JPH0452495A - Loop type fine heat pipe - Google Patents

Loop type fine heat pipe

Info

Publication number
JPH0452495A
JPH0452495A JP15862390A JP15862390A JPH0452495A JP H0452495 A JPH0452495 A JP H0452495A JP 15862390 A JP15862390 A JP 15862390A JP 15862390 A JP15862390 A JP 15862390A JP H0452495 A JPH0452495 A JP H0452495A
Authority
JP
Japan
Prior art keywords
circulation
loop
container
internal volume
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15862390A
Other languages
Japanese (ja)
Inventor
Hisateru Akachi
赤地 久輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Actronics KK
Original Assignee
Actronics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Actronics KK filed Critical Actronics KK
Priority to JP15862390A priority Critical patent/JPH0452495A/en
Publication of JPH0452495A publication Critical patent/JPH0452495A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

PURPOSE:To ensure normal starting even in any state by utilizing the operation principle of a heat pipe and utilizing mechanical energy and propulsion energy, manifesting means. CONSTITUTION:As the internal volume of a circulation auxiliary part 8 is made fine by internal volume variation means 9, a check valve 5-3 is closed to permit part of an internal operation fluid to pass through a check valve 5-4 and be discharged. Further, as the material, volume of the circulation auxiliary part 8 is returned, and an upstream operation fluid in a low temperature coupling fine pipe 4 passes through the check valve 5-3 and is sucked into the circulation auxiliary part 8. A container of the circulation auxiliary part 8 is expanded in its inner and outer diameters compared with another fine pipe container part, and is constructed so that a working fluid is discharged by the action of the check valves 5-3, 5-4 even if it is compressed slightly externally. Internal volume variation means may be of any construction and compression force is repeatedly applied to the circulation auxiliary part 8 by a vibrator 9-2 owing to the rotation of an electric cam 9-1. Restoration of the circulation auxiliary part 8 is performed by the resilience of the container and by the internal pressure of the working fluid.

Description

【発明の詳細な説明】 イ0発明の目的 [産業上の利用分野] 本発明はヒートパイプの構造に関するものであり、特に
ループ型細管ヒートパイプにおける性能改善手段が配設
された構造に関する。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a heat pipe, and particularly to a structure in which a performance improving means is provided in a loop-type thin tube heat pipe.

[従来の技術] 従来の循環補助手段が配設されたループ型細管ヒートパ
イプとしては起動又は再起動を助ける為の補助受熱部を
設けた構造について本発明者が提案している例がある。
[Prior Art] As a loop-type thin tube heat pipe equipped with a conventional circulation assisting means, there is an example in which the present inventor has proposed a structure in which an auxiliary heat receiving section is provided to assist in starting or restarting.

第2図はその実施例であって受熱部が放熱部より高位置
に分離配置されてあるトップヒートモードのループ型細
管ヒートパイプの略図で図面簡略の為細管コンテナは総
て線図で示しである。受熱部細管コンテナ1及び放熱部
細管コンテナ2の蛇行により形成されてある受熱部と放
熱部は高温連結細管3及び低温連結細管4により連結さ
れてループを構成している。加熱手段6により加熱され
た受熱部細管コンテナ1の中の作動液は逆止弁5−1.
5−2の作用により矢印の方向即ち受熱部細管コンテナ
1→高温連結細管3→放熱部細管コンテナ2→低温連結
細管4の順序で循環する。この際気相リッチの状態で高
温連結細管3から放熱部細管コンテナ2に送入された2
相混合流体の作動液は冷却手段7により冷却され、低温
化されると同時に大部分の気相成分(蒸気泡)は凝縮さ
れ液相リッチ状態に変化する。
Figure 2 is an example of this, and is a schematic diagram of a top heat mode loop-type capillary heat pipe in which the heat-receiving part is placed separately at a higher position than the heat-radiating part.To simplify the drawing, all the capillary containers are not shown with lines. be. The heat receiving section and the heat dissipating section, which are formed by the meandering of the heat receiving section capillary container 1 and the heat dissipating section capillary container 2, are connected by a high temperature connecting capillary tube 3 and a low temperature connecting capillary tube 4 to form a loop. The working fluid in the heat-receiving section thin tube container 1 heated by the heating means 6 flows through the check valve 5-1.
5-2 circulates in the direction of the arrow, that is, in the order of heat receiving section capillary tube container 1 -> high temperature connecting capillary tube 3 -> heat radiating section capillary tube container 2 -> low temperature connecting capillary tube 4. At this time, the gas-phase-rich state of the 2
The working fluid of the phase mixed fluid is cooled by the cooling means 7 and lowered in temperature, and at the same time most of the gas phase components (vapor bubbles) are condensed and changed to a liquid phase rich state.

