JPH0451812B2 - - Google Patents

Info

Publication number
JPH0451812B2
JPH0451812B2 JP13391288A JP13391288A JPH0451812B2 JP H0451812 B2 JPH0451812 B2 JP H0451812B2 JP 13391288 A JP13391288 A JP 13391288A JP 13391288 A JP13391288 A JP 13391288A JP H0451812 B2 JPH0451812 B2 JP H0451812B2
Authority
JP
Japan
Prior art keywords
optical waveguide
film
buffer layer
substrate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13391288A
Other languages
Japanese (ja)
Other versions
JPH01302325A (en
Inventor
Minoru Kyono
Naoyuki Mekata
Takashi Yamane
Teruo Kurahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13391288A priority Critical patent/JPH01302325A/en
Publication of JPH01302325A publication Critical patent/JPH01302325A/en
Publication of JPH0451812B2 publication Critical patent/JPH0451812B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔概要〕 光スイツチや光変調器等に使用される光導波路
デバイスおよびその形成方法に関し、 効率的な電界の印加およびDCドリフトの防止
が可能な光導波路デバイスの提供を目的とし、 導波路基板上に形成された光導波路と、前記導
波路基板を被覆する第1の半導電性の膜と、前記
光導波路領域上の第1の半導電性の膜上に形成さ
れたバツフア層と、さらに該バツフア層を被覆す
る第2の半導電性の膜と、第2の半導電性の膜を
介して前記バツフア層上部に形成された電極によ
り構成される。
[Detailed Description of the Invention] [Summary] The present invention relates to optical waveguide devices used in optical switches, optical modulators, etc. and methods for forming the same, and provides an optical waveguide device that can efficiently apply an electric field and prevent DC drift. An optical waveguide formed on a waveguide substrate, a first semiconductive film covering the waveguide substrate, and an optical waveguide formed on the first semiconductive film on the optical waveguide region. The semiconductor device is composed of a buffer layer, a second semiconductive film covering the buffer layer, and an electrode formed on the buffer layer via the second semiconductive film.

〔産業上の利用分野〕[Industrial application field]

本発明は、光スイツチや光変調器等に使用され
る光導波路デバイスおよびその形成方法に関す
る。
The present invention relates to an optical waveguide device used for optical switches, optical modulators, etc., and a method for forming the same.

〔従来の技術〕[Conventional technology]

一般に、良好な電気光学効果を有する光導波路
材料としてリチウム・ナイオベイト(以下、
LiNbO3)が良く知られている。従来、LiNbO3
を基板に用いた光導波路デバイスの形成は、
LiNbO3の結晶基板表面にパターン形成したチタ
ン(Ti)膜を熱拡散させて光導波路を形成し、
さらに該光導波路に接近させて金属電極を設けて
光導波路デバイスを形成する場合が多い。
Generally, lithium niobate (hereinafter referred to as
LiNbO 3 ) is well known. Conventionally, LiNbO3
The formation of an optical waveguide device using
A titanium (Ti) film patterned on the surface of a LiNbO 3 crystal substrate is thermally diffused to form an optical waveguide.
Further, in many cases, a metal electrode is provided close to the optical waveguide to form an optical waveguide device.

しかし、LiNbO3基板の上に直接金属電極を形
成すると、導波路を進行する光エネルギーの一部
が導波路から滲み出し金属電極に吸収されて伝送
波の伝送効率が低下する。
However, if a metal electrode is formed directly on the LiNbO 3 substrate, a portion of the optical energy traveling through the waveguide leaks out of the waveguide and is absorbed by the metal electrode, reducing the transmission efficiency of the transmitted wave.

更に、LiNbO3では光の屈折率(約2.1)に対し
てマイクロ波の屈折率(約4.2)が大きいことか
ら、特にGHzオーダーのマイクロ波を電極に伝送
する場合、伝送速度は光に比べて遅いので、効率
よく動作させるためには光波との速度整合をとる
必要がある。
Furthermore, since LiNbO 3 has a higher refractive index for microwaves (approximately 4.2) than that of light (approximately 2.1), especially when transmitting microwaves on the order of GHz to an electrode, the transmission speed is lower than that of light. Therefore, in order to operate efficiently, it is necessary to match the speed with the light wave.

