JPH0451989B2 - - Google Patents

Info

Publication number
JPH0451989B2
JPH0451989B2 JP57020337A JP2033782A JPH0451989B2 JP H0451989 B2 JPH0451989 B2 JP H0451989B2 JP 57020337 A JP57020337 A JP 57020337A JP 2033782 A JP2033782 A JP 2033782A JP H0451989 B2 JPH0451989 B2 JP H0451989B2
Authority
JP
Japan
Prior art keywords
layer
type
ingaasp
inp
band gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57020337A
Other languages
Japanese (ja)
Other versions
JPS58138082A (en
Inventor
Fukunobu Aisaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57020337A priority Critical patent/JPS58138082A/en
Publication of JPS58138082A publication Critical patent/JPS58138082A/en
Publication of JPH0451989B2 publication Critical patent/JPH0451989B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は受光素子、特に長波長(波長1μm以
上)帯光通信用受光素子として開発されている
InP/InGaAsPなどの−族化合物半導体を用
いたアバランシエ・フオトダイオード(APD)
の構造に関する。
[Detailed Description of the Invention] (a) Technical Field of the Invention The present invention has been developed as a light-receiving element, particularly as a light-receiving element for long wavelength (wavelength of 1 μm or more) optical communication.
Avalanche photodiode (APD) using − group compound semiconductors such as InP/InGaAsP
Regarding the structure of

(b) 従来技術と問題点 近年、例えば1μm帯受光素子として、
InGaAsPを光吸収層とし、InPを増倍層とするヘ
テロ構造のInP/InGaAsPからなるアバランシ
エ・フオトダイオードが盛んに研究開発されてい
る。しかし、このフオトダイオードの過剰雑音の
大きさを決めうInP増倍層内での正孔と電子のイ
オン化率の比β/αは精々2倍程度であり、構造
上の制限のために雑音をある値以下に低減させる
ことができない問題がある。第1図にこのような
InP/InGaAsPフオトダイオードの一例の断面構
造図を示しており、1がn+型InP基板、2はn型
InGaAsP光吸収挿、8はn型InP増倍層、4はp
型InP層を示す。
(b) Conventional technology and problems In recent years, for example, as a 1 μm band photodetector,
InP/InGaAsP heterostructure avalanche photodiodes, which have InGaAsP as a light absorption layer and InP as a multiplication layer, are being actively researched and developed. However, the ratio β/α of the ionization rate of holes and electrons in the InP multiplication layer, which determines the amount of excess noise in this photodiode, is at most twice as large, and due to structural limitations, the noise There is a problem that cannot be reduced below a certain value. Figure 1 shows something like this.
A cross-sectional structure diagram of an example of an InP/InGaAsP photodiode is shown. 1 is an n + type InP substrate, 2 is an n type
InGaAsP light absorption layer, 8 is n-type InP multiplication layer, 4 is p
The type InP layer is shown.

また、上記のフオトダイオードだけではなく、
GaAlSb/GaSbからなるフオトダイオードにお
いても、同様にイオン化率の比は1に近く、光通
信用の低雑音素子の要求を満たすことができな
い。
In addition to the photodiode mentioned above,
Similarly, in a photodiode made of GaAlSb/GaSb, the ratio of ionization rates is close to 1 and cannot meet the requirements for a low-noise element for optical communication.

(c) 発明の目的 本発明はこの様な受光素子のS/N比を改善す
ることを目的とするもので、そのため増倍層内で
のイオン化率の比を増大させる構造の受光素子を
提案するものである。
(c) Purpose of the Invention The purpose of the present invention is to improve the S/N ratio of such a light receiving element, and therefore proposes a light receiving element having a structure that increases the ratio of ionization rates within the multiplication layer. It is something to do.