この際に受熱部での作動液の蒸発沸騰により与えられた
推進力及び気相成分の蒸気圧として蓄積された推進力の
大部分は減衰せしめられ、低温連結細管4中の液相リッ
チ作動液は受熱部細管コンテナ1内に還流する為の推進
力が極めて弱い状態となる。特に第2図の如きトップヒ
ートモードにおいて低温連結細管4が長く、受放熱部間
の水位差が大きい場合にはこの傾向が強く、起動時、停
止後の再起動時等に受熱部内作動液不足による作動困難
となる場合が多い。第2図における補助受熱部10はそ
の様な作動困難時の対策であっで、補助受熱部10とそ
の前後に配設された逆止弁5−3.5−4及び補助加熱
手段11との組合わせによって循環補助手段となってい
る。補助加熱手段11により加熱された補助受熱部10
内の作動液の沸騰は逆止弁5−3.5−4の作用により
強力な推進力を発生して、下流側の作動液を受熱部内に
推進せしめる。該作動液は受熱部細管コンテナ1内で沸
騰して高圧力を発生し1作動液循環の引金となり、ルー
プ型細管コンテナ内の全作動液を所定の方向に推進せし
めて循環を開始せしめる。
At this time, most of the propulsive force given by the evaporation boiling of the working fluid in the heat receiving section and the propulsive force accumulated as the vapor pressure of the gas phase components are attenuated, and the liquid phase rich working fluid in the low temperature connecting capillary 4 is attenuated. In this case, the driving force for the flow to flow back into the heat-receiving portion thin tube container 1 is extremely weak. This tendency is particularly strong in the top heat mode as shown in Fig. 2, when the low-temperature connecting tube 4 is long and the water level difference between the heat receiving and radiating parts is large, and the working fluid in the heat receiving part becomes insufficient at startup, restarting after stopping, etc. It often becomes difficult to operate due to The auxiliary heat receiving section 10 in FIG. 2 is a measure against such operational difficulties, and is designed to connect the auxiliary heat receiving section 10, the check valves 5-3, 5-4, and the auxiliary heating means 11 disposed before and after the auxiliary heat receiving section 10. The combination serves as a means of assisting circulation. Auxiliary heat receiving section 10 heated by auxiliary heating means 11
The boiling of the hydraulic fluid inside generates a strong propulsive force by the action of the check valve 5-3, 5-4, which propels the downstream hydraulic fluid into the heat receiving section. The working fluid boils in the heat-receiving section capillary container 1 and generates high pressure, which triggers the circulation of the working fluid, propelling all the working fluid in the loop-type capillary container in a predetermined direction and starting the circulation.

作動液の循環は一旦開始されると1後は停止することな
く継続される。
Once the circulation of the working fluid is started, it continues without stopping.

[発明が解決しようとする問題点] 上述の循環補助手段は熱エネルギーを補助手段として用
いる所に大きな問題点があり、起動時点又は停止後の再
起動時点のみにその利用価値があるものであった。即ち
該補助手段は連続的に常時使用する場合は低温連結細管
から受熱部内に送入される作動液の全量が沸点以上の温
度に加熱されることになり、放熱部で放熱冷却された低
温作動液により受熱部を冷却したり、受熱部から効率的
に熱量を吸収する為に低温作動液を送入すると云うルー
プ型細管ヒートパイプの本来の使用目的を失なうことに
なりかねないものであった。本発明はその点を解決して
常時連続使用してループ型細管ヒートパイプの作動を補
助強化せしめる手段を提供する。
[Problems to be Solved by the Invention] The above-mentioned circulation assisting means has a major problem in that it uses thermal energy as an assisting means, and is only useful at the time of starting or restarting after stopping. Ta. In other words, when the auxiliary means is used continuously all the time, the entire amount of the working fluid fed into the heat receiving part from the low temperature connecting capillary is heated to a temperature above the boiling point, and the low temperature operation is performed by cooling the heat radiation part in the heat radiation part. This could lead to the loss of the original purpose of the loop-type capillary heat pipe, which is to cool the heat-receiving part with liquid or to feed low-temperature working fluid to efficiently absorb heat from the heat-receiving part. there were. The present invention solves this problem and provides a means to supplement and strengthen the operation of the loop-type capillary heat pipe by continuous use.

口9発明の構成 [問題点を解決するための手段] 問題点解決のための手段としてはループ型細管ヒートパ
イプの作動原理をそのまま利用する。但し推進エネルギ
ー付与手段としては熱エネルギーによる作動液の沸騰及
び蒸気圧に依らず1機械的エネルギーによることとし、
ここに本発明の特徴がある。
9. Structure of the Invention [Means for Solving the Problems] As a means for solving the problems, the operating principle of the loop-type thin tube heat pipe is utilized as is. However, the propulsion energy imparting means is not dependent on boiling of the working fluid due to thermal energy or vapor pressure, but is based on mechanical energy.
This is a feature of the present invention.

