JPH0452365B2 - - Google Patents

Info

Publication number
JPH0452365B2
JPH0452365B2 JP58079889A JP7988983A JPH0452365B2 JP H0452365 B2 JPH0452365 B2 JP H0452365B2 JP 58079889 A JP58079889 A JP 58079889A JP 7988983 A JP7988983 A JP 7988983A JP H0452365 B2 JPH0452365 B2 JP H0452365B2
Authority
JP
Japan
Prior art keywords
blade
stator
sectional shape
loss
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58079889A
Other languages
Japanese (ja)
Other versions
JPS59206603A (en
Inventor
Tatsuro Oomori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP7988983A priority Critical patent/JPS59206603A/en
Publication of JPS59206603A publication Critical patent/JPS59206603A/en
Publication of JPH0452365B2 publication Critical patent/JPH0452365B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は軸流タービンに係り、特に翼の長さに
応じて各段落の静翼の翼断面形状を決定し、ター
ビンの全段落にわたつて高い性能を維持できるよ
うにした軸流タービンに関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an axial flow turbine, and in particular, determines the blade cross-sectional shape of the stationary blade in each stage according to the length of the blade, and This invention relates to an axial flow turbine that maintains high performance.

〔発明の技術的背景と問題点〕[Technical background and problems of the invention]

一般に蒸気タービンのように軸流タービンは、
第1図に示したように、ノズルダイアフラム1を
有し、このノズルダイアフラム1はノズルダイア
フラム内輪2とノズル外輪3とこれらの間に円周
方向に多数配列された静翼4とから構成されてい
る。また回転軸5と一体のデイスク6には多数の
動翼7が設けられている。
Axial flow turbines, like steam turbines, are generally
As shown in FIG. 1, the nozzle diaphragm 1 includes a nozzle diaphragm inner ring 2, a nozzle outer ring 3, and a large number of stationary blades 4 arranged circumferentially between them. There is. Further, a large number of moving blades 7 are provided on a disk 6 that is integral with the rotating shaft 5.

蒸気等の作動流体はノズルダイアフラム内輪2
の外周面8とノズル外輪の内周面9とで形成され
る環状の通路内を軸方向に流れ、静翼4を通過す
ることによつて充分な旋回力が与えられたのちに
動翼7に入り、ここで作動流体の旋回力が動翼7
を介して回転軸5の回転力に変換される。動翼7
から流出した作動流体は次段の静翼に入り同様の
作動が繰り返される。このようにして作動流体の
持つエネルギが回転軸の動力へと変換されるが、
作動流体が静翼4を通過する際に、作動流体のも
つ粘性のために静翼4の表面および外周面8と内
周面9には速度の遅い境界層が発生し、タービン
の仕事に関与しないプロフイール損失を伴う。
Working fluid such as steam is supplied to the nozzle diaphragm inner ring 2.
The flow flows in the axial direction in the annular passage formed by the outer circumferential surface 8 of the nozzle and the inner circumferential surface 9 of the nozzle outer ring, and after passing through the stationary blades 4 and being given sufficient swirling force, the rotor blades 7 The swirling force of the working fluid is applied to the rotor blade 7.
It is converted into the rotational force of the rotating shaft 5 via. Moving blade 7
The working fluid flowing out from the stator vane enters the next stage stator vane and the same operation is repeated. In this way, the energy of the working fluid is converted into power of the rotating shaft,
When the working fluid passes through the stator blades 4, due to the viscosity of the working fluid, a slow boundary layer is generated on the surface of the stator blade 4 and on the outer peripheral surface 8 and inner peripheral surface 9, which contributes to the work of the turbine. No profile loss involved.

