JPH0452599B2 - - Google Patents

Info

Publication number
JPH0452599B2
JPH0452599B2 JP58157327A JP15732783A JPH0452599B2 JP H0452599 B2 JPH0452599 B2 JP H0452599B2 JP 58157327 A JP58157327 A JP 58157327A JP 15732783 A JP15732783 A JP 15732783A JP H0452599 B2 JPH0452599 B2 JP H0452599B2
Authority
JP
Japan
Prior art keywords
plasma arc
anode
molten metal
anodes
torch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58157327A
Other languages
Japanese (ja)
Other versions
JPS6049593A (en
Inventor
Masaki Niioka
Masaru Fukuyama
Hiroshi Mure
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP58157327A priority Critical patent/JPS6049593A/en
Publication of JPS6049593A publication Critical patent/JPS6049593A/en
Publication of JPH0452599B2 publication Critical patent/JPH0452599B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

【発明の詳細な説明】 産業上の利用分野 この発明はプラズマアークによる溶融金属の加
熱装置における給電電極の構成・配置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to the structure and arrangement of a power supply electrode in a heating device for molten metal using a plasma arc.

従来技術 溶融金属、例えば溶鋼の加熱に近年プラズマ・
アーク加熱が用いられる様になつてきた。プラズ
マ・アーク加熱装置は基本的には電源負側に接続
され、溶融金属との間にプラズマ・アークを発生
させるプラズマ・トーチ(陰極)と電源正側と該
溶融金属間に電流導通路を形成する為の給電電極
(陽極)とを備えたものである。
Conventional technology In recent years, plasma has been used to heat molten metals, such as molten steel.
Arc heating has come to be used. Plasma arc heating equipment is basically connected to the negative side of a power supply and forms a current conduction path between the plasma torch (cathode) that generates a plasma arc between the molten metal and the positive side of the power supply and the molten metal. It is equipped with a power supply electrode (anode) for

所が、従来の陽極は溶解炉などの固定炉にあつ
ては、炉底にカーボンレンガ(導電性)を付設
し、これにリード線を接続して電流経路を形成す
る方式や、炉底の一部をレンガの代りに被加熱溶
融金属と同材質の金属で形成し、これを炉底より
外部に出し、これにリード線を接続して電流経路
を形成する方式が採用されていた。
However, for conventional anodes in fixed furnaces such as melting furnaces, carbon bricks (conductive) are attached to the bottom of the furnace and lead wires are connected to this to form a current path. A method was adopted in which a part of the furnace was made of the same metal as the molten metal to be heated instead of bricks, and this was brought out from the bottom of the furnace, and a lead wire was connected to it to form a current path.

ところが、上記の両方式には次の如き問題点が
あつた。即ち、周知の連続鋳造用タンデイツシユ
においては、上記の固定炉に比較して本体の交換
頻度が多い上、レンガの積替え頻度も多く、その
都度陽極の更新が必要であり、ランニングコスト
を上昇させると共に、タンデイツシユの交換レン
ガ積み等全ての作業を複雑にする。この様なこと
から、タンデイツシユの場合溶融金属の上部より
浸漬するタイプの陽極の方が有利である。
However, both of the above formulas have the following problems. In other words, in the well-known continuous casting tandate, the main body must be replaced more frequently than in the above-mentioned fixed furnace, and the bricks must be reloaded more frequently, and the anode must be replaced each time, which increases running costs and This complicates all the work, such as replacement of the tandate and bricklaying. For this reason, in the case of a tundish, it is more advantageous to use an anode of the type that is immersed in the molten metal from above.

しかしながら、上部浸漬型陽極では、炉底電極
の如くプラズマ・アーク直下より給電する事が不
可能となり、第1図に示す様に陽極1を流れる電
流により形成される磁界の作用でプラズマ・アー
ク2が陽極1と離れる方向に偏向する。図中3は
プラズマ・トーチ、4は溶融金属、5は電源、6
はケーブル線を示す。
However, with the upper immersion type anode, it is impossible to supply power from directly below the plasma arc as with the bottom electrode, and as shown in Figure 1, the plasma arc 2 is is deflected in the direction away from the anode 1. In the figure, 3 is a plasma torch, 4 is a molten metal, 5 is a power source, and 6
indicates a cable line.