ループ型細管ヒートパイプの作動の原理は受熱部におけ
る作動液の蒸発沸騰により逆止弁前後に発生する蒸気圧
変動及び循環作動液内を伝播するパルス状圧力波による
。蒸気圧変動は複数逆止弁によりループが仕切られて形
成される圧力室間の呼吸作用を生じ、パルス状圧力波は
各逆止弁の弁体振動を発生し、これ等は逆止弁の逆止作
用により作動液推進力となり作動液を循環せしめループ
型細管ヒートパイプ作動の原動力となる。本発明はこの
作動液の蒸発沸騰により発生する圧力室間の呼吸作用及
び弁体の振動をコンテナに加えられる機械的外力にて発
生せしめて循環補助作用を発生せしめることにより問題
点を解決する。
The principle of operation of a loop-type capillary heat pipe is based on vapor pressure fluctuations that occur before and after the check valve due to evaporation and boiling of the working fluid in the heat receiving section, and pulse-like pressure waves that propagate within the circulating working fluid. Fluctuations in vapor pressure cause a breathing effect between pressure chambers formed by partitioning a loop with multiple check valves, and pulsed pressure waves generate vibrations in the valve body of each check valve. The check action creates a driving force for the working fluid, which circulates the working fluid and becomes the driving force for the operation of the loop-type capillary heat pipe. The present invention solves this problem by generating the breathing action between the pressure chambers caused by evaporation and boiling of the working fluid and the vibration of the valve body using an external mechanical force applied to the container to generate a circulation assisting action.

第1図は本発明に係るループ型細管ヒートパイプの一例
を示す。従来例との相異点は循環補助手段の構成にあり
、従来例の循環補助手段は第2図例示の如く補助受熱部
10、補助加熱手段11及びその前後の逆止弁5−3.
5−4から成っていたのに対し、本発明においては循環
補助部8、内容積変動手段9及びその前後の逆止弁5−
3.5−4から構成される。逆止弁5−3.5−4の作
動液循環方向規制方向は当然のことではあるが作動液循
環方向に一致している。その間に設けられてある循環補
助部8は内容積変動手段9の作用による内容積変動を容
易ならしめる構造になっている。例としてはその内外直
径が拡大されたり、伸縮自在な形状に形成されたりする
。又無限回に近く繰返される内容積変動外力に耐えさせ
る為、形成材料としては弾力性に富み且つ強靭な材料が
使用される。第1図と第2図とは循環補助手段以外は全
く同じ構造である。内容積変動手段9はその循環補助部
8の内容積を周期的に変動させ得る構造であれば如何な
る構造であっても構わない。又、内容積変動は呼吸動作
の如き変動でも、パルス的変動であっても、それ等の組
合わせであっても良い。
FIG. 1 shows an example of a loop-type capillary heat pipe according to the present invention. The difference from the conventional example lies in the configuration of the circulation assisting means, and the circulation assisting means of the conventional example includes an auxiliary heat receiving section 10, an auxiliary heating means 11, and check valves 5-3 .
5-4, in the present invention, the circulation assisting section 8, the internal volume varying means 9, and the check valves 5-4 before and after the circulation assisting section 8,
It consists of 3.5-4. Naturally, the direction in which the hydraulic fluid circulation direction is restricted by the check valve 5-3, 5-4 coincides with the hydraulic fluid circulation direction. The circulation auxiliary section 8 provided therebetween has a structure that facilitates internal volume variation due to the action of the internal volume variation means 9. For example, its inner and outer diameters may be enlarged, or it may be formed into a telescopic shape. In addition, in order to withstand the internal volume fluctuation external force that is repeated nearly infinite times, a highly elastic and strong material is used as the forming material. 1 and 2 have exactly the same structure except for the circulation assisting means. The internal volume varying means 9 may have any structure as long as it can periodically vary the internal volume of the circulation assisting section 8. Further, the internal volume variation may be a variation such as a breathing movement, a pulse-like variation, or a combination thereof.

[作 用] 第1図において内容積変動手段9の作用により循環補助
部8の内容積を縮小せしめると逆止弁5−3は閉となり
内部の作動液の一部は逆止弁5−4を通過して矢印の方
向に排出推進せしめられる。続いて循環補助部8の内容
積を復原又は膨張せしめると逆止弁5−4は閉となり、
低温連結細管4における上流側作動液の一部は逆止弁5
−3を通過して循環補助部8内に吸入せしめられる。
[Function] In FIG. 1, when the internal volume of the circulation auxiliary part 8 is reduced by the action of the internal volume varying means 9, the check valve 5-3 is closed and a part of the internal working fluid is transferred to the check valve 5-4. It passes through and is ejected and propelled in the direction of the arrow. Subsequently, when the internal volume of the circulation auxiliary section 8 is restored or expanded, the check valve 5-4 is closed.
A portion of the upstream hydraulic fluid in the low-temperature connecting capillary 4 is connected to the check valve 5.
-3 and is sucked into the circulation assisting section 8.

