gettering processing for silicon single crystal wafers using both 1G processing and EC processing.

半導体装置の製造工程においては、チョクラルスキー法
(引き上げ法とも言う)により形成されたシリコン単結
晶インゴットをスライスして形成されたシリコン単結晶
ウェハが各プロセスの際侵入してくるFe、Cu、Ni
等の重金属等の不純物に汚染された場合、この不純物に
よる悪影響を防止するために、例えば素子形成領域以外
のウェハ内に不純物を固定させるゲッタリング処理が用
いられている。このゲッタリング処理としては、ウェハ
裏面に例えば燐を拡散させる。あるいは、機械用ダメー
ジによるストレスを与えてウェハ裏面に不純物をゲッタ
リングするいわゆるEC処理と、ウェハ内部に酸素析出
物を形成してウェハ内部に不純物をゲッタリングするい
わゆるIC処理とが挙げられる。
In the manufacturing process of semiconductor devices, a silicon single crystal wafer, which is formed by slicing a silicon single crystal ingot formed by the Czochralski method (also called the pulling method), is exposed to Fe, Cu, etc. that invade during each process. Ni
When contaminated with impurities such as heavy metals such as, for example, gettering processing is used to fix the impurities within the wafer in areas other than the element formation region in order to prevent the adverse effects of the impurities. As this gettering process, for example, phosphorus is diffused onto the back surface of the wafer. Alternatively, there are a so-called EC process in which impurities are gettered on the backside of the wafer by applying stress due to mechanical damage, and a so-called IC process in which impurities are gettered inside the wafer by forming oxygen precipitates inside the wafer.

〔従来の技術〕[Conventional technology]

従来、ゲッタリング処理としては、処理されるウェハの
縦断面を示す第2図(a)に示すように、シリコン単結
晶ウェハ31裏面31.bにストレスを与えてウェハ3
1裏面31bに欠陥領域32を形成し、この欠陥領域3
2に不純物をゲッタリングするEC処理がある。なお、
第2図(a)において、31aはシリコン単結晶ウェハ
31の表面である。このEC処理にはSi等の粒子をウ
ェハ裏面に衝突させストレスを与えて欠陥領域を形成し
不純物をゲッタリングするサンドブラスト法、ウェハ裏
面にポリシリコン膜を堆積しシリコン単結晶ウェハとポ
リシリコン膜の界面にストレスを与えて不純物をゲッタ
リングするポリシリコンコート法、ウェハ裏面にPSG
等のP含有の膜を堆積しPを単結晶ウェハ中に拡散させ
、Pにより不純物をゲッタリングする燐拡散法、ウェハ
裏面にレーザ光を照射してStを溶融させ再び凝固させ
ることによりストし・スを与えて欠陥領域32を形成し
不純物をゲッタリングするレーザダメージ法等が挙げら
れる。
Conventionally, as for gettering processing, as shown in FIG. Wafer 3 with stress applied to b
1, a defective region 32 is formed on the back surface 31b, and this defective region 3
2 is an EC process for gettering impurities. In addition,
In FIG. 2(a), 31a is the surface of the silicon single crystal wafer 31. In FIG. This EC process involves a sandblasting method in which particles such as Si are collided with the backside of the wafer to apply stress to form a defective area and getter the impurities, and a polysilicon film is deposited on the backside of the wafer to form a bond between the silicon single crystal wafer and the polysilicon film. Polysilicon coating method that applies stress to the interface to getter impurities, PSG on the back side of the wafer
The phosphorus diffusion method involves depositing a P-containing film such as P-containing film, diffusing P into a single crystal wafer, and gettering impurities with P. - A laser damage method in which a defective region 32 is formed by applying a gas and gettering impurities can be used.

