JPH0452624B2 - - Google Patents

Info

Publication number
JPH0452624B2
JPH0452624B2 JP59159783A JP15978384A JPH0452624B2 JP H0452624 B2 JPH0452624 B2 JP H0452624B2 JP 59159783 A JP59159783 A JP 59159783A JP 15978384 A JP15978384 A JP 15978384A JP H0452624 B2 JPH0452624 B2 JP H0452624B2
Authority
JP
Japan
Prior art keywords
temperature
cooled
water
cooling
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59159783A
Other languages
Japanese (ja)
Other versions
JPS6138381A (en
Inventor
Minoru Okano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP15978384A priority Critical patent/JPS6138381A/en
Publication of JPS6138381A publication Critical patent/JPS6138381A/en
Publication of JPH0452624B2 publication Critical patent/JPH0452624B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 本発明は被冷却体に液体冷媒を循環供給する冷
却装置に関し、特に、液体冷媒の温度を制御しつ
つ冷却する冷却装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling device that circulates and supplies a liquid refrigerant to an object to be cooled, and particularly relates to a cooling device that cools an object while controlling the temperature of the liquid refrigerant.

情報処理装置等電子機器は、集積回路素子を多
数個搭載した基板を複数枚、架に実装し、この架
に取り付けたフアンにより強制空冷する構造が一
般的である。しかしながら近年の集積回路技術の
進展に伴ない、回路素子は大規模高密度化され、
また、装置の高性能・小型化を図る為、装置の実
装密度も大巾に増大しており、結果として素子パ
ツケージレベルから装置レベルに至るすべての実
装階層において、発熱密度が増大し、前記強制空
冷構造では十分な冷却を行うことが困難となりつ
つある。この為、熱容量の大きな水を主体とした
液体冷媒を発熱源である素子の近傍を循環させ、
該素子からの熱を伝導によつて冷媒に伝える形態
のいわゆる直接液冷方式や、装置架内に液体一空
気の熱交換器を実装し強制空冷と併用した間接液
冷方式等が実用化されてきた。従来、この種の液
体冷媒を被冷却体である情報処理装置に循環供給
し被冷却体からの熱を排熱する液体冷却装置で
は、液体冷媒の供給側温度が一定となるように温
度制御が行われていた。
2. Description of the Related Art Electronic devices such as information processing devices generally have a structure in which a plurality of substrates each carrying a large number of integrated circuit elements are mounted on a rack and are forcedly cooled by a fan attached to the rack. However, with the recent progress in integrated circuit technology, circuit elements have become larger and more densely packed.
In addition, in order to achieve high performance and miniaturization of devices, the packaging density of devices has also increased significantly, and as a result, heat generation density has increased in all packaging layers from the element package level to the device level, and the above-mentioned forced It is becoming difficult to provide sufficient cooling with air-cooled structures. For this reason, a liquid refrigerant mainly composed of water with a large heat capacity is circulated near the element that is the heat source.
The so-called direct liquid cooling method, in which heat from the element is transferred to the refrigerant by conduction, and the indirect liquid cooling method, in which a liquid-air heat exchanger is installed in the equipment rack and used in combination with forced air cooling, have been put into practical use. It's here. Conventionally, in liquid cooling systems that circulately supply this type of liquid refrigerant to an information processing device that is an object to be cooled and exhaust heat from the object to be cooled, temperature control is performed so that the temperature on the supply side of the liquid refrigerant remains constant. It was done.

しかしながら、上記従来の制御方法では、例え
ば被冷却体の雰囲気の温湿度が変化した場合、液
体冷媒を通す配管や、素子を実装したパツケージ
等実装構造物表面に結露が発生し易く、これが例
えば部品の劣化やコネクタの接触不良の原因とな
る。この為、上記従来の冷却方式をとる情報処理
装置においては、該装置の温湿度環境を厳しく管
理する手段又は液体冷媒供給温度を、例えば30℃
程度と比較的高温に設定する手段等がとられてき
たが、前者は、情報処理装置を設置する部屋全体
を空調する施設上の難点があり、また後者は、情
報処理装置内に多数個使用されている集積回路素
子の信頼度が温度に依存し高温になる程信頼度は
低下するといつた周知の事実から見て、好ましい
ものでないと云つた夫々の欠点を有する。
However, in the conventional control method described above, when the temperature and humidity of the atmosphere of the object to be cooled changes, for example, condensation tends to occur on the surface of the mounting structure such as the piping through which the liquid refrigerant passes or the package on which the element is mounted. This may cause deterioration of the connector or poor connection of the connector. For this reason, in the information processing device that uses the conventional cooling method described above, it is necessary to strictly control the temperature and humidity environment of the device or to adjust the liquid refrigerant supply temperature to, for example, 30°C.
Measures such as setting the temperature to a relatively high temperature have been taken, but the former has the disadvantage of having to air condition the entire room where the information processing equipment is installed, and the latter has the disadvantage of setting the temperature to a relatively high temperature. In view of the well-known fact that the reliability of integrated circuit devices currently used in integrated circuits depends on temperature, and that reliability decreases as the temperature increases, each of these devices has disadvantages that are not desirable.