(d) 発明の構成 このような目的は、一導電型半導体基板1上に
バンドギヤツプEg1をもつ一導電型半導体層2光
吸収層)が設けられ、その上にバンドギヤツプ
Eg1<Eg2となるバンドギヤツプEg2もつ一導電型
半導体層3(増倍層)が設けられ、その上にバン
ドギヤツプEg1<Eg3<Eg2となるバンドギヤツプ
Eg3を有し、多数キヤリヤの平均自由行程より短
かい層幅をもち、且つ、少数キヤリヤのイオン化
率が前記増倍層のイオン化率より大きい一導電型
半導体層5が設けられて、更にその上に反対導電
型半導体層4が設けられた半導体受光素子によつ
て達成させることができる。
(d) Structure of the Invention Such an object is to provide a semiconductor substrate 1 of one conductivity type with a semiconductor layer 2 of one conductivity type (light absorbing layer) having a band gap E g1 , and a semiconductor layer 2 of one conductivity type with a band gap E g1 on top of which a band gap
A one-conductivity type semiconductor layer 3 (multiplier layer) having a band gap E g2 such that E g1 <E g2 is provided, and a band gap such that E g1 <E g3 <E g2 is provided thereon.
E g3 , a layer width shorter than the mean free path of the majority carriers, and a semiconductor layer 5 of one conductivity type in which the ionization rate of the minority carriers is higher than the ionization rate of the multiplication layer, and This can be achieved by a semiconductor light-receiving element on which a semiconductor layer 4 of opposite conductivity type is provided.

(e) 発明の実施例 第2図は本発明にかゝる一実施例のInP/
InGaAsPフオトダイオードの構造を示す。n+
InP基板1上にn型InGaAsP光吸収層2、n型
InP増倍層3をエピタキシヤル成長したその上に
n-型InGaAsP層5を更にエピタキシヤル成長さ
せた構造である。n型InGaAsP光吸収層2はエ
ネルギーギヤツプEg1=0.92ev、キヤリヤ濃度n=
1×1016cm-3、膜厚2μm、n型InP増倍層3はEg2
=1.35ev、n=1×1016cm-3、膜厚1μm、n-
InGaAsP5はEg3=1.1ev、n-=5×1015cm-3、膜
厚0.3μmである。最上層のp+型InP層4はキヤリ
ヤ濃度P+=1018cm-3以上、膜厚1μmとし、これは
エピタキシヤル成長で形成してもよいし、又カド
ミウム(Cd)を拡散して形成してもよい。6は
金・亜鉛(Au−Zn)で成長したp−電極、7は
金・ゲルマニウム(Au−Ge)で形成したn−電
極で、周囲がメサエツチされたメサ型ダイオード
である。
(e) Embodiment of the invention FIG. 2 shows an InP/
The structure of an InGaAsP photodiode is shown. n + type
n-type InGaAsP light absorption layer 2 on InP substrate 1, n-type
On top of which the InP multiplication layer 3 is epitaxially grown.
This is a structure in which an n - type InGaAsP layer 5 is further epitaxially grown. The n-type InGaAsP light absorption layer 2 has an energy gap E g1 =0.92 ev and a carrier concentration n=
1×10 16 cm -3 , film thickness 2 μm, n-type InP multiplication layer 3 is Eg 2
= 1.35 ev , n = 1×10 16 cm -3 , film thickness 1 μm, n - type
InGaAsP5 has E g3 =1.1 ev , n =5×10 15 cm −3 , and film thickness 0.3 μm. The uppermost p + type InP layer 4 has a carrier concentration P + =10 18 cm -3 or more and a film thickness of 1 μm, and may be formed by epitaxial growth or by diffusing cadmium (Cd). You may. 6 is a p-electrode grown from gold and zinc (Au-Zn), and 7 is an n-electrode formed from gold and germanium (Au-Ge), which is a mesa-type diode whose periphery is mesa-etched.

このようなフオトダイオードにおいて、プレー
トダウン近傍の逆バイアス電圧を加えた時の電界
分布図表を第3図に示す。縦軸は電界で、横軸に
pn接合からの距離を示しており、波長1.3μmの光
を入射するとEg1=0.92evをもつn型InGaAsP層
2で光が吸収されて、電子・正孔対が発生し、少
数キヤリヤの正孔が高電界領域へ向つて走行す
る。
FIG. 3 shows an electric field distribution chart when a reverse bias voltage near the plate down is applied to such a photodiode. The vertical axis is the electric field, and the horizontal axis is
The distance from the p-n junction is shown. When light with a wavelength of 1.3 μm is incident, the light is absorbed by the n-type InGaAsP layer 2 with E g1 = 0.92 ev , electron-hole pairs are generated, and the minority carrier positive The hole runs towards the high field region.