一方、軸流タービンの静翼のように円弧状の曲
面を有する流路では、流路内に流線の曲率に基づ
く圧力分布が生じ、第2図に示される静翼腹側1
では圧力が高く、静翼背側1Sでは圧力が低くな
る。この圧力分布は主流の流速および上記曲率に
よつて支配されるが、外周面8および内周面9の
近傍における流速は境界層のために主流の流速に
比べて小さく、このため圧力差に対抗するだけ十
分な遠心力が得られず、内外周面に沿つて静翼腹
側1Pから静翼背側1Sに向う二次流れ10が誘起
され渦11が発生し二次損失を伴う。
On the other hand, in a flow path having an arcuate curved surface like the stator blade of an axial flow turbine, a pressure distribution based on the curvature of the streamline occurs in the flow path, and the pressure distribution on the ventral side of the stator blade shown in FIG.
The pressure is high at P , and the pressure is low at 1 S on the back side of the stator blade. This pressure distribution is controlled by the flow velocity of the mainstream and the above-mentioned curvature, but the flow velocity near the outer circumferential surface 8 and the inner circumferential surface 9 is smaller than that of the mainstream due to the boundary layer, and therefore the pressure difference is Therefore, a secondary flow 10 is induced along the inner and outer circumferential surfaces from the stator blade vent side 1 P to the stator blade back side 1 S , generating a vortex 11 and causing secondary loss.

第3図は第1図のA−A線に沿つた静翼の断面
形状を示したものであり、基準線m−nとp−q
との交叉角α1は作動流体の入口角を示し、基準線
r−sとt−uとの交叉角α2は出口角を示してい
る。従来用いられているフリー・ボルテツクス・
デザインを採用すると、静翼出口では半径と流体
速度の回転方向成分との積が一定となるように出
口角度α2が半径方向に分布を持つが、翼断面形状
としてはほぼ同一のものを半径方向にひねりなが
ら積み重ねた形状の静翼が使用される。翼断面形
状はプロフイール損失を極力小さくするような形
状が用いられる。従来の亜音速段落からなる多段
式軸流タービンでは、全段落にわたつて同一の基
本断面形状が用いられる。また、一段の衝動ター
ビンにおいては、入口角度α1=90゜、出口角度α2
=11〜15゜が設定される。
Figure 3 shows the cross-sectional shape of the stationary blade along the line A-A in Figure 1, and the reference lines m-n and p-q
The intersection angle α 1 between the reference lines rs and tu indicates the inlet angle of the working fluid, and the intersection angle α 2 between the reference lines rs and tu indicates the outlet angle. Conventionally used free vortex
When this design is adopted, the exit angle α 2 has a distribution in the radial direction so that the product of the radius and the rotational direction component of the fluid velocity is constant at the exit of the stator blade, but the blade cross-sectional shape is almost the same as the radius. Stator blades are used that are stacked and twisted in one direction. The cross-sectional shape of the blade is such that the profile loss is minimized. In conventional multi-stage axial flow turbines consisting of subsonic stages, the same basic cross-sectional shape is used throughout all the stages. In addition, in a single-stage impulse turbine, the inlet angle α 1 =90° and the outlet angle α 2
= 11~15° is set.

翼の断面形状を決定するパラメータとしては、
翼出口端から翼形の最大厚み部分に内接する円の
中心点までの軸方向距離l1と、静翼の入口角と出
口角との基準線m−nとr−sの延長線の交点o
までの軸方向距離l2との比が考えられる。そし
て、翼背側の減速域を極力減らしてプロフイール
損失を小さくした場合l1/l2=1.6〜1.9の範囲とな
る。しかし、実際のタービンの静翼として使用す
る場合、前記の距離比のl1/l2を有する翼形はプ
ロフイール損失は小さいが、二次流れの影響によ
り、翼長が短い静翼では全体的な損失が急激に増
大する。
The parameters that determine the cross-sectional shape of the wing are:
Intersection of the axial distance l 1 from the blade outlet end to the center point of the circle inscribed in the maximum thickness part of the airfoil and the extension of the reference line m-n and r-s between the inlet angle and outlet angle of the stationary blade o
The ratio of the axial distance l 2 to When the profile loss is reduced by reducing the deceleration region on the blade dorsal side as much as possible, l 1 /l 2 =1.6 to 1.9. However, when used as a stator vane in an actual turbine, an airfoil with the distance ratio of l 1 / l 2 described above has a small profile loss, but due to the influence of secondary flow, a stator blade with a short blade length loses its overall profile. losses increase rapidly.