本発明の目的は、上記欠点を排し、結露を生じ
させない冷却装置を提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a cooling device that does not cause dew condensation.

この目的のために本発明は、熱交換ユニツト
と、ポンプと、膨張タンクとを含んで構成され被
冷却体に液体冷媒を循環供給する冷却装置におい
て、前記被冷却体の雰囲気温度を検出する手段
と、前記液体冷媒の供給側温度を検出する手段
と、これら各検出手段からの温度の差分により前
記熱交換ユニツトの能力を可変して温度の差分を
一定に保つ制御回路とを有して構成したものであ
る。
For this purpose, the present invention provides a means for detecting the ambient temperature of the object to be cooled in a cooling device that includes a heat exchange unit, a pump, and an expansion tank and supplies a liquid refrigerant to the object to be cooled. , means for detecting the supply side temperature of the liquid refrigerant, and a control circuit that varies the capacity of the heat exchange unit based on the temperature difference from each of these detection means to keep the temperature difference constant. This is what I did.

次に、本発明を、図面を参照して実施例につき
詳細に説明する。
Next, the invention will be explained in detail by way of example embodiments with reference to the drawings.

第1図は本発明の実施例を示す冷却装置の機能
ブロツク図であるが、本冷却装置1は、被冷却体
である情報処理装置100に液体冷媒として水を
循環供給するもので、規定量の冷却水を貯蔵でき
かつ水流、水温等の細かい変動に対処する為の膨
張タンク13と、冷却水を循環させる為のポンプ
12と、前記被冷却体から奪つた熱を排熱する為
の熱交換ユニツト11と、これら各構成ユニツト
を直列に接続し冷却水の送・受水口14,15に
導く配管類(図中、太線で示す)と、制御回路2
0とを含んで構成される。冷却水は、冷却装置の
送水口14に接続された配管101を通つて情報
処理装置100に供給され、装置内で熱を奪い装
置内の熱量に応じた規定の温度上昇を伴ない配管
102を通り、冷却装置の受水口15に戻り、前
記膨張タンク13、ポンプ12、熱交換ユニツト
11をそれぞれ通つて外部に排熱されると云つた
閉ループで循環する。
FIG. 1 is a functional block diagram of a cooling device showing an embodiment of the present invention. This cooling device 1 circulates and supplies water as a liquid refrigerant to an information processing device 100, which is an object to be cooled. an expansion tank 13 capable of storing cooling water and dealing with small fluctuations in water flow, water temperature, etc.; a pump 12 for circulating the cooling water; and a heat pump 12 for discharging the heat taken from the object to be cooled. The replacement unit 11, the piping that connects these constituent units in series and leads to the cooling water supply/reception ports 14 and 15 (shown by thick lines in the figure), and the control circuit 2.
0. Cooling water is supplied to the information processing device 100 through a pipe 101 connected to a water supply port 14 of the cooling device, absorbs heat within the device, and cools the pipe 102 with a specified temperature rise according to the amount of heat in the device. The heat then returns to the water inlet 15 of the cooling device, passes through the expansion tank 13, pump 12, and heat exchange unit 11, and is circulated in a closed loop in which heat is exhausted to the outside.