こゝで、n型InP増倍層3およびn-InGaAsP層
5中での多数キヤリヤの電子のイオン化率をそれ
ぞれα3,α5とし、正孔のイオン化率をそれぞれ
β3,β5として、電界に対するそれらの値を第4図
に示している。この図表から、n-型InGaAsP層
5中でのイオン化率α5,β5はn型InP層3中での
イオン化率α3,β3より大きく、電子のイオン化率
は約4倍、正孔のイオン化率は約3倍であること
が判る。このように、n-型InGaAsP層5中でイ
オン化率が大きくなるのは、キヤリヤがイオン化
するに必要なしきい値エネルギーξiがバンドギヤ
ツプにほゞ比例して小さくなり、イオン化率が
ρ-ai(但しaは常数)に比例するからである。
Here, the ionization rates of majority carrier electrons in the n-type InP multiplication layer 3 and n - InGaAsP layer 5 are α 3 and α 5 , respectively, and the ionization rates of holes are β 3 and β 5 , respectively. Their values versus electric field are shown in FIG. From this chart, the ionization rates α 5 , β 5 in the n - type InGaAsP layer 5 are larger than the ionization rates α 3 , β 3 in the n-type InP layer 3, and the ionization rate of electrons is about 4 times higher than that of holes. It can be seen that the ionization rate is about 3 times higher. In this way, the ionization rate increases in the n - type InGaAsP layer 5 because the threshold energy ξi required for carrier ionization decreases approximately in proportion to the band gap, and the ionization rate increases as ρ -ai (However, a is a constant).

さて、高電界領域に正孔に入ると、n型InP層
3内の電界が十分に高いので、この層中である程
度の割合でイオン化して増倍された正孔がn-
InGaAsP層5に入る。このとき、両層のInP/
InGaAsP界面をよぎる正孔のもつ平均的エネル
ギーはn型InP層3中の正孔のしきい値エネルギ
ーξh iIoP=1.6evの約半分即ち0.8ev程度となつてい
る。一方、n-型InGaAsP層5中の正孔のしきい
値エネルギーξh iIoGaAsPは約1.4evであるが、正孔は
すでに0.8evをもつて、n型InP層3からn-
InGaAsP層に入つてくるので、n-型InGaAsP層
5中での実効的なしきい値エネルギーは1.4ev
0.8ev=0.6evとなつて、このしきい値エネルギー
から決まる正孔のイオン化率は著しく高くなり、
一般のInGaAsP層中の正孔のイオン化率の約10
倍になる。したがつて、n-型InGaAsP層5を膜
厚0.8μmとうすくしても、正孔はその層中を走行
する過程で、必ずイオン化されて電子・正孔対を
発生する。
Now, when a hole enters the high electric field region, the electric field in the n-type InP layer 3 is sufficiently high, so that the hole is ionized and multiplied at a certain rate in this layer, and becomes n - type.
Enters the InGaAsP layer 5. At this time, InP/
The average energy of holes crossing the InGaAsP interface is about half of the threshold energy ξ h iIoP =1.6 ev of holes in the n-type InP layer 3, that is, about 0.8 ev . On the other hand, the threshold energy ξ h iIoGaAsP of the hole in the n - type InGaAsP layer 5 is about 1.4 ev , but the hole already has 0.8 ev and is transferred from the n - type InP layer 3 to the n - type
Since it enters the InGaAsP layer, the effective threshold energy in the n - type InGaAsP layer 5 is 1.4 ev
0.8 ev = 0.6 ev , and the hole ionization rate determined by this threshold energy becomes significantly high.
Approximately 10% of the hole ionization rate in a general InGaAsP layer
Double. Therefore, even if the n - type InGaAsP layer 5 is made as thin as 0.8 μm, holes are always ionized and generate electron-hole pairs while traveling through the layer.

ところが、そのn-型InGaAsP層5で作られる
電子は、そのイオン化率が約2×104cm-1(第4
図参照)という値であり、電子イオン化をおこす
ための平均自由行程1/2×104cm=0.5μmより、n-
型InGaAsP層の膜厚(0.3μm)がうすいため、n-
型InGaAsP層5中では殆んどイオン化されずに、
n型InP層3に入る。n型InP層3中ではそのイ
オン化率は更に小さいので、n型InP層3を通過
中にイオン化をおこす確率は小さい。
However, the ionization rate of the electrons created in the n - type InGaAsP layer 5 is approximately 2 × 10 4 cm -1 (4th
(see figure), and from the mean free path for electron ionization 1/2 x 10 4 cm = 0.5 μm, n -
Since the thickness of the type InGaAsP layer (0.3 μm) is thin, n -
Almost no ionization occurs in the type InGaAsP layer 5,
It enters the n-type InP layer 3. Since the ionization rate is even lower in the n-type InP layer 3, the probability of ionization occurring while passing through the n-type InP layer 3 is small.