また、その他の従来のゲッタリング処理としては、第2
図(b)に示すように、高温熱処理・低温熱処理・高温
熱処理の三段熱処理によりシリコン単結晶ウェハ31表
面31aから表面31近傍の素子形成領域に無欠陥領域
33(DZ(デヌデットゾーン)M域とも言う)を形成
するとともに(裏面31bから裏面31b近傍にも形成
される)、ウェハ31内部に酸素析出物による欠陥領域
34を形成し、この欠陥領域34に不純物をゲッタリン
グするIC処理がある。ここでの素子形成領域となる無
欠陥領域33の深さXは無欠陥領域33に形成される半
導体素子の性能を左右し、例えば無欠陥領域33の深さ
が浅くなり過ぎて欠陥領域34が素子形成領域まで及ん
でいると、接合電流リークの原因となる。また、無欠陥
領域33の深さが深過ぎると、ウェハ31表面31aに
汚染した不純物のゲッタリング能力が低下する。欠陥は
、ウェハ31中に固溶されている酸素をシリコン酸化物
として析出させることにより形成される。従って、無欠
陥領域33の深さを制御する必要があり、一般に、5〜
1100u程度に制御されている。
In addition, as other conventional gettering processing,
As shown in Figure (b), a defect-free region 33 (also known as DZ (denuded zone) M region) is formed from the surface 31a of the silicon single crystal wafer 31 to the element formation region near the surface 31 by three-stage heat treatment of high temperature heat treatment, low temperature heat treatment, and high temperature heat treatment. There is an IC process in which a defect region 34 due to oxygen precipitates is formed inside the wafer 31 and impurities are gettered into the defect region 34. The depth X of the defect-free region 33, which is the device formation region, influences the performance of the semiconductor element formed in the defect-free region 33. For example, if the depth of the defect-free region 33 becomes too shallow, the defect region 34 becomes If it extends to the element formation region, it will cause junction current leakage. Moreover, if the depth of the defect-free region 33 is too deep, the gettering ability of impurities that have contaminated the surface 31a of the wafer 31 will be reduced. The defects are formed by precipitating oxygen dissolved in solid solution in the wafer 31 as silicon oxide. Therefore, it is necessary to control the depth of the defect-free region 33, and generally, the depth of the defect-free region 33 is
It is controlled to about 1100u.

上記したEC処理のみ、またはIC処理のみによる場合
よりも更に良好なゲッタリング効果を得るために従来で
はEC処理とIC処理を併用していた。具体的にはIC
処理が高温熱処理を必要とするため、IC処理中の汚染
をゲッタリングするためにEC処理を行ってからIC処
理を行っていた。
Conventionally, EC processing and IC processing have been used in combination in order to obtain a gettering effect that is better than that obtained by using only EC processing or only IC processing. Specifically, IC
Since the processing requires high-temperature heat treatment, EC processing is performed before IC processing in order to getter any contamination during IC processing.

(発明が解決しようとする課B] しかしながら、上記したシリコン単結晶ウェハ31裏面
31bにEC処理を行った後、更にシリコン単結晶ウェ
ハ31にIC,処理を行うと、シリコン単結晶ウェハ3
1表面31a側の無欠陥領域33の深さを制御するのが
非常に困難であるという問題があった。これは、シリコ
ン単結晶ウェハ31裏面31bにEC,処理を行うと、
裏面31b近傍のストレスが大きくなり、これによりそ
の後のIC処理時に生じる酸素析出が裏面31b近傍に
集中するため、無欠陥領域33の深さが極端に深くなり
無欠陥領域33の深さ制御が困難になってしまうものと
考えられる。
(Problem B to be Solved by the Invention) However, if the silicon single crystal wafer 31 is further subjected to IC processing after the EC process is performed on the back surface 31b of the silicon single crystal wafer 31 described above, the silicon single crystal wafer 31
There was a problem in that it was very difficult to control the depth of the defect-free region 33 on the side of the first surface 31a. This is achieved by performing EC and processing on the back surface 31b of the silicon single crystal wafer 31.
The stress near the back surface 31b increases, and as a result, oxygen precipitation generated during subsequent IC processing concentrates near the back surface 31b, so the depth of the defect-free region 33 becomes extremely deep, making it difficult to control the depth of the defect-free region 33. It is thought that it will become.

具体的には、第3図(a)、(b)に示すように、シリ
コン単結晶ウェハ31裏面31b側に近づく程欠陥密度
が高くなり、無欠陥領域33の深さが極端に深くなって
いるのが判る。
Specifically, as shown in FIGS. 3(a) and 3(b), the closer to the back surface 31b of the silicon single crystal wafer 31, the higher the defect density becomes, and the depth of the defect-free region 33 becomes extremely deep. I can see that there is.