この作用を繰返すことにより低温連結細管4内の作動液
は間欠的な推進力を与えられ受熱部細管コンテナ1内に
送入される。送入された作動液は忽ち沸騰気化し、逆止
弁5−1.5−2の作用により強力な推進力を与えられ
気相リッチな高温作動液として、高温連結細管3を介し
て放熱部細管コンテナ2内に送入され、放熱冷却されて
液相リッチな低温作動液に変換されて、低温連結細管4
を介して循環補助部8内に還流する。このサイクルが自
ら繰返されることによりループ型細管ヒートパイプの作
動液は活発な循環を継続しヒートパイプとして良好に作
動を続ける。即ち、推進力を失なって作動困難となって
いたループ型細管ヒートパイプは活性化され、ボトムヒ
ートモード、トップヒートモードにもかかわらず、又受
熱部と放熱部の水位差の如何にかかわらず、更に連結細
管3゜4の屈曲状態の如何にもかかわらず良好な作動が
継続される。この場合循環補助手段による補助推進力の
付与は間欠的ではあるが、ループ型細管コンテナ内を循
環する作動液は総て2相混合流体でありその気相成分の
クツション効果により、実際の作動液循環速度は手順化
された流れとなる。又内容積変動手段の作動にはそれ程
強力な外力を必要としない。その理由はループ型細管コ
ンテナ内の圧力分布の差異による。第1図において逆止
弁5−1、受熱部細管コンテナ1、高温連結細管3の間
においては作動液の受熱部における沸騰蒸気圧、2相混
合流体である作動液内の気相成分の蒸気圧が充分に保持
されてあり、作動液の循環推進力も充分に保持されてい
る。然し放熱部においては細管コンテナ2内において放
熱と共に気相成分の蒸気圧は失なわれ、更に気相成分の
凝縮により蒸気圧は更に失なわれ、又低温連結細管4に
到達する時点では流体の管内圧力損失によって管内の圧
力は大幅に低下しており、循環補助部8の内容積変動に
要する外力はそれ程強力な外力を必要としないことにな
る。又受熱部1内の圧力による逆止弁5−1の閉鎖力は
強力ではあるがループ型細管ヒートパイプの作動原理か
ら分かる通り、逆止弁5−1の弁体は逆止弁5−2との
相互作用により高圧と低圧を交互に高速で反復する振動
状態になっており、その弁座は開閉状態を繰返しており
、循環補助部8の収縮、及び作動液推進を強力に拡げる
如きことは無い。
By repeating this action, the working fluid in the low temperature connecting capillary tube 4 is given an intermittent driving force and is sent into the heat receiving section capillary container 1. The pumped working fluid immediately boils and vaporizes, and is given a strong driving force by the action of the check valve 5-1. It is fed into the thin tube container 2, is heat-radiated and cooled, and is converted into a liquid-rich low-temperature working fluid, which is then transferred to the low-temperature connecting thin tube 4
It flows back into the circulation assisting section 8 through the. As this cycle repeats itself, the working fluid in the loop-type capillary heat pipe continues to circulate actively and continues to operate well as a heat pipe. In other words, the loop-type thin tube heat pipe, which had lost propulsion and was difficult to operate, was activated, regardless of the bottom heat mode or top heat mode, or regardless of the water level difference between the heat receiving part and the heat dissipating part. Furthermore, good operation continues regardless of the bending state of the connecting capillary tubes 3 and 4. In this case, although the auxiliary propulsive force is applied intermittently by the circulation auxiliary means, the working fluid circulating inside the loop-type capillary container is a two-phase mixed fluid, and due to the cushioning effect of its gas phase component, the actual working fluid The circulation speed becomes a procedural flow. Further, the internal volume varying means does not require a very strong external force to operate. The reason for this is due to the difference in pressure distribution within the loop-type capillary container. In Fig. 1, between the check valve 5-1, the heat-receiving part capillary container 1, and the high-temperature connecting capillary tube 3, the boiling vapor pressure of the working fluid in the heat-receiving part, and the vapor of the gas phase component in the working fluid, which is a two-phase mixed fluid. The pressure is sufficiently maintained, and the circulation driving force of the hydraulic fluid is also sufficiently maintained. However, in the heat dissipation section, the vapor pressure of the gaseous components is lost along with the heat dissipation in the thin tube container 2, and the vapor pressure is further lost due to condensation of the gaseous components. The pressure inside the pipe is significantly reduced due to the pressure loss within the pipe, and the external force required to change the internal volume of the circulation assisting section 8 does not require a very strong external force. Although the closing force of the check valve 5-1 due to the pressure inside the heat receiving section 1 is strong, as can be seen from the operating principle of the loop-type thin tube heat pipe, the valve body of the check valve 5-1 is similar to the check valve 5-2. The valve seat is in a vibrating state in which high pressure and low pressure are alternately repeated at high speed due to the interaction with There is no.