ここで熱交換ユニツト11は、例えば第2図に
示す如く、その熱交換能力が制御回路20によつ
て可変できうる構造のものである。すなわち、第
2図は水−水の水冷式熱交換ユニツトの例である
が、被冷却体である情報処理装置100内を循環
して温度上昇した冷却水は、水冷式熱交換器31
内の放熱パイプ32に導びかれる。熱交換器31
には、5〜10℃程度に冷却された冷水が外部より
供給されており、前記放熱パイプ32の中を通る
循環冷却水との間で熱交換を行つて循環冷却水の
温度を下げる。この温度の低下量すなわち熱交換
量は、熱交換器に供給する冷水量により可変で
き、本実施例では、冷水供給側に設けられかつ制
御回路20の出力信号により回転角が制御できる
サーボモータ33で駆動される混合三方弁34に
より、熱交換器31に供給する冷水量の一部をバ
イパスすることで実現している。ここで、上記制
御を行う制御回路20は、被冷却体の情報処理装
置100の内部又は近傍の空気温度を検出する測
温抵抗体等の温度センサー22と、冷却装置の供
給側水温を検出する同様の温度センサー21とを
備え、該両センサーの検出した温度の差分に比例
し、該温度差分を予め規定した温度差になるよう
混合三方弁34を駆動して制御するサーボモータ
33への制御電圧を出力する。例えば、前記被冷
却体の雰囲気検出温度が冷却装置の供給側水温よ
りも低い場合には、熱交換器31への冷水量を増
し、又逆の場合には、冷水のバイパス量を増加さ
せる方向である。
Here, the heat exchange unit 11 has a structure in which its heat exchange capacity can be varied by a control circuit 20, as shown in FIG. 2, for example. That is, although FIG. 2 shows an example of a water-to-water water-cooled heat exchange unit, the cooling water whose temperature has increased by circulating within the information processing device 100, which is an object to be cooled, is transferred to the water-cooled heat exchanger 31.
It is guided to the heat dissipation pipe 32 inside. heat exchanger 31
Cold water cooled to about 5 to 10° C. is supplied from the outside, and heat exchanges with the circulating cooling water passing through the heat radiation pipe 32 to lower the temperature of the circulating cooling water. The amount of decrease in temperature, that is, the amount of heat exchange, can be varied by changing the amount of cold water supplied to the heat exchanger. This is achieved by bypassing a portion of the amount of cold water supplied to the heat exchanger 31 using the mixing three-way valve 34 driven by the three-way mixing valve 34 . Here, the control circuit 20 that performs the above control includes a temperature sensor 22 such as a resistance thermometer that detects the temperature of the air inside or near the information processing device 100 of the object to be cooled, and a temperature sensor 22 that detects the temperature of the water on the supply side of the cooling device. control to a servo motor 33 that is equipped with a similar temperature sensor 21 and drives and controls a three-way mixing valve 34 in proportion to the difference in temperature detected by the two sensors, and so that the temperature difference becomes a predetermined temperature difference; Output voltage. For example, if the detected atmosphere temperature of the object to be cooled is lower than the water temperature on the supply side of the cooling device, the amount of cold water to be supplied to the heat exchanger 31 is increased, and in the opposite case, the amount of bypassed cold water is increased. It is.

このような構成をとることにより、冷却装置か
ら被冷却体への供給冷却水温は、被冷却体雰囲気
温度に追従することになり、例えば、前記制御回
路20内で設定する温度差分規定値(被冷却体雰
囲気温度に対する冷却水温の差)を0〜2℃程度
に設定しておけば、定常状態での結露は皆無であ
り、またかなり大きい被冷却体雰囲気の温湿度変
動に対しても、結露の心配はなくなる。また、雰
囲気温度が低い場合には、水温も追従して低くな
り、被冷却体に使用されている集積回路素子等も
低い温度に保つことができることから、高信頼度
の装置を実現することが可能である。以上述べた
実施例は、能力を可変できる熱交換ユニツト11
を水−水の水冷式熱交換器を使用した場合につい
ての例であるが、本発明はこれに限定されるもの
ではなく、空気−水の空冷式熱交換器であつても
よく、また、能力を可変する手段も熱交換器の種
類により、周知の最適手段を選択してよいことは
いうまでもない。
By adopting such a configuration, the temperature of the cooling water supplied from the cooling device to the object to be cooled follows the ambient temperature of the object to be cooled. If the difference in cooling water temperature with respect to the ambient temperature of the coolant is set to about 0 to 2°C, there will be no condensation in a steady state, and there will be no condensation even with fairly large fluctuations in temperature and humidity in the atmosphere of the cooled body. There will be no need to worry about. Additionally, when the ambient temperature is low, the water temperature will follow suit and the integrated circuit elements used in the cooled object can be kept at a low temperature, making it possible to realize highly reliable equipment. It is possible. The embodiment described above is a heat exchange unit 11 whose capacity can be varied.
This is an example of a case where a water-to-water water-cooled heat exchanger is used; however, the present invention is not limited to this, and an air-to-water air-cooled heat exchanger may be used. It goes without saying that the known optimum means for varying the capacity may be selected depending on the type of heat exchanger.

本発明は以上説明したように、冷却装置の供給
側水温を被冷却体の雰囲気温度に追従して可変す
る方式の冷却装置を構成したことにより、特別な
空調施設を必要とすることなく結露の発生しない
高信頼度の装置を提供できる効果を有する。
As explained above, the present invention has a cooling system in which the water temperature on the supply side of the cooling system is varied by following the ambient temperature of the object to be cooled, thereby preventing dew condensation without the need for special air conditioning facilities. This has the effect of providing a highly reliable device that does not occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す冷却装置の構成
ブロツク図、第2図は前記冷却装置に使用する熱
交換ユニツトの構成例を示す概略図である。 1……冷却装置、11……熱交換ユニツト、1
2……ポンプ、13……膨張タンク、14,15
……冷却水の送受水口、20……制御回路、2
1,22……温度センサー、31……水冷式熱交
換器、32……放熱パイプ、33……サーボモー
タ、34……混合三方弁、100……情報処理装
置(被冷却体)。
FIG. 1 is a block diagram showing a configuration of a cooling device according to an embodiment of the present invention, and FIG. 2 is a schematic diagram showing an example of the configuration of a heat exchange unit used in the cooling device. 1...Cooling device, 11...Heat exchange unit, 1
2... Pump, 13... Expansion tank, 14, 15
...Cooling water sending and receiving port, 20...Control circuit, 2
1, 22... Temperature sensor, 31... Water-cooled heat exchanger, 32... Heat radiation pipe, 33... Servo motor, 34... Mixing three-way valve, 100... Information processing device (cooled object).

Claims (1)

【特許請求の範囲】[Claims] 1 熱交換ユニツトと、ポンプと、膨張タンクと
を含んで構成され、被冷却体に液体冷媒を循環供
給する冷却装置において、前記被冷却体の雰囲気
温度を検出する手段と、前記液体冷媒の供給側温
度を検出する手段と、これらの各検出手段からの
温度の差分により前記熱交換ユニツトの能力を可
変し温度の差分を一定に保つ制御回路とを有する
ことを特徴とする冷却装置。
1. A cooling device that includes a heat exchange unit, a pump, and an expansion tank, and that circulates and supplies a liquid refrigerant to an object to be cooled, including means for detecting the ambient temperature of the object to be cooled, and supplying the liquid refrigerant. A cooling device comprising means for detecting side temperature, and a control circuit for varying the capacity of the heat exchange unit based on the difference in temperature from each of these detecting means and keeping the difference in temperature constant.
JP15978384A 1984-07-30 1984-07-30 Cooling device Granted JPS6138381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15978384A JPS6138381A (en) 1984-07-30 1984-07-30 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15978384A JPS6138381A (en) 1984-07-30 1984-07-30 Cooling device

Publications (2)

Publication Number Publication Date
JPS6138381A JPS6138381A (en) 1986-02-24
JPH0452624B2 true JPH0452624B2 (en) 1992-08-24

Family

ID=15701171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15978384A Granted JPS6138381A (en) 1984-07-30 1984-07-30 Cooling device

Country Status (1)

Country Link
JP (1) JPS6138381A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2937406B2 (en) * 1990-04-26 1999-08-23 甲府日本電気株式会社 Cooling system
JP5206483B2 (en) * 2009-02-24 2013-06-12 富士電機株式会社 Power converter cooling system
FR2978871B1 (en) * 2011-08-02 2013-07-19 Commissariat Energie Atomique COOLING DEVICE PROVIDED WITH A THERMOELECTRIC SENSOR

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315652A (en) * 1976-07-29 1978-02-13 Mayekawa Mfg Co Ltd Brine cooler

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315652A (en) * 1976-07-29 1978-02-13 Mayekawa Mfg Co Ltd Brine cooler

Also Published As

Publication number Publication date
JPS6138381A (en) 1986-02-24

Similar Documents

Publication Publication Date Title
US4313310A (en) Cooling system
JP4199018B2 (en) Rack mount server system
JP2748732B2 (en) Liquid refrigerant circulation system
US20080310112A1 (en) System and Method for Providing Dewpoint Control in an Electrical Enclosure
US6205796B1 (en) Sub-dew point cooling of electronic systems
US4589475A (en) Heat recovery system employing a temperature controlled variable speed fan
US20090218078A1 (en) Variable flow computer cooling system for a data center and method of operation
JP3070787B2 (en) Electronic equipment
US11337340B2 (en) Open and closed flow air/coolant hybrid system
US20130050931A1 (en) System and method for cooling a processing system
JPH06164178A (en) Cooling apparatus
US20240179875A1 (en) Systems And Methods For Cooling A Fluid Circuit For Cooling A Rack Of Servers
US10015911B2 (en) Cooling system, cooled computer system and computer facility
EP0509844B1 (en) Apparatus for cooling electronic equipment
JPH0452624B2 (en)
JPH0735940B2 (en) Cooling system
US6749016B2 (en) Brine temperature control apparatus using a three-way proportional valve
AU1678797A (en) A method and device for obtaining reserve time for a cooling system
JP2894817B2 (en) Cooling device for electronic equipment
JP3512274B2 (en) Ice storage device
JP2573562B2 (en) Cooling system
JPH06294683A (en) Electronic appliance
JP2508640B2 (en) Cooling system
JPS6138382A (en) Cooling device
JPH02120690A (en) Cooling apparatus of electronic apparatus