通常、プラズマ・アークによる溶融金属の加熱
においては、雰囲気コントロールによる該溶融金
属の汚染防止やプラズマ・アークの軸射エネルギ
の有効利用を図る為、プラズマ・アークは閉され
た室(加熱室)内で発生させるが、プラズマ・ア
ークの偏向により加熱室内壁の一部が平均温度
3000〓以上の高温に直接さらされる事になる。こ
の結果、加熱室内壁の耐火物が溶け落ち、溶融金
属を汚染すると云う問題が発生する。
Normally, when heating molten metal with a plasma arc, the plasma arc is placed inside a closed chamber (heating chamber) in order to prevent contamination of the molten metal by controlling the atmosphere and to effectively utilize the axial energy of the plasma arc. However, due to the deflection of the plasma arc, part of the wall of the heating chamber has an average temperature of
It will be directly exposed to high temperatures of 3000℃ or more. As a result, a problem arises in that the refractories on the walls of the heating chamber melt down and contaminate the molten metal.

発明の目的・構成・作用 本発明は上記の様な上部浸漬型陽極の欠点を除
去する為になされたもので、複数の上部浸漬型陽
極を用い、トーチ直下、すなわちトーチ下端から
トーリ鉛直下の溶融金属に至るまでの区間におい
て、各陽極に導通する電流により作られる磁界の
プラズマ・アークに及ぼす力の総和が実質上零と
なる様に上記上部浸漬型陽極を構成・配置する事
によつてプラズマ・アークの偏向を防止すること
を特徴とするものである。
Purpose, Structure, and Effect of the Invention The present invention was made to eliminate the above-mentioned drawbacks of the upper immersion type anode, and uses a plurality of upper immersion type anodes, which are directly below the torch, that is, from the lower end of the torch to the vertical direction of the torch. By configuring and arranging the above-mentioned upper immersion type anode so that the sum of the forces exerted on the plasma arc by the magnetic field created by the current flowing through each anode in the section up to the molten metal is substantially zero. It is characterized by preventing deflection of the plasma arc.

まず、本発明における複数陽極に導電する電流
により作られる磁界のプラズマ・アークに及ぼす
力の総和を零とする為の考え方について述べる。
First, a concept for reducing the total force exerted on the plasma arc of the magnetic field created by the currents conducted to the plurality of anodes in the present invention to zero will be described.

N個の陽極をa1、a2、…、aNとし、溶融金属面
に平行な面を考え、トーチ直下を原点としてこれ
らの陽極の面上の位置ベクトルをr1、r2、…、
rN、その陽極に導通する電流をi1、i2、…、iN
する。陽極への電流は、陽極及びプラズマ・アー
クから比較的遠い地点に設置された電源から流さ
れるものであり、その間にも磁界の源である電流
は存在するが、遠距離であるため、プラズマ・ア
ークへの力の影響は無視できる。したがつて陽極
を流れる電流iKは有限長の電流と見なし得る。陽
極aKを流れる有限長電流iKがアークに及ぼす力K
を反発力側を正にとると次式の様に表わされる。
Let N anodes be a 1 , a 2 , ..., a N , consider a plane parallel to the molten metal surface, and let the position vectors of these anodes on the plane be r 1 , r 2 , ..., with the origin directly below the torch.
r N and the currents conducted to the anodes are i 1 , i 2 , ..., i N . The current to the anode is passed from a power source installed relatively far from the anode and the plasma arc, and although the current that is the source of the magnetic field exists between them, it is far away, so the plasma arc The effect of force on the arc is negligible. Therefore, the current i K flowing through the anode can be regarded as a current with a finite length. Force K exerted on the arc by finite length current i K flowing through anode a K
If we take the repulsive force side to be positive, it can be expressed as the following equation.

ここでαKは比例定数である。従つてN個の陽
極による力の総和が零となる事は次式の成立を意
味する。NK=1 fK=( 〓K iK)・( 〓K αKiK・r/|rK3)=0 (2) ここで 〓K iK≠0であり、αKは実質上同一とみな
せる為、N個の陽極によつてプラズマ・アークが
受ける力の総和を零とする為には次式が成立たね
ばならない。NK=1 iK・rK/|rK3=0 (3) 従つて(3)式を満す様に陽極aKの位置rKあるいは
aKを流れる電流iKを設定する事によりプラズマ・
アークの偏向を防止する事が出来る。
Here α K is a proportionality constant. Therefore, the fact that the sum of the forces from the N anodes becomes zero means that the following equation holds true. NK=1 f K = ( 〓 K i K )・( 〓 K α K i K・r/|r K3 )=0 (2) where 〓 K i K ≠0 and α K is Since they can be considered to be substantially the same, the following equation must hold true in order to make the sum of forces exerted on the plasma arc by N anodes zero. NK=1 i K・r K /|r K3 = 0 (3) Therefore, the position of the anode a K is set r K or
By setting the current i K flowing through a K , the plasma
Arc deflection can be prevented.