ループ型細管ヒートパイプにおいて低温連結細管4内に
おいても作動液の循環推進力は全く失なわれているので
はなく、第1図の如きトップヒート状態であっても循環
速度が低下し熱輸送能力が低下しているだけであるから
循環補助手段は受放熱部間の水位差に相当する循環補助
能力があればよいことになる。即ち、水位差5mの場合
0.5kg/alの推進力を与えれば良いのであり、内
容積変動手段の作動にそれ程大きな仕事量は必要としな
い。
In the loop-type capillary heat pipe, the circulation driving force of the working fluid is not completely lost even in the low-temperature connecting capillary tube 4, and even in the top heat state as shown in Fig. 1, the circulation speed decreases and the heat transport capacity decreases. Since the water level is only decreasing, the circulation assisting means only needs to have a circulation assisting ability corresponding to the water level difference between the heat receiving and radiating parts. That is, when the water level difference is 5 m, it is sufficient to apply a propulsive force of 0.5 kg/al, and the operation of the internal volume varying means does not require a large amount of work.

本発明に係る循環補助手段は第2図例示の如く低温作動
液の温度を上昇せしめることが無いからループ型細管ヒ
ートパイプの熱輸送効率を低下せしめることが無い。又
僅かなエネルギーの付加により、低温連結細管4による
性能低下を防ぎ、熱輸送能力を大幅に改善する。従って
起動、再起動時の引金としての利用だけでなく、常時こ
れを作動せしめて、ループ型細管ヒートパイプの適用姿
勢に関係なく高性能を発揮させることが出来る。
Since the circulation assisting means according to the present invention does not increase the temperature of the low-temperature working fluid as illustrated in FIG. 2, it does not reduce the heat transport efficiency of the loop-type capillary heat pipe. Furthermore, by adding a small amount of energy, the deterioration in performance caused by the low-temperature connecting capillary tube 4 is prevented, and the heat transport ability is greatly improved. Therefore, not only can it be used as a trigger at startup and restart, but it can also be activated at all times, allowing high performance to be exhibited regardless of the position in which the loop-type thin tube heat pipe is applied.

[実施例] 第1実施例 本実施例においては第3図に例示の如く循環補助部8の
コンテナは他の細管コンテナ部より内径及び外径が拡大
されて、僅かに外部から圧縮されても逆止弁5−3.5
−4の作用により作動液が矢印の方向に排出されるよう
に形成されてある。
[Embodiment] First Embodiment In this embodiment, as illustrated in FIG. 3, the container of the circulation auxiliary part 8 is enlarged in inner and outer diameters than other thin tube container parts, so that it can be compressed slightly from the outside. Check valve 5-3.5
-4, the hydraulic fluid is discharged in the direction of the arrow.

又該コンテナは弾性に富む強靭な薄肉金属管で形成され
てあり、連続長日月におよぶ交番的な圧縮変形に耐えて
金属疲労による破損が発生しない様になっている。内容
積変動手段は如何なる構造でも良い。図においては偏心
カム9−1の回転により振動子9−2が循環補助部8に
圧縮力を反復して加える様になっている。循環補助部8
の復原はコンテナの弾性及び作動液の内圧によって行な
われる。図において偏心カム9−1の偏心率は誇大に示
してあり、実際には振1111〜21111程度を与え
る偏心に過ぎない。
Furthermore, the container is made of a strong thin-walled metal tube with high elasticity, so that it can withstand alternating compressive deformation over a continuous long period of time, and does not suffer from damage due to metal fatigue. The internal volume varying means may have any structure. In the figure, the rotation of the eccentric cam 9-1 causes the vibrator 9-2 to repeatedly apply compressive force to the circulation assisting section 8. Circulation auxiliary part 8
The restoration is performed by the elasticity of the container and the internal pressure of the hydraulic fluid. In the figure, the eccentricity of the eccentric cam 9-1 is exaggerated, and in reality it is only an eccentricity that gives a vibration of about 1111 to 21111.

第2実施例 第2実施例においては8−1の循環補助部は柔軟で弾性
に富み且つガスバリヤ性の秀れたプラスチック管かゴム
管の何れかで形成されてある。該部分は弛め部分の細管
コンテナより内径及び外径共に拡大されてあり、更に復
原性及び耐久性を強化せしめる為、強靭で弾性に富む金
属細線が横巻又は編組され該プラスチック管又はゴム管
の管壁内に埋設されてある。この様な第2実施例は復原
性が良好で且つ柔軟であるから、内容積変動手段の変動
割合を大きく取り、呼吸作用を大きくさせることが出来
るので第1実施例より循環補助手段の補助能力を大きく
することが出来る。注意を要する点としてはプラスチッ
ク材料又はゴム材料には選択的に特定のガスに対し通気
性が大きい場合があるから、作動液と循環補助部構成材
料との適合性に注意し、作動液蒸気に対しガスバリヤ性
に秀れた材料を選択する必要がある。
Second Embodiment In the second embodiment, the circulation assisting section 8-1 is made of either a plastic tube or a rubber tube that is flexible, highly elastic, and has excellent gas barrier properties. The inner and outer diameters of this part are larger than those of the thin tube container in the loose part, and in order to further strengthen the stability and durability, strong and highly elastic thin metal wires are horizontally wound or braided into the plastic or rubber tube. It is buried within the pipe wall. Since the second embodiment has good stability and flexibility, it is possible to increase the variation rate of the internal volume variation means and increase the respiratory action, so that the assisting ability of the circulation assisting means is higher than that of the first embodiment. can be made larger. It is important to note that plastic or rubber materials may selectively have high permeability to certain gases, so pay attention to the compatibility of the working fluid with the materials that make up the circulation auxiliary part, and avoid leaking the working fluid vapor. However, it is necessary to select a material with excellent gas barrier properties.