通常、これらの対策として光導波路と電極の間
にバツフア層を設けている。
Usually, as a countermeasure against these problems, a buffer layer is provided between the optical waveguide and the electrode.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第4図は、従来例に係る光導波路デバイスの構
成を示す斜視断面図である。
FIG. 4 is a perspective sectional view showing the configuration of a conventional optical waveguide device.

図において、21はLiNbO3よりなる導波路基
板であり、その表面にはTi膜を帯状にパターニ
ング形成した後、Tiを導波路基板中に熱拡散す
ることにより形成された光導波路22を備えてい
る。
In the figure, 21 is a waveguide substrate made of LiNbO 3 , and has an optical waveguide 22 formed by patterning a Ti film into a band shape on its surface and then thermally diffusing Ti into the waveguide substrate. There is.

さらに導波路基板および光導波路の表面は絶縁
性材料、例えばAl2O3またはSiO2等からなる厚さ
2000〜4000Å程度のバツフア層23で被覆され、
該バツフア層23の表面で上記光導波路の上部に
はAu等の金属薄膜からなる電極24が蒸着およ
びメツキ等の手段により形成されている。
Furthermore, the surfaces of the waveguide substrate and optical waveguide are made of an insulating material, such as Al 2 O 3 or SiO 2 with a thickness
Covered with a buffer layer 23 of about 2000 to 4000 Å,
On the surface of the buffer layer 23 and above the optical waveguide, an electrode 24 made of a thin metal film such as Au is formed by means such as vapor deposition and plating.

しかし、図に示したような光導波路デバイスで
は、電極24と導波路基板21とは電気容量的に
接続されているので、印加される電界はバツフア
層23による電圧降下のために光導波路22に印
加される電界は実効的に小さくなり、効果的な印
加が望めない。
However, in the optical waveguide device shown in the figure, since the electrode 24 and the waveguide substrate 21 are capacitively connected, the applied electric field is applied to the optical waveguide 22 due to the voltage drop caused by the buffer layer 23. The applied electric field becomes effectively small, and effective application cannot be expected.

また、数千Å程度の厚さのバツフア層に数十V
というほとんど絶縁破壊に近い高電圧が印加され
るため電荷の移動にともなうドリフトが生じる。
In addition, a buffer layer with a thickness of several thousand Å has a voltage of several tens of V.
Because a high voltage that almost causes dielectric breakdown is applied, drift occurs due to the movement of charges.

すなわち、LiNbO3は強誘電体であるため、電
界の印加に対応して電荷が導波路表面に発生し、
この電荷に対応した逆極性の電荷が電極の底面近
傍に外部から供給される。このように電極底面近
くに電荷がたまると、印加電界に対して反対向き
の電界が発生し、光デバイスの動作点、例えば光
スイツチング素子におけるスイツチングに必要な
電極間電圧が変動するといつた問題が生じる。
In other words, since LiNbO 3 is a ferroelectric material, charges are generated on the waveguide surface in response to the application of an electric field.
A charge of opposite polarity corresponding to this charge is supplied from the outside near the bottom surface of the electrode. When charge accumulates near the bottom of the electrode, an electric field is generated in the opposite direction to the applied electric field, causing problems such as fluctuations in the operating point of optical devices, such as the interelectrode voltage required for switching in optical switching elements. arise.

本発明は、効率的な電界の印加とDCドリフト
の防止が可能な光導波路デバイスの提供を目的と
する。
The present invention aims to provide an optical waveguide device that can efficiently apply an electric field and prevent DC drift.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の第1の光導波路デバイスは、その一実
施例を第1図に示すように、導波路基板上に形成
された光導波路と、前記導波路基板を被覆する第
1の半導電性の膜と、前記光導波路領域上の第1
の半導電性の膜上に形成されたバツフア層と、さ
らに該バツフア層を被覆する第2の半導電性の膜
と、第2の半導電性の膜を介して前記バツフア層
上部に形成された電極とを有することを特徴と
し、 本発明の光導波路デバイスの形成方法は、その
一実施例を第2図に示すように、光導波路を備え
る導波路基板上に第1の半導電性の膜を形成する
工程と、前記光導波路領域上の第1の半導電性の
膜上にバツフア層を形成する