このようにして、本発明にかゝる薄いn-
InGaAsP層を設けると、この層がない従来の場
合に比べて正孔のイオン化率は非常に大きくな
る。今、アバランシエ領域幅は、約半分がn-
InGaAsP層、他の半分がn型InP層にあるとする
と、正孔のイオン化率はn型InP層中のβ3とn-
InGaAsP層中のβ5との算術平均となる。しかし、
第4図の図表で説明したようにβ53であるか
らβ3+β5/2β3+3β3/22β3となるが、更に
上記の ようにn型InP層からn-型InGaAsP層に入る正孔
の見かけ上のイオン化率は約10倍という大きな値
となるため、実効的に正孔のイオン化率は2β3
上となる。このような考察の下に、本発明にかゝ
る構造を作成したところ、増倍層内での正孔と電
子のイオン化率の比β/αは第1図に示す従来の
構造が2倍程度であつたのに対して、実験結果に
よれば本発明による構造が4倍以上となつている
ことが解つた。
In this way, thin n - type
When the InGaAsP layer is provided, the hole ionization rate is much higher than in the conventional case without this layer. Now, about half of the avalanche region width is n - type
Assuming that the InGaAsP layer and the other half are in the n-type InP layer, the hole ionization rate is β 3 in the n-type InP layer and n - type
It is the arithmetic mean of β 5 in the InGaAsP layer. but,
As explained in the diagram of Figure 4, since β 53 becomes β 35 /2β 3 +3β 3 /22β 3 , it also goes from the n-type InP layer to the n - type InGaAsP layer as described above. Since the apparent ionization rate of holes is about 10 times as large, the effective ionization rate of holes is 2β 3 or more. Based on these considerations, we created a structure according to the present invention, and found that the ratio β/α of the ionization rate of holes and electrons in the multiplication layer was twice that of the conventional structure shown in Figure 1. However, according to the experimental results, it was found that the structure according to the present invention had an increase of more than 4 times.

また、第5図はGaAlSb/GaSbからなるフオ
トダイオードに本発明を適用した実施例で、従来
のn型GaAlSb増倍層(バンドギヤツプEg4)8
に本発明のn-型GaAlSb(バンドギヤツプEg5)9
を付加シテ、Eg5<Eg4とすると、同様にイオン化
率の比β/αが増大する。
FIG. 5 shows an embodiment in which the present invention is applied to a photodiode made of GaAlSb/GaSb, and shows a conventional n-type GaAlSb multiplication layer (band gap E g4 )8.
The present invention's n -type GaAlSb (band gap E g5 )9
When E g5 <E g4 is added, the ionization rate ratio β/α similarly increases.

(f) 発明の効果 以上の説明から判るように、本発明によればバ
ンドギヤツプの狭い層中で、片方のキヤリヤのみ
イオン化をおこし、しかもそのイオン化率が従来
の増倍層より大きくなるため、受光素子全体のイ
オン化率の比を大きくすことができる。
(f) Effects of the Invention As can be seen from the above explanation, according to the present invention, only one carrier is ionized in the narrow layer of the bandgap, and the ionization rate is higher than that of the conventional multiplication layer, so the light reception is The ionization rate ratio of the entire device can be increased.