このように、半導体素子が形成されるシリコン単結晶ウ
ェハ31裏面31b側の無欠陥領域33が非常に深(な
る他、ゲッタリング効果がEC処理のみの場合よりも向
上させることができるが、EC処理とIC処理を加えた
だけの効果を期待できないという問題があった。
In this way, the defect-free region 33 on the back surface 31b side of the silicon single crystal wafer 31 on which semiconductor elements are formed is very deep (in addition, the gettering effect can be improved compared to the case of only EC processing, There was a problem in that the effect of adding processing and IC processing could not be expected.

そこで本発明は、IC処理とEC処理を併用するゲッタ
リング処理において、素子形成領域となる無欠陥領域の
深さ制御を安定に行うことができ、かつEC処理とIC
処理を加えただけの期待したゲッタリング効果を得るこ
とができるシリコン単結晶ウェハの処理方法を提供する
ことを目的としている。
Therefore, the present invention is capable of stably controlling the depth of a defect-free region that becomes an element formation region in a gettering process that uses both IC processing and EC processing, and
The object of the present invention is to provide a method for processing silicon single crystal wafers that can obtain the expected gettering effect by simply adding processing.

〔課題を解決するための手段〕 本発明によるシリコン単結晶ウェハの処理方法は上記目
的達成のため、チョクラルスキー法により形成されたシ
リコン単結晶ウェハを先ずイントリンシックゲッタリン
グ処理し、次いでエクストリンシックゲッタリング処理
するものである。
[Means for Solving the Problems] In order to achieve the above object, the method for processing a silicon single crystal wafer according to the present invention first performs an intrinsic gettering process on a silicon single crystal wafer formed by the Czochralski method, and then performs an extrinsic gettering process. This is for gettering processing.

本発明に係るイントリンシックゲッタリング処理には例
えば高温・低温・高温の三段熱処理によって行う場合が
挙げられる。また、エクストリンシックゲッタリング処
理にはサンドブラスト法、ポリシリコンコート法、燐拡
散法、レーザダメージ法等が挙げられ、この中でパーテ
ィクルの発生を少なくでき、かつ平坦度を良好にできる
好ましいエクストリンシックゲッタリング処理はポリシ
リコンコート法である。
The intrinsic gettering treatment according to the present invention includes, for example, a case where it is performed by three-stage heat treatment of high temperature, low temperature, and high temperature. In addition, extrinsic gettering treatments include sandblasting, polysilicon coating, phosphorus diffusion, laser damage, etc. Among these, extrinsic gettering is preferred because it can reduce particle generation and improve flatness. The ring treatment is a polysilicon coating method.

〔作用] 本発明では、予めシリコン単結晶ウェハをIC処理して
酸素析出物による安定した欠陥領域3を形成するととも
に、ウェハ表面の素子形成領域に適宜所望の深さの無欠
陥領域を形成している。この時、ウェハ内にはほとんど
酸素原子が存在しない(酸素原子はウェハ中に固溶限以
下になっている)。このため、この後EC処理によりウ
ェハ裏面にストレスを加えても特にウェハ表面側の素子
形成領域となる無欠陥領域の深さをほとんど変化させる
ことなくウェハ裏面に欠陥領域を形成することができる
[Function] In the present invention, a silicon single crystal wafer is subjected to IC processing in advance to form a stable defect region 3 due to oxygen precipitates, and at the same time, a defect-free region with a desired depth is formed in the element formation region on the wafer surface. ing. At this time, there are almost no oxygen atoms in the wafer (oxygen atoms are below the solid solubility limit in the wafer). Therefore, even if stress is applied to the back surface of the wafer through subsequent EC processing, a defective region can be formed on the back surface of the wafer without substantially changing the depth of the defect-free region, which is the element formation region on the front side of the wafer.

〔実施例〕〔Example〕

以下、本発明を図面に基づいて説明する。 Hereinafter, the present invention will be explained based on the drawings.

第1図(a)〜(C)はシリコン単結晶ウェハの処理方
法の一実施例を説明する図である。第1図において、1
はシリコン単結晶ウェハ、2はIC処理による無欠陥領
域、3はIC処理による欠陥領域、4はEC処理による
欠陥領域である。
FIGS. 1A to 1C are diagrams illustrating an embodiment of a method for processing a silicon single crystal wafer. In Figure 1, 1
2 is a silicon single crystal wafer, 2 is a defect-free area formed by IC processing, 3 is a defective area formed by IC processing, and 4 is a defective area formed by EC processing.