実施例 以下本発明を第2図乃至第4図に示す実施例に
より詳細に説明する。
Embodiments The present invention will be explained in detail below with reference to embodiments shown in FIGS. 2 to 4.

本発明の1実施例を示す第2図において7はシ
ールドタンデイツシユ、8はその中に貯えられた
溶鋼を示している。9はタンデイツシユの蓋で、
その蓋9の一部に加熱室10が設けられ、その下
端は溶鋼中に浸漬している。11は加熱室10の
天井部に設けられたプラズマ・アーク発生用のプ
ラズマ・トーチ、12,13は上部浸漬型の陽極
を示している。この例では、2本の陽極がトーチ
に対して点対称に配置されている為、偏向のない
プラズマ・アークを得る為の条件は陽極12,1
3を流れる電流をそれぞれI12、I13とするとI12
I13とする事である。陽極12,13に分流する
電流の比率を決定する要因は、ケーブル16、溶
鋼8の電気抵抗が実質上零であるから、陽極1
2,13自体の抵抗であり、この例では同一抵抗
であればI12=I13となる。従つて、陽極12,1
3は同一材質、同一サイズのものを用いれば良
い。
In FIG. 2 showing one embodiment of the present invention, 7 indicates a shield tundish, and 8 indicates molten steel stored therein. 9 is the lid of the tandaishiyu,
A heating chamber 10 is provided in a part of the lid 9, the lower end of which is immersed in molten steel. Reference numeral 11 indicates a plasma torch for generating a plasma arc provided on the ceiling of the heating chamber 10, and 12 and 13 indicate upper immersion type anodes. In this example, since the two anodes are arranged point-symmetrically with respect to the torch, the conditions for obtaining an undeflected plasma arc are anodes 12 and 1.
If the currents flowing through 3 are I 12 and I 13 respectively, then I 12 =
I 13 . The factor that determines the ratio of currents to be shunted to the anodes 12 and 13 is that the electric resistance of the cable 16 and the molten steel 8 is substantially zero;
2 and 13 themselves, and in this example, if they are the same resistance, I 12 =I 13 . Therefore, the anode 12,1
3 should be made of the same material and of the same size.

第3図は本発明の他の実施例を示すもので陽極
を除いて第2図と同等である。同図の例では2本
の陽極とトーチとを上からみた時、一直線上にあ
るが、トーチと陽極19との距離r19とトーチと
陽極20との距離r20とが設備の取合い上異なり、
r19:r20=1+α:1となつている。この時、偏
向のないプラズマ・アークを得る為の条件は、陽
極19,20を流れる電流をそれぞれi19、i20
すると、(3)式によりi19:i20=(1+α)2:1とな
る。2つの陽極にこの比で電流を分流させる為に
は陽極19,20の抵抗をそれぞれR19,R20
すると、R19:R20=1:(1+α)2とすれば良い。
これを実現する一つの手段として、陽極に均質円
柱形状のものを用いるとして陽極19,20の直
径をD19、D20とした時、D19:D20=1+α:1
を満す陽極を用いる事が出来る。
FIG. 3 shows another embodiment of the present invention, which is the same as FIG. 2 except for the anode. In the example shown in the figure, when viewed from above, the two anodes and the torch are on a straight line, but the distance r 19 between the torch and the anode 19 and the distance r 20 between the torch and the anode 20 are different due to the arrangement of the equipment. ,
r 19 :r 20 =1+α:1. At this time, the conditions for obtaining a plasma arc without deflection are as follows, where the currents flowing through the anodes 19 and 20 are i 19 and i 20 , respectively, and according to equation (3), i 19 :i 20 =(1+α) 2 :1 becomes. In order to divide the current into the two anodes at this ratio, R 19 :R 20 =1:(1+α) 2 should be set, assuming that the resistances of the anodes 19 and 20 are R 19 and R 20 , respectively.
One way to achieve this is to use homogeneous cylindrical anodes, and when the diameters of the anodes 19 and 20 are D 19 and D 20, D 19 :D 20 =1+α:1
It is possible to use an anode that satisfies the following.