従つて、本発明はアバランシエ増倍に伴なうキ
ヤリヤのゆらぎを少くして、過剰雑音を低くする
効果が大きく、受光感度の工場に極めて寄与する
新規な構造である。
Therefore, the present invention is a novel structure that is highly effective in reducing carrier fluctuations caused by avalanche multiplication and lowering excess noise, and greatly contributes to the production of light-receiving sensitivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のInP/InGaAsP受光素子の構造
断面図、第2図は本発明にかゝるInP/InGaAsP
受光素子の構造断面図、第3図は電界分布図表、
第4図はイオン化率と電界との関係図表、第5図
は本発明にかゝる他の実施例の構造断面図であ
る。 図中、1はn+型InP基板、2はn型InGaAsP吸
収層、3はn型InP増倍層、4はp型InP層、5
はn-型InGaAsP層、6はp−電極、7はn−電
極を示す。
Figure 1 is a cross-sectional view of the structure of a conventional InP/InGaAsP photodetector, and Figure 2 is an InP/InGaAsP photodetector according to the present invention.
A cross-sectional view of the structure of the light-receiving element, Figure 3 is an electric field distribution chart,
FIG. 4 is a graph showing the relationship between ionization rate and electric field, and FIG. 5 is a structural sectional view of another embodiment according to the present invention. In the figure, 1 is an n + type InP substrate, 2 is an n-type InGaAsP absorption layer, 3 is an n-type InP multiplication layer, 4 is a p-type InP layer, 5
indicates an n - type InGaAsP layer, 6 indicates a p-electrode, and 7 indicates an n-electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型半導体基板1上にバンドギヤツプ
Eg1をもつ一導電型半導体層2からなる光吸収層
と、その上に設けられたバンドギヤツプEg1より
大きなバンドギヤツプEg2をもつ一導電型半導体
層3からなる増倍層と、その上に設けられEg1
Eg3<Eg2となるバンドギヤツプEg3を有し、多数
キヤリヤの平均自由工程より短かい幅層をもち、
且つ、少数キヤリヤのイオン化率が前記増倍層の
イオン化率より大きい一導電型半導体層5と、更
にその上に設けられた反対導電型半導体層4とを
具備することを特徴とする半導体受光素子。
1 Band gap on one conductivity type semiconductor substrate 1
A light absorption layer consisting of a semiconductor layer 2 of one conductivity type having E g1 , a multiplication layer formed of a semiconductor layer 3 of one conductivity type having a band gap E g2 larger than the band gap E g1 provided thereon, E g1
It has a band gap E g3 such that E g3 < E g2 , and has a width layer shorter than the mean free path of the majority carrier,
A semiconductor light receiving element comprising a semiconductor layer 5 of one conductivity type in which the ionization rate of minority carriers is higher than the ionization rate of the multiplication layer, and a semiconductor layer 4 of an opposite conductivity type provided thereon. .
JP57020337A 1982-02-10 1982-02-10 Semiconductor light-receiving element Granted JPS58138082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57020337A JPS58138082A (en) 1982-02-10 1982-02-10 Semiconductor light-receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57020337A JPS58138082A (en) 1982-02-10 1982-02-10 Semiconductor light-receiving element

Publications (2)

Publication Number Publication Date
JPS58138082A JPS58138082A (en) 1983-08-16
JPH0451989B2 true JPH0451989B2 (en) 1992-08-20

Family

ID=12024319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57020337A Granted JPS58138082A (en) 1982-02-10 1982-02-10 Semiconductor light-receiving element

Country Status (1)

Country Link
JP (1) JPS58138082A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115294A (en) * 1989-06-29 1992-05-19 At&T Bell Laboratories Optoelectronic integrated circuit

Also Published As

Publication number Publication date
JPS58138082A (en) 1983-08-16

Similar Documents

Publication Publication Date Title
US4731641A (en) Avalanche photo diode with quantum well layer
US4684969A (en) Heterojunction avalanche photodiode
EP0156156A1 (en) Avalanche photodiodes
US4442444A (en) Avalanche photodiodes
JP2934294B2 (en) Avalanche photodiode
US6350998B1 (en) Ultraspeed low-voltage drive avalanche multiplication type semiconductor photodetector
KR950004550B1 (en) Light-receiving element
JPH01183174A (en) Semiconductor photodetctor
JP2002231992A (en) Semiconductor light receiving element
JPS62259481A (en) Semiconductor light receiving device
US5281844A (en) Avalanche photodiode
JPH08274366A (en) Semiconductor light receiving device
JPH07118548B2 (en) III-V group compound semiconductor PIN photo diode
JPH0451989B2 (en)
JPS6244867B2 (en)
JPH051629B2 (en)
JPS63142683A (en) Avalanche photodiode
JPS59232470A (en) Semiconductor light receiving element
GB2029639A (en) Infra-red photodetectors
JPS60198786A (en) Semiconductor photo receiving element
JPH0265279A (en) Semiconductor photodetecting element
JPS63281480A (en) Semiconductor photodetector and manufacture thereof
JPH0437591B2 (en)
JPS6157716B2 (en)
JP2995751B2 (en) Semiconductor light receiving element