次に、そのゲッタリング処理方法について説明する。Next, the gettering processing method will be explained.

まず、第1図(a)に示すように、予めチョクラルスキ
ー法により形成された適当な酸素濃度(1,0〜2.0
X10” atoms/cT1程度)の酸素原子を含有
するシリコン単結晶インゴットをスライスして例えば膜
厚が625μm1直径が150mmφ、p型(100)
のシリコン単結晶ウェハ1を形成する。
First, as shown in FIG. 1(a), an appropriate oxygen concentration (1.0 to 2.0
A silicon single crystal ingot containing oxygen atoms of approximately
A silicon single crystal wafer 1 is formed.

ここでのシリコン単結晶ウェハlは成長させたままのプ
ロセス熱処理を加えていない状態のas−gr。
The silicon single crystal wafer l here is as-gr in a grown state without any process heat treatment.

wn結晶であり、酸素原子が結晶内に均一に含有されて
いる。
It is a wn crystal, and oxygen atoms are uniformly contained within the crystal.

次に、第1図(b)に示すように、シリコン単結晶ウェ
ハ1をIC処理してシリコン単結晶ウェハ1表面1aの
素子形成領域に無欠陥領域2を形成するとともに(この
時、裏面1bにも形成される)、ウェハ1内部に酸素析
出物による欠陥領域3を形成する。
Next, as shown in FIG. 1(b), the silicon single crystal wafer 1 is subjected to IC processing to form a defect-free region 2 in the element formation region on the front surface 1a of the silicon single crystal wafer 1 (at this time, the back surface 1b ), a defective region 3 due to oxygen precipitates is formed inside the wafer 1 .

ここでのIC処理は具体的には、まずシリコン単結晶ウ
ェハ1に1100°C13時間の高温熱処理を施してウ
ェハ1表面1aから表面1a近傍の素子形成領域の酸素
を外方拡散して抜き、ウェハ1内部のみに格子間酸素を
形成する。次いで、高温熱処理を施したウェハ1を65
0″Cの低温で保持してウェハ1を低温熱処理し、ウェ
ハl内部に酸素析出核を形成する。そして、低温熱処理
されたウェハ1に更に1000°Cの高温熱処理を施し
てウェハ1内部に酸素析出核を酸素析出物に成長させ欠
陥領域3を形成する。
Specifically, in the IC processing here, first, the silicon single crystal wafer 1 is subjected to high-temperature heat treatment at 1100° C. for 13 hours, and oxygen in the element formation region near the surface 1a of the wafer 1 is diffused out and removed from the surface 1a of the wafer 1. Interstitial oxygen is formed only inside the wafer 1. Next, the wafer 1 subjected to high-temperature heat treatment is heated to 65
The wafer 1 is held at a low temperature of 0''C and subjected to low-temperature heat treatment to form oxygen precipitation nuclei inside the wafer 1.Then, the wafer 1 that has been subjected to the low-temperature heat treatment is further subjected to a high-temperature heat treatment of 1000°C to form an oxygen precipitation nucleus inside the wafer 1. Oxygen precipitate nuclei are grown into oxygen precipitates to form defect regions 3.

そして、IC処理されたシリコン単結晶ウェハ1をポリ
シリコンコート法によるEC処理してウェハ11L面l
bに欠陥領域4を形成することにより、第1図(C)に
示すようなシリコン単結晶ウェハ1を得ることができる
。なお、ここでのポリシリコンコート法は例えば成長温
度が625°CのCVD法によりウェハ1裏面31bに
ポリシリコン膜をlam成長させることにより行ってい
る。
Then, the IC-treated silicon single crystal wafer 1 is subjected to EC treatment using a polysilicon coating method, and the wafer 11L surface l is
By forming a defective region 4 in b, a silicon single crystal wafer 1 as shown in FIG. 1(C) can be obtained. Note that the polysilicon coating method here is performed by, for example, growing a polysilicon film on the back surface 31b of the wafer 1 by a CVD method at a growth temperature of 625°C.