第4図は更に他の実施例を示す。この図は装置
を溶融金属上より見たもので、25は容器、26
は溶融金属、21はプラズマ・トーチ、22,2
3および24は陽極を示している。この例では、
3本の陽極がプラズマ・トーチに対して任意の位
置に存在しているものとする。陽極22,23,
24を流れる電流i22、i23、i24それぞれがプラズ
マ・アークに及ぼす力をf22(i22)、f23(i23)、f24
(i24)とすれば、(3)式により f22(i22)+f23(i23)+f24(i24)=0を満す様に各
陽極
を流れる電流を調整する事によつて、偏向のない
プラズマ・アークが得られる。これを実現する為
には各陽極の材質、断面積等を変えて、各陽極の
抵抗値を調整すれば良い。
FIG. 4 shows yet another embodiment. This figure shows the device viewed from above the molten metal, 25 is a container, 26
is molten metal, 21 is a plasma torch, 22,2
3 and 24 indicate anodes. In this example,
It is assumed that three anodes exist at arbitrary positions with respect to the plasma torch. Anodes 22, 23,
The forces exerted on the plasma arc by the currents i 22 , i 23 , i 24 flowing through 24, respectively, are f 22 (i 22 ), f 23 (i 23 ), f 24
(i 24 ), then by adjusting the current flowing through each anode so that f 22 (i 22 ) + f 23 (i 23 ) + f 24 (i 24 ) = 0 is satisfied according to equation (3). , an undeflected plasma arc is obtained. To achieve this, the resistance value of each anode can be adjusted by changing the material, cross-sectional area, etc. of each anode.

この様に本発明で云う給電電極(陽極)を構
成・配置するとは、複数陽極の設置位置を調整す
る、陽極通電路の断面積を各陽極毎に調節する、
陽極材質を各陽極毎に調節する、のいずれかの手
段を適当に組合せる事を意味する。
Configuring and arranging the power feeding electrode (anode) as referred to in the present invention in this way means adjusting the installation positions of multiple anodes, adjusting the cross-sectional area of the anode current path for each anode,
This means adjusting the anode material for each anode in an appropriate combination.

発明の効果 以上、詳細に説明した如く、本発明によれば、
上部浸漬型陽極の欠点であつた。プラズマ・アー
クの偏向が解消せられ、操作性・整備性に優れた
上部浸漬型陽極を問題点なく使用する事ができ、
低ランニングコストのプラズマ・アーク加熱を行
なうことができる。
Effects of the Invention As described above in detail, according to the present invention,
This was a drawback of the top immersion type anode. The deflection of the plasma arc is eliminated, and the upper immersion type anode, which has excellent operability and maintainability, can be used without any problems.
Plasma arc heating can be performed with low running costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本の上部浸漬型陽極を用いた場合に
発生するプラズマ・アークの偏向現象を示す図、
第2図、第3図および第4図は本発明の実施例を
示す説明図である。 1……陽極、2……プラズマ・アーク、3……
プラズマ・トーチ、4……溶融金属、5……電
源、6……ケーブル線、7……シールドタンデイ
ツシユ、8……溶鋼、9……タンデイツシユの
蓋、10……加熱室、11……プラズマ・トー
チ、12,13……陽極、14……プラズマ・ア
ーク、15……電源、16……ケーブル線、17
……浸漬ノズル、18……ロングノズル、19,
20……陽極、21……プラズマ・トーチ、2
2,23,24……陽極、25……容器、26…
…溶鋼。
Figure 1 is a diagram showing the plasma arc deflection phenomenon that occurs when a single upper immersion type anode is used.
FIG. 2, FIG. 3, and FIG. 4 are explanatory diagrams showing embodiments of the present invention. 1... Anode, 2... Plasma arc, 3...
Plasma torch, 4... Molten metal, 5... Power source, 6... Cable line, 7... Shield tandy tube, 8... Molten steel, 9... Tundy dish lid, 10... Heating chamber, 11... Plasma torch, 12, 13... Anode, 14... Plasma arc, 15... Power supply, 16... Cable line, 17
...Immersion nozzle, 18...Long nozzle, 19,
20... Anode, 21... Plasma torch, 2
2, 23, 24...anode, 25...container, 26...
...molten steel.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の給電電極を容器内の溶融金属の上部よ
り浸漬させる事により溶融金属と電源正側との導
通経路を構成し、電源負側に接続されたプラズ
マ・トーチと該溶融金属との間に発生させたプラ
ズマ・アークによつて該溶融金属を加熱する装置
において、前記、複数の給電電極を、各給電電極
に導通する電流により形成される磁界のプラズ
マ・アークに及ぼす力の総和がプラズマ・トーチ
直下において実質上零となる様に構成・配置する
事を特徴とする、プラズマ・アークによる溶融金
属の加熱装置。
1 By immersing multiple power supply electrodes into the molten metal in the container from above, a conduction path between the molten metal and the positive side of the power source is constructed, and a conduction path is created between the plasma torch connected to the negative side of the power source and the molten metal. In a device that heats the molten metal by a generated plasma arc, the sum of the forces exerted on the plasma arc by the magnetic field formed by the current flowing through the plurality of feeding electrodes is the plasma arc. A device for heating molten metal using a plasma arc, which is characterized by being configured and arranged so that the temperature is substantially zero directly below the torch.
JP58157327A 1983-08-29 1983-08-29 Heater for molten metal by plasma arc Granted JPS6049593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58157327A JPS6049593A (en) 1983-08-29 1983-08-29 Heater for molten metal by plasma arc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58157327A JPS6049593A (en) 1983-08-29 1983-08-29 Heater for molten metal by plasma arc