第3実施例 第4図例示の第3実施例においては循環補助部8−2に
は強靭で弾力性に富む金属から成るベローズが用いられ
である。従って内容積の変動はベローズの中心軸に沿っ
た伸縮によって得られる。
Third Embodiment In the third embodiment illustrated in FIG. 4, a bellows made of a strong and highly elastic metal is used for the circulation assisting part 8-2. Therefore, variations in internal volume are obtained by expansion and contraction along the central axis of the bellows.

内容積変動手段は如何なる手段であっても良いが、第4
図においては偏心カム9−1の回転によって発生する振
動子9−2の上下変位をリンク10−2を介してベロー
ズに伝達して上下の伸縮運動をなさしめる手段を例示し
である。12−1は内容積変動手段の支持架台である。
The internal volume varying means may be any means, but the fourth
The figure shows an example of means for transmitting the vertical displacement of the vibrator 9-2 caused by the rotation of the eccentric cam 9-1 to the bellows via the link 10-2 to cause vertical expansion and contraction movement. 12-1 is a support frame for the internal volume varying means.

該実施例は内容積変動率を大きくすることが出来るが低
温連結細管も変位するので3−1の如く屈曲部を設ける
如き変位吸収手段を講じる必要がある。
Although this embodiment can increase the internal volume fluctuation rate, the low-temperature connecting thin tube is also displaced, so it is necessary to provide a displacement absorbing means such as providing a bent portion as shown in 3-1.

第4実施例 第5図に例示の第4実施例の循環補助手段には内容積変
動手段に併設して超音波振動子13により循環補助部8
−゛1内の作動液に超音波振動を与える様になっている
。ループ型細管ヒートパイプの基本的な作動原理により
、受熱部組管コンテナ1内における作動液沸騰によって
発生するパルス波群により、逆止弁5の弁体が振動して
作動液推進作用を発生する。超音波振動はこの逆止弁の
弁体振動を助けてループ型細管ヒートパイプの循環を活
発化せしめる。
Fourth Embodiment In the circulation assisting means of the fourth embodiment illustrated in FIG.
- Ultrasonic vibrations are applied to the hydraulic fluid in 1. According to the basic operating principle of the loop-type capillary heat pipe, the valve body of the check valve 5 vibrates due to the pulse wave group generated by the boiling of the working fluid in the heat-receiving section tube assembly container 1, thereby generating a working fluid propulsion action. . The ultrasonic vibrations assist the vibration of the valve body of this check valve and activate the circulation in the loop-shaped thin tube heat pipe.

ハ0発明の効果 本発明に係るループ型細管ヒートパイプは補助循環部の
作用により、如何なる状態においても正常な起動が可能
であり、トップヒートモードにおいても性能が低下する
ことなく、受熱部と放熱部が大きな水位差で分離されて
あっても、又長距離を隔てて分離されてあっても正常に
作動することが出来る。
Effects of the Invention The loop-type thin tube heat pipe according to the present invention can be started normally under any condition due to the action of the auxiliary circulation part, and even in the top heat mode, the performance does not deteriorate and the heat receiving part and heat dissipation part are connected. It can operate normally even if the parts are separated by a large water level difference or separated by a long distance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るループ型細管ヒートパイプの基本
構造(トップヒートモード)の−例を示す略図。 第2図は従来型の循環補助手段を有するループ型細管ヒ
ートパイプ(トップヒートモード)の−例を示す略図。 第3図は第1実施例及び第2実施例における循環補助手
段の一例を示す略図。 第4図は第3実施例における循環補助手段の一例を示す
略図。 第5図は第4実施例における循環補助手段の一例を示す
略図。 1・・・受熱部組管コンテナ、 2・・・放熱部細管コンテナ、 4・・・低温連結細管。 6・・・加熱手段、 8・・・循環補助部、 9−1・・・偏心カム、 10・・・補助受熱部、 12二1・・・支持架台、 13・・・超音波振動子。 3・・・高温連結細管、 5・・・逆止弁、 7・・・冷却手段、 9・・・内容積変動手段、 9−2・・・振動子、 11・・・補助加熱手段、 12−2・・・リンク、
FIG. 1 is a schematic diagram showing an example of the basic structure (top heat mode) of a loop-type thin tube heat pipe according to the present invention. FIG. 2 is a schematic diagram illustrating an example of a loop-type capillary heat pipe (top heat mode) with conventional circulation assisting means. FIG. 3 is a schematic diagram showing an example of circulation assisting means in the first embodiment and the second embodiment. FIG. 4 is a schematic diagram showing an example of circulation assisting means in the third embodiment. FIG. 5 is a schematic diagram showing an example of circulation assisting means in the fourth embodiment. 1...Heat receiving section assembled tube container, 2...Heat radiating section thin tube container, 4...Low temperature connecting thin tube. 6... Heating means, 8... Circulation auxiliary part, 9-1... Eccentric cam, 10... Auxiliary heat receiving part, 12-21... Support frame, 13... Ultrasonic vibrator. 3... High temperature connecting thin tube, 5... Check valve, 7... Cooling means, 9... Internal volume varying means, 9-2... Vibrator, 11... Auxiliary heating means, 12 -2...link,

Claims (5)

【特許請求の範囲】[Claims] (1)蛇行する長尺細管の両端末が相互に流通自在に接
続されてループ型細管コンテナが形成されてあり、該細
管コンテナに封入されてある作動液がループ内の所定の
位置に設けられてある逆止弁の作用により自ら所定の方
向に循環して、ループ型細管コンテナの所定の位置に設
けられてある受熱部から同様に所定の位置に設けられて
ある放熱部に熱量を輸送するループ型細管ヒートパイプ
において、受熱部で吸収した熱量を放熱部で放出し、冷
却された低温作動液が再び受熱部に還流する部分に相当
する低温細管コンテナの所定の部分に作動液の循環推進
力を補助して循環速度を増加せしめる循環補助手段が配
設されてあり、循環補助手段の構造は所定の距離を隔て
て少なくとも2個の逆止弁が配設されてあり、それ等の
循環規制方向は作動液の循環方向と同一方向であり、逆
止弁の間の細管コンテナの循環補助部にはその内容積を
短時間の周期で変化せしめる内容積変動手段が設けられ
てあることを特徴とするループ型細管ヒートパイプ。
(1) Both ends of a meandering long thin tube are connected to each other so as to allow free flow, forming a loop-type thin tube container, and the hydraulic fluid sealed in the thin tube container is provided at a predetermined position within the loop. It circulates in a predetermined direction by itself due to the action of a check valve, and transports heat from the heat receiving part located at a predetermined position of the loop-type thin tube container to the heat radiating part also located at a predetermined position. In a loop-type capillary heat pipe, the heat absorbed in the heat receiving part is released in the heat dissipating part, and the cooled low-temperature working fluid circulates in a predetermined part of the low-temperature capillary container corresponding to the part where it flows back to the heat receiving part. A circulation assisting means is provided to increase the circulation speed by assisting the force, and the structure of the circulation assisting means includes at least two check valves arranged at a predetermined distance apart from each other, and the circulation assisting means increases the circulation speed. The regulation direction is the same as the circulation direction of the hydraulic fluid, and the circulation auxiliary part of the thin tube container between the check valves is provided with an internal volume varying means for changing the internal volume in a short period. Features a loop-type thin tube heat pipe.
(2)循環補助手段が配設されてある部分の循環補助部
コンテナは内径及び外径が拡大されてあり、該外径拡大
部分は弾性に富む強靭な薄肉金属管で形成されてあり、
内容積変動手段は管の中心軸に直角方向に断続的に圧縮
せしめるか、交番的に圧縮と膨張を発生せしめるか何れ
かの手段であることを特徴とする特許請求の範囲第1項
に記載のループ型細管ヒートパイプ。
(2) The circulation assisting part container in the portion where the circulation assisting means is disposed has an enlarged inner diameter and outer diameter, and the enlarged outer diameter portion is formed of a strong thin-walled metal tube with high elasticity;
Claim 1, characterized in that the internal volume varying means is either means for intermittently compressing the tube in a direction perpendicular to the central axis of the tube, or alternately causing compression and expansion. loop type capillary heat pipe.
(3)循環補助手段が配設されてある部分の循環補助部
コンテナは内径及び外径が拡大されてあり、該外径拡大
部分は弾性に富む強靭な金属細線の横巻、編組等により
強化された柔軟で弾性に富み且つガスバリヤ性の秀れた
プラスチック管かゴム管の何れかで形成されてあり、内
容積変動手段は管の中心軸に直角な方向に断続的に圧縮
せしめるか、交番的に圧縮と膨張を発生せしめるか何れ
かの手段であることを特徴とする特許請求の範囲第1項
に記載のループ型細管ヒートパイプ。
(3) The inner and outer diameters of the circulation assisting container in the area where the circulation assisting means is installed are enlarged, and the enlarged outer diameter portion is reinforced by horizontal winding, braiding, etc. of highly elastic and tough metal wire. It is made of either a plastic tube or a rubber tube that is flexible, highly elastic, and has excellent gas barrier properties, and the internal volume varying means is intermittently compressed in a direction perpendicular to the central axis of the tube, or 2. The loop-type capillary heat pipe according to claim 1, wherein the loop-type thin tube heat pipe is any means for generating compression and expansion.
(4)循環補助手段が配設されてある部分の循環補助部
コンテナは外径が拡大されてあり、該外径拡大部分は弾
性に富む強靭な金属材料で形成されたベローズになって
おり、内容積変動手段は管の中心軸方向にベローズを断
続的に圧縮せしめるか、交番的に圧縮と伸張を発生せし
めるか何れかの手段であることを特徴とする特許請求の
範囲第1項に記載のループ型細管ヒートパイプ。
(4) The outer diameter of the circulation assisting container in the portion where the circulation assisting means is disposed is enlarged, and the enlarged outer diameter portion is a bellows made of a strong metal material rich in elasticity; Claim 1, characterized in that the internal volume varying means is a means for intermittently compressing the bellows in the direction of the central axis of the tube, or alternately causing compression and expansion. loop type capillary heat pipe.
(5)内容積変動手段は超音波発振装置が併用されてあ
る手段であって循環補助手段が配設されてある部分の循
環補助部コンテナには内容積の変動と共に超音波振動が
加えられることを特徴とする特許請求の範囲第1項に記
載のループ型細管ヒートパイプ。
(5) The internal volume varying means is a means in which an ultrasonic oscillator is also used, and ultrasonic vibrations are applied to the circulation assisting container in the portion where the circulation assisting means is installed as well as changing the internal volume. The loop-type capillary heat pipe according to claim 1, characterized in that:
JP15862390A 1990-06-19 1990-06-19 Loop type fine heat pipe Pending JPH0452495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15862390A JPH0452495A (en) 1990-06-19 1990-06-19 Loop type fine heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15862390A JPH0452495A (en) 1990-06-19 1990-06-19 Loop type fine heat pipe

Publications (1)

Publication Number Publication Date
JPH0452495A true JPH0452495A (en) 1992-02-20

Family

ID=15675758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15862390A Pending JPH0452495A (en) 1990-06-19 1990-06-19 Loop type fine heat pipe

Country Status (1)

Country Link
JP (1) JPH0452495A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0849991A (en) * 1994-08-02 1996-02-20 Akutoronikusu Kk Closed system temperature controller
JPH0961074A (en) * 1995-08-25 1997-03-07 Akutoronikusu Kk Closed temperature control system
CN105737652A (en) * 2016-04-12 2016-07-06 张洪延 Heat transmission device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170388A (en) * 1984-09-10 1986-04-11 Mitsubishi Electric Corp Heat transfer device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170388A (en) * 1984-09-10 1986-04-11 Mitsubishi Electric Corp Heat transfer device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0849991A (en) * 1994-08-02 1996-02-20 Akutoronikusu Kk Closed system temperature controller
JPH0961074A (en) * 1995-08-25 1997-03-07 Akutoronikusu Kk Closed temperature control system
CN105737652A (en) * 2016-04-12 2016-07-06 张洪延 Heat transmission device

Similar Documents

Publication Publication Date Title
JP4252463B2 (en) Thermoacoustic device
US7347053B1 (en) Densifier for simultaneous conditioning of two cryogenic liquids
JPH07332881A (en) Loop type zigzag capillary heat pipe
US6637211B1 (en) Circulating heat exchangers for oscillating wave engines and refrigerators
CN1296662C (en) Compliant enclosure for thermoacoustic devices
US20040060294A1 (en) Steam engine
CN205843451U (en) A kind of antigravity heat pipe
JP2006214406A (en) Thermoacoustic device
JPH0346745B2 (en)
JP2007237020A (en) Thermoacoustic device
JP4724317B2 (en) Forced oscillating flow heat pipe and design method thereof
JP2007530911A (en) Cryogenic cooler system with frequency-converting mechanical resonator
KR20050086744A (en) Pulse tube refrigeration system
US6684941B1 (en) Reciprocating-mechanism driven heat loop
JPWO2004088217A1 (en) Pulse tube refrigerator
WO1993018291A1 (en) Liquid piston heat engine
JPH0697147B2 (en) Loop type thin tube heat pipe
JPH0452495A (en) Loop type fine heat pipe
JP2005253240A (en) Thermoacoustic power generator
US3006154A (en) Method for refrigeration and heat transfer
JPH01127895A (en) Closed loop pipe type heat transfer device
JP5655313B2 (en) Thermoacoustic engine
JP7145370B2 (en) Toroidal spiral cascading of multiple heat engine stages in a traveling-wave thermoacoustic engine
JP2008286507A (en) Pulse tube refrigerator
JP2004003807A (en) Self-excited vibration heat pipe