第4図はl1/l2=1.8、入口角度α1=90゜、出口角
度α2=12゜の静翼に対する翼長〔mm〕と損失〔%〕
との関係を示したものである。図から明らかなよ
うに、70mm以下の短い翼長では全体的な損失が急
増していることがわかる。
Figure 4 shows the blade length [mm] and loss [%] for a stationary blade with l 1 /l 2 = 1.8, entrance angle α 1 = 90°, and exit angle α 2 = 12°.
This shows the relationship between As is clear from the figure, the overall loss increases rapidly for short blade lengths of 70 mm or less.

〔発明の目的〕[Purpose of the invention]

そこで本発明の目的は、タービンの全段落にわ
たつて高い性能を維持できるようにした軸流ター
ビンを提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an axial flow turbine that can maintain high performance throughout all stages of the turbine.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明の軸流ター
ビンは、静翼と動翼とを組合わせて各段落を構成
し、作動流体の上流側から下流側に向つて漸次長
い翼長の静翼と動翼とからなる段落を同軸的に配
置した多段式の軸流タービンにおいて;前記静翼
は、その長手方向各部の翼断面形状が、その静翼
の翼長に対応するほぼ等しい距離比l1/l2を有し、
前記距離比l1/l2は翼長が長い静翼に対しては相
対的に小さく、翼長が短い静翼に対しては相対的
に大きくなるように各段落の静翼の距離比l1/l2
を選定し、この距離比l1/l2に基づいて翼断面形
状が選定されていることを特徴とするものであ
る。
In order to achieve the above object, the axial flow turbine of the present invention configures each stage by combining stator blades and moving blades, and the stator blades have a blade length that gradually increases from the upstream side to the downstream side of the working fluid. In a multi-stage axial flow turbine in which a stage consisting of a rotor blade and a rotor blade are coaxially arranged; 1 /l 2 ;
The distance ratio l of the stator blades in each stage is set so that the distance ratio l 1 /l 2 is relatively small for stator blades with a long blade length and relatively large for stator blades with a short blade length. 1 /l 2
is selected, and the blade cross-sectional shape is selected based on this distance ratio l 1 /l 2 .

〔発明の実施例〕[Embodiments of the invention]

以下本発明による軸流タービンの実施例を第5
図乃至第12図を参照して説明する。
The following is a fifth embodiment of the axial flow turbine according to the present invention.
This will be explained with reference to FIGS. 12 to 12.

第5図において、回転軸5の軸上には軸方向に
所定の距離をおいて6個のデイスク6,6,…6
が一体に形成され、それぞれの外周端には翼長を
漸次増大させた動翼7,7,…7が設けられてい
る。そして、これらの動翼7,7,…7の手前に
は、それぞれノズルダイアフラム1,1,…1が
配置され、各ノズルダイアフラム1は、ノズルダ
イアフラム内輪2とノズル外輪3とこれらの間に
円周方向に多数配列された静翼4,4,…4とか
ら構成されている。そして本発明によれば、これ
ら静翼4はそれぞれ、その翼長に応じてほぼ同一
の翼断面形状を有している。すなわち、第1段の
静翼の翼断面形状a−a、第2段乃至第4段の翼
断面形状b−bおよび第5段および第6段の翼断
面形状c−cは、第6図に示したようにそれぞれ
異なつている。これらの翼断面形状の距離比l1
l2と翼長H〔mm〕との関係は次のように定められ
る。
In FIG. 5, six disks 6, 6, .
are integrally formed, and rotor blades 7, 7, . In front of these rotor blades 7, 7, . . . , nozzle diaphragms 1, 1, . It is composed of a large number of stationary blades 4, 4, . . . 4 arranged in the circumferential direction. According to the present invention, these stationary blades 4 each have substantially the same blade cross-sectional shape depending on their blade lengths. That is, the blade cross-sectional shape a-a of the first stage stator vane, the blade cross-sectional shape b-b of the second to fourth stages, and the blade cross-sectional shape c-c of the fifth and sixth stages are as shown in FIG. As shown, they are different. The distance ratio of these blade cross-sectional shapes l 1 /
The relationship between l 2 and blade length H [mm] is determined as follows.