すなわち、本実施例では、チョクラルスキー法により形
成されたシリコン単結晶ウェハ1をまずIC処理してウ
ェハ1表面1aの素子形成領域に無欠陥領域2を形成す
るとともに、欠陥領域3を形成した後、EC処理してウ
ェハ1裏面1bに欠陥領域4を形成するようにしている
。このように、予めシリコン単結晶ウェハ1をIC処理
して酸素析出物による安定した欠陥領域3を形成すると
ともに、ウェハ1表面1aの素子形成領域に適宜所望の
深さの無欠陥領域2を形成している。この時、ウェハ1
内にはほとんど酸素原子が存在しない(酸素原子はウェ
ハ1中に固溶限以下になっている)。このため、この後
EC処理によりウェハ1裏面1bにストレスを加えても
特にウェハ1表面la側の無欠陥領域2の深さをほとん
ど変化させることなくウェハ1裏面1bに欠陥領域4を
形成することができる。
That is, in this example, a silicon single crystal wafer 1 formed by the Czochralski method was first subjected to IC processing to form a defect-free region 2 in the element formation region on the surface 1a of the wafer 1, and at the same time, a defect region 3 was formed. After that, an EC process is performed to form a defective region 4 on the back surface 1b of the wafer 1. In this way, the silicon single crystal wafer 1 is subjected to IC processing in advance to form a stable defect region 3 due to oxygen precipitates, and at the same time, a defect-free region 2 of a desired depth is formed in the element formation region on the surface 1a of the wafer 1. are doing. At this time, wafer 1
Almost no oxygen atoms exist within the wafer 1 (oxygen atoms are below the solid solubility limit in the wafer 1). Therefore, even if stress is applied to the back surface 1b of the wafer 1 through EC processing, the defect-free region 4 can be formed on the back surface 1b of the wafer 1 without changing the depth of the defect-free region 2 on the front surface la side of the wafer 1. I can do it.

したがって、素子形成領域となる無欠陥領域2の深さ制
御を安定に行うことができ、かつEC処理とIC処理を
加えただけの期待したゲッタリング効果を得ることがで
きる。
Therefore, it is possible to stably control the depth of the defect-free region 2, which is the element forming region, and to obtain the expected gettering effect obtained by adding only the EC processing and the IC processing.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、IC処理とEC処理を併用するゲッタ
リング処理において、素子形成領域となる無欠陥領域の
深さ制御を安定に行うことができ、かつEC処理とIC
処理を加えただけの期待したゲッタリング効果を得るこ
とができるという効果がある。
According to the present invention, in gettering processing that uses both IC processing and EC processing, it is possible to stably control the depth of a defect-free region that becomes an element formation region, and
The effect is that the expected gettering effect can be obtained by simply adding processing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るシリコン単結晶ウェハの処理方法
の一実施例のゲッタリング処理方法を説明する図、 第2図は従来例のゲッタリング処理方法を説明する図、 第3図は従来例の課題を説明する図である。 1・・・・・・シリコン単結晶ウェハ、1a・・・・・
・表面、 1b・・・・・・裏面、 2・・・・・・無欠陥領域、 3.4・・・・・・欠陥領域。 ノー  ノ N、− \ −/ 一実施例のゲッタリング処理方法を説明する図第1図 従来例のゲッタリング処理方法を説明する図第 図
FIG. 1 is a diagram illustrating a gettering method according to an embodiment of the silicon single crystal wafer processing method according to the present invention, FIG. 2 is a diagram illustrating a conventional gettering method, and FIG. 3 is a diagram illustrating a conventional gettering method. It is a figure explaining an example problem. 1...Silicon single crystal wafer, 1a...
・Front surface, 1b... Back surface, 2... Defect-free area, 3.4... Defect area. No No N, - \ -/ Figure 1 for explaining the gettering processing method of an embodiment Figure 1 Diagram explaining the gettering processing method for the conventional example

Claims (3)