Publications (2)

Publication Number Publication Date
JPS6049593A JPS6049593A (en) 1985-03-18
JPH0452599B2 true JPH0452599B2 (en) 1992-08-24

Family

ID=15647269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58157327A Granted JPS6049593A (en) 1983-08-29 1983-08-29 Heater for molten metal by plasma arc

Country Status (1)

Country Link
JP (1) JPS6049593A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002283016A (en) * 2001-03-23 2002-10-02 Nippon Steel Corp Device for heating molten steel in tundish using plasma torch

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345895A (en) * 1986-08-12 1988-02-26 昭和アルミニウム株式会社 Manufacture of aluminium circuit substrate
JP2549368B2 (en) * 1986-12-01 1996-10-30 石川島播磨重工業株式会社 DC arc furnace
JPS63168072A (en) * 1986-12-27 1988-07-12 住友ベークライト株式会社 Metal base printed circuit substrate
JP2630858B2 (en) * 1991-02-26 1997-07-16 スカイアルミニウム株式会社 Manufacturing method of printed wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002283016A (en) * 2001-03-23 2002-10-02 Nippon Steel Corp Device for heating molten steel in tundish using plasma torch

Also Published As

Publication number Publication date
JPS6049593A (en) 1985-03-18

Similar Documents

Publication Publication Date Title
US3130292A (en) Arc torch apparatus for use in metal melting furnaces
US3147329A (en) Method and apparatus for heating metal melting furnaces
EP0544033B1 (en) Electric furnace
EP0326318A2 (en) Plasma torch
US3676639A (en) Non-consumable electrode for electric-arc process
JP2738423B2 (en) Electric heating furnace for glass
WO1991014911A1 (en) Dc electric furnace for melting metal
JPH0452599B2 (en)
US3680163A (en) Non-consumable electrode vacuum arc furnaces for steel, zirconium, titanium and other metals and processes for working said metals
KR970011550B1 (en) Dc arc furnace and operation method
US3628948A (en) Electric arc vacuum melting processes
JPS60188789A (en) Method of dissolving material and direct current arc furnace
US5138629A (en) Direct current electric arc furnace
US3398229A (en) Nonconsumable arc electrode
JPS5841939B2 (en) Heating device and heating method
US6137822A (en) Direct current arc furnace and a method for melting or heating raw material or molten material
SE448140B (en) ELEKTROSLAGGOMSMELTNINGSUGN
US4119876A (en) Electrode structure for an electric discharge device
US3354256A (en) Apparatus for heating molten metals
US3617596A (en) Nonconsumable electrode vacuum arc furnace for steel, zirconium, titanium and other metals
US2745891A (en) Apparatus for melting highly reactive metals
US3586749A (en) Method for the electroslag welding and building up of metals and alloys
GB1223162A (en) Improvements in electrodes for electric arc furnaces
US2283800A (en) Electrode arrangement for glass furnaces or the like
US3708279A (en) Process of refining metal in a vacuum with coaxially mounted non-consumable electrodes