H<50mmのとき l1/l2=2.7(第6図a) 50mm≦H≦100mmのとき l1/l2=2.2(第6図b) 100mm<Hのとき l1/l2=1.8(第6図c) 次に第5図および第6図のように構成された本
発明による軸流タービンの効果について考察す
る。
When H < 50 mm, l 1 / l 2 = 2.7 (Fig. 6 a) When 50 mm≦H ≦ 100 mm, l 1 / l 2 = 2.2 (Fig. 6 b) When 100 mm < H, l 1 / l 2 = 1.8 (FIG. 6c) Next, the effects of the axial flow turbine according to the present invention configured as shown in FIGS. 5 and 6 will be considered.

静翼出口端から翼形の最大厚さ部分に内接する
円の中心点までの軸方向距離l1と、静翼出口端か
ら静翼入口角と出口角の基準線の交点までの距離
l2との比l1/l2が大きくなるほど、翼の出口端近
くで背側と腹側の圧力差が大きくなる。
The axial distance l 1 from the stator blade outlet end to the center point of the circle inscribed in the maximum thickness part of the airfoil, and the distance from the stator blade exit end to the intersection of the reference lines of the stator blade inlet angle and outlet angle.
The larger the ratio l 1 / l 2 to l 2 , the greater the pressure difference between the dorsal and ventral sides near the exit end of the wing.

第7図は翼面上の圧力分布を示したものであ
り、l1/l2=2.7の場合、翼入口端近くで背側と腹
側の圧力差が小さく、出口端近くで圧力差が大き
くなつている。またl1/l2=1.8の場合、l1/l2
2.7の場合に比べて翼入口端での背側と腹側の圧
力差が大きくなつている。二次流れは翼入口端近
傍の背側と腹側との圧力差に起因して発生するの
で、l1/l2=2.7の静翼の方が二次損失を小さく抑
えることができる。ただし、l1/l2=2.7の静翼は
l1/l2=1.8の静翼に比べて背側スロート以降の圧
力上昇が大きいため背側における翼面境界層が発
達してプロフイール損失が大きくなる。
Figure 7 shows the pressure distribution on the blade surface. When l 1 / l 2 = 2.7, the pressure difference between the dorsal side and the ventral side is small near the blade inlet end, and the pressure difference is large near the exit end. It's summery. Also, if l 1 /l 2 = 1.8, l 1 /l 2 =
Compared to the case of 2.7, the pressure difference between the dorsal and ventral sides at the wing inlet end is larger. Since the secondary flow is generated due to the pressure difference between the dorsal side and the ventral side near the blade inlet end, the stator blade with l 1 /l 2 = 2.7 can suppress the secondary loss to a smaller value. However, the stator blade with l 1 /l 2 = 2.7
Compared to a stationary blade with l 1 /l 2 = 1.8, the pressure rise after the dorsal throat is large, so the wing surface boundary layer develops on the dorsal side, resulting in a large profile loss.

第8図は第6図に示した翼の断面a,b,cに
対応して翼長と損失との関係を示したものであ
り、H<50mmではl1/l2=2.7の翼断面形状、50mm
≦H≦100mmではl1/l2=2.2の翼断面形状、H>
100mmではl1/l2=1.8の翼断面形状の損失が少な
いことがわかる。これは、翼長が小さい静翼で
は、二次損失が損失の支配的な部分になり、l1
l2が大きい翼断面形状が有利であり、逆に翼長が
大きい静翼では、プロフイール損失が損失の支配
的な部分になり、l1/l2が小さい翼断面形状が有
利であることによる。
Figure 8 shows the relationship between blade length and loss corresponding to blade cross sections a, b, and c shown in Figure 6, and when H < 50 mm, the blade cross section is l 1 / l 2 = 2.7. Shape, 50mm
When ≦H≦100mm, the blade cross-sectional shape is l 1 /l 2 = 2.2, H>
It can be seen that at 100 mm, the loss of the blade cross-sectional shape with l 1 /l 2 = 1.8 is small. This means that for stationary blades with a small blade length, the secondary loss becomes the dominant part of the loss, and l 1 /
This is because a blade cross-sectional shape with a large l 2 is advantageous, and conversely, in a stationary blade with a large blade length, profile loss becomes the dominant loss, and a blade cross-sectional shape with a small l 1 /l 2 is advantageous. .

翼長に応じて上記のように損失が最も小さい距
離比l1/l2を有する静翼を用いた場合、全段落に
l1/l2=1.8の静翼を使つたときに比べて、タービ
ン全体としての損失は約5%低減する。
When using stationary blades having the distance ratio l 1 /l 2 with the smallest loss as described above according to the blade length, all paragraphs
Compared to using stator vanes with l 1 /l 2 = 1.8, the loss of the entire turbine is reduced by about 5%.

第9図はl1/l2とプロフイール損失〔%〕との
関係を示している。図中に示すように、l1/l2
値が大きくなるにしたがつて、上述したように、
翼の背側の圧力上昇が大きくなり、プロフイール
損失が増大する。
FIG. 9 shows the relationship between l 1 /l 2 and profile loss [%]. As shown in the figure, as the value of l 1 /l 2 increases, as mentioned above,
The pressure rise on the dorsal side of the wing is greater and the profile loss increases.

これに対して、第10図はl1/l2と二次損失
〔%〕との関係を示している。図中に示すように、
l1/l2の値が大きくなるにしたがつて二次損失は
減少する。この関係は翼長Hが小さい静翼におい
て特に顕著であり、H=30mmの静翼ではl1/l2
値が大きくなると、二次損失は急激に減少する。
On the other hand, FIG. 10 shows the relationship between l 1 /l 2 and secondary loss [%]. As shown in the figure,
As the value of l 1 /l 2 increases, the secondary loss decreases. This relationship is particularly remarkable in a stator blade with a small blade length H, and in a stator blade with H=30 mm, as the value of l 1 /l 2 increases, the secondary loss decreases rapidly.

上記プロフイール損失と二次損失の合計が静翼
の損失となる。この合計された静翼の損失とl1
l2との関係は第11図に示したようになる。図中
に示すように、一般に静翼の損失は、翼長Hが大
きいほど小さい。また静翼の損失は、l1/l2が小
さい値から大きい値に変化するとき、最初は減少
し、所定のl1/l2以降は増加する。上記のことか
ら、静翼の翼断面形状には、その翼長Hに対応し
て、損失が最小となる最適な距離比(l1/l2ppt
存在することがわかる。
The sum of the profile loss and secondary loss is the stator blade loss. This total stator vane loss and l 1 /
The relationship with l 2 is as shown in Figure 11. As shown in the figure, the loss of the stationary blade is generally smaller as the blade length H becomes larger. Furthermore, when l 1 /l 2 changes from a small value to a large value, the loss of the stator blade decreases at first, and increases after a predetermined value of l 1 /l 2 . From the above, it can be seen that the blade cross-sectional shape of the stationary blade has an optimal distance ratio (l 1 /l 2 ) ppt corresponding to the blade length H that minimizes the loss.

第12図はそれぞれの翼長Hに対する上記最適
な距離比(l1/l2pptを示したものである。
FIG. 12 shows the optimum distance ratio (l 1 /l 2 ) ppt for each blade length H.

第12図の関係を近似式で表わすと下記のよう
になる。
The relationship shown in FIG. 12 can be expressed as an approximate expression as follows.

(l1/l2ppt=8.0×H-0.3 この関係を満足するように翼断面形状を選定す
ることにより軸流タービン全体の損失を低減し、
性能向上が図れる。
(l 1 / l 2 ) ppt = 8.0×H -0.3 By selecting the blade cross-sectional shape to satisfy this relationship, the loss of the entire axial flow turbine can be reduced,
Performance can be improved.

ただし、各段落毎に翼断面形状を変えることは
設計および製造の面から好ましくないので、実際
には異なつた翼断面形状を二種類以上設定し、そ
れぞれの使用範囲を第12図を参照して決定すれ
ばよい。また、実用上、損失が急増しない範囲で
l1/l2と翼長Hとの関係を求めると次の関係式が
得られる。
However, since it is undesirable from a design and manufacturing perspective to change the blade cross-sectional shape for each paragraph, in reality, two or more different blade cross-sectional shapes are set, and the usage range of each is determined by referring to Figure 12. All you have to do is decide. In addition, in practice, as long as losses do not increase rapidly,
When determining the relationship between l 1 /l 2 and the blade length H, the following relational expression is obtained.

7×H-0.3≦l1/l2≦9×H-0.3 〔発明の効果〕 以上の説明から明らかなように、本発明によれ
ば、損失がほぼ最小となるように翼長に対応して
静翼の翼断面形状を選定し、この最適な翼断面形
状を有する静翼によつて多段式軸流タービンの各
段落を構成するようにしたので、タービンの全段
落にわたつて損失を低減し、タービン効率を大幅
に向上させることができる。
7×H -0.3 ≦l 1 /l 2 ≦9×H -0.3 [Effects of the Invention] As is clear from the above explanation, according to the present invention, the blade length is adjusted so that the loss is almost minimized. The blade cross-sectional shape of the stator vane was selected based on the optimal blade cross-sectional shape, and each stage of the multi-stage axial flow turbine was constructed using stator blades with this optimal blade cross-sectional shape, reducing losses across all stages of the turbine. This can significantly improve turbine efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は軸流タービンの一段落の構成を示した
断面図、第2図は静翼流路における二次流れを示
した説明図、第3図は静翼の翼断面形状を示した
端面図、第4図は翼長と損失との関係を示した線
図、第5図は本発明の一実施例による軸流タービ
ンを示した半断面図、第6図は翼長に応じて異な
る形状を有する静翼の断面を示した説明図、第7
図は静翼の圧力分布を示した線図、第8図は翼長
と損失との関係を示した線図、第9図は静翼のプ
ロフイール損失を示した線図、第10図は静翼の
二次損失を示した線図、第11図は静翼の断面形
状と損失の関係を示した線図、第12図は翼長と
最適断面形状の関係を示した線図である。 1…ノズルダイアフラム、2…ノズルダイアフ
ラム内輪、3…ノズル外輪、4…静翼、5…回転
軸、6…デイスク、7…動翼。
Figure 1 is a sectional view showing the configuration of one stage of an axial flow turbine, Figure 2 is an explanatory diagram showing secondary flow in the stator blade flow path, and Figure 3 is an end view showing the cross-sectional shape of the stator blade. , Fig. 4 is a diagram showing the relationship between blade length and loss, Fig. 5 is a half-sectional view showing an axial flow turbine according to an embodiment of the present invention, and Fig. 6 shows different shapes depending on the blade length. Explanatory diagram showing a cross section of a stator blade having
Figure 8 is a diagram showing the pressure distribution of a stator blade, Figure 8 is a diagram showing the relationship between blade length and loss, Figure 9 is a diagram showing profile loss of a stator blade, and Figure 10 is a diagram showing the relationship between blade length and loss. FIG. 11 is a diagram showing the relationship between the cross-sectional shape of the stator blade and the loss, and FIG. 12 is a diagram showing the relationship between the blade length and the optimum cross-sectional shape. DESCRIPTION OF SYMBOLS 1... Nozzle diaphragm, 2... Nozzle diaphragm inner ring, 3... Nozzle outer ring, 4... Stationary blade, 5... Rotating shaft, 6... Disc, 7... Moving blade.

Claims (1)

【特許請求の範囲】 1 静翼と動翼とを組合わせて各段落を構成し、
作動流体の上流側から下流側に向つて漸次長い翼
長の静翼と動翼とからなる段落を同軸的に配置し
た多段式の軸流タービンにおいて;前記静翼は、
その長手方向各部の翼断面形状が、その静翼の翼
長に対応するほぼ等しい距離比l1/l2を有し、前
記距離比l1/l2は翼長が長い静翼に対しては相対
的に小さく、翼長が短い静翼に対しては相対的に
大きくなるように各段落の静翼の距離比l1/l2
選定し、この距離比l1/l2に基づいて翼断面形状
が選定されていることを特徴とする軸流タービ
ン。 2 上記軸方向距離l1とl2の比l1/l2と静翼の翼長
Hとの関係が 7×H-0.3≦l1/l2≦9×H-0.3 となるように静翼の翼断面形状を選定したことを
特徴とする特許請求の範囲第1項記載の軸流ター
ビン。
[Claims] 1. Each paragraph is configured by combining a stationary blade and a rotor blade,
In a multi-stage axial flow turbine in which stages consisting of stator blades and rotor blades with blade lengths gradually increasing from the upstream side to the downstream side of the working fluid are arranged coaxially;
The blade cross-sectional shape of each part in the longitudinal direction has an approximately equal distance ratio l 1 /l 2 corresponding to the blade length of the stator blade, and the distance ratio l 1 /l 2 is larger than that of the stator blade with a long blade length. The distance ratio l 1 /l 2 of the stator blades in each stage is selected so that it is relatively small and becomes relatively large for stator blades with short blade lengths, and based on this distance ratio l 1 /l 2 An axial flow turbine characterized in that a blade cross-sectional shape is selected according to the following. 2 Static so that the relationship between the ratio l 1 /l 2 of the above axial distances l 1 and l 2 and the blade length H of the stationary blade is 7×H -0.3 ≦l 1 /l 2 ≦9×H -0.3 . The axial flow turbine according to claim 1, characterized in that the cross-sectional shape of the blade is selected.
JP7988983A 1983-05-07 1983-05-07 Axial-flow turbine Granted JPS59206603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7988983A JPS59206603A (en) 1983-05-07 1983-05-07 Axial-flow turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7988983A JPS59206603A (en) 1983-05-07 1983-05-07 Axial-flow turbine

Publications (2)

Publication Number Publication Date
JPS59206603A JPS59206603A (en) 1984-11-22
JPH0452365B2 true JPH0452365B2 (en) 1992-08-21

Family

ID=13702828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7988983A Granted JPS59206603A (en) 1983-05-07 1983-05-07 Axial-flow turbine

Country Status (1)

Country Link
JP (1) JPS59206603A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218329A (en) * 1975-08-04 1977-02-10 Fuji Xerox Co Ltd The sensitive body cleaning device for the electrophotographic copying machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218329A (en) * 1975-08-04 1977-02-10 Fuji Xerox Co Ltd The sensitive body cleaning device for the electrophotographic copying machine

Also Published As

Publication number Publication date
JPS59206603A (en) 1984-11-22

Similar Documents

Publication Publication Date Title
US5397215A (en) Flow directing assembly for the compression section of a rotary machine
US4653976A (en) Method of compressing a fluid flow in a multi stage centrifugal impeller
US6283713B1 (en) Bladed ducting for turbomachinery
US9051839B2 (en) Supersonic turbine moving blade and axial-flow turbine
JP3528285B2 (en) Axial blower
JPS5990797A (en) Centrifugal compressor and compression method
JP3779360B2 (en) Supersonic distributor for turbomachine inlet stage.
JP2003074306A (en) Axial flow turbine
JP2013096411A (en) Airfoil, compressor, vane, gas turbine engine and stator row
GB2270348A (en) Axial-flow turbine.
JP2017082784A (en) Compressor incorporating splitters
JPH0610610A (en) Turbine blade assembly
JPS6133968B2 (en)
US5447413A (en) Stator endwall for an elastic-fluid turbine
CN108953222A (en) A kind of centrifugal impeller
JPH0452365B2 (en)
JPH07332007A (en) Turbine stationary blade
JP2004263602A (en) Nozzle blade, moving blade, and turbine stage of axial-flow turbine
JPH0478803B2 (en)
JP2000104501A (en) Turbine moving blade, gas turbine and steam turbine
JPH0893404A (en) Turbine nozzle and turbine rotor blade
JPH03267506A (en) Stationary blade of axial flow turbine
JPH05340265A (en) Radial turbine moving blade
JPH11173104A (en) Turbine rotor blade
JPH01211605A (en) Turbine nozzle