【特許請求の範囲】[Claims] (1)チョクラルスキー法により形成されたシリコン単
結晶ウェハを先ずイントリンシックゲッタリング処理し
、次いでエクストリンシックゲッタリング処理すること
を特徴とするシリコン単結晶ウェハの処理方法。
(1) A method for processing a silicon single crystal wafer, characterized in that a silicon single crystal wafer formed by the Czochralski method is first subjected to an intrinsic gettering treatment and then subjected to an extrinsic gettering treatment.
(2)前記イントリンシックゲッタリング処理が高温・
低温・高温の三段熱処理により行われることを特徴とす
る請求項1記載のシリコン単結晶ウェハの処理方法。
(2) The above-mentioned intrinsic gettering treatment is performed at high temperature.
2. The method of processing a silicon single crystal wafer according to claim 1, wherein the processing is performed by three-stage heat treatment at low and high temperatures.
(3)前記エクストリンシックゲッタリング処理がポリ
シリコンコート法により行われることを特徴とする請求
項2記載のシリコン単結晶ウェハの処理方法。
(3) The method of processing a silicon single crystal wafer according to claim 2, wherein the extrinsic gettering treatment is performed by a polysilicon coating method.
JP15930290A 1990-06-18 1990-06-18 Processing of silicon single crystalline wafer Pending JPH0453140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15930290A JPH0453140A (en) 1990-06-18 1990-06-18 Processing of silicon single crystalline wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15930290A JPH0453140A (en) 1990-06-18 1990-06-18 Processing of silicon single crystalline wafer

Publications (1)

Publication Number Publication Date
JPH0453140A true JPH0453140A (en) 1992-02-20

Family

ID=15690834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15930290A Pending JPH0453140A (en) 1990-06-18 1990-06-18 Processing of silicon single crystalline wafer

Country Status (1)

Country Link
JP (1) JPH0453140A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0635879A2 (en) * 1993-07-22 1995-01-25 Kabushiki Kaisha Toshiba Semiconductor silicon wafer and process for producing it
US5970366A (en) * 1996-07-16 1999-10-19 Nec Corporation Method of removing metallic contaminants from simox substrate
JP2006165462A (en) * 2004-12-10 2006-06-22 Canon Inc Semiconductor substrate for solid imaging device and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0635879A2 (en) * 1993-07-22 1995-01-25 Kabushiki Kaisha Toshiba Semiconductor silicon wafer and process for producing it
EP0635879A3 (en) * 1993-07-22 1996-10-23 Toshiba Kk Semiconductor silicon wafer and process for producing it.
US5738942A (en) * 1993-07-22 1998-04-14 Kabushiki Kaisha Toshiba Semiconductor silicon wafer and process for producing it
US5970366A (en) * 1996-07-16 1999-10-19 Nec Corporation Method of removing metallic contaminants from simox substrate
JP2006165462A (en) * 2004-12-10 2006-06-22 Canon Inc Semiconductor substrate for solid imaging device and its manufacturing method
JP4667030B2 (en) * 2004-12-10 2011-04-06 キヤノン株式会社 Semiconductor substrate for solid-state imaging device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5229305A (en) Method for making intrinsic gettering sites in bonded substrates
US6478883B1 (en) Silicon single crystal wafer, epitaxial silicon wafer, and methods for producing them
JP3381816B2 (en) Semiconductor substrate manufacturing method
EP0964435A1 (en) Pre-epitaxial heat treatment method for a silicon epitaxial wafer
CN104347395A (en) Silicon wafer and method for manufacturing the same
JPH02143532A (en) Method of removing impurity in semiconductor wafer
JP2010287885A (en) Silicon wafer and method of manufacturing the same
JP3080501B2 (en) Silicon wafer manufacturing method
JP4465141B2 (en) Silicon epitaxial wafer and manufacturing method thereof
WO2023098675A1 (en) Method for eliminating gap-type defect b-swirl, and silicon wafer and electronic device
JPH0453140A (en) Processing of silicon single crystalline wafer
US5574307A (en) Semiconductor device and method of producing the same
JPH07249666A (en) Iron concentration measurement method of silicon wafer
JPH11204534A (en) Manufacture of silicon epitaxial wafer
JP2003188176A (en) Silicon wafer and its producing method
EP1202334A1 (en) Method of producing silicon epitaxial wafers
JPH06216137A (en) Semiconductor device and manufacture thereof
CN111279461B (en) Semiconductor wafer composed of monocrystalline silicon
JPS6151930A (en) Manufacture of semiconductor device
KR101089994B1 (en) Silicon Wafer Having Proximity Gettering Ability at Low-Temperature Processes and Manufacturing Method Therefor
JP4647732B2 (en) Manufacturing method of P / P-epitaxial wafer
JPS63164440A (en) Manufacture of semiconductor device
JPS63142822A (en) Manufacture of semiconductor device
JP2010040638A (en) Method of manufacturing soi substrate
JPS59119842A (en) Manufacture of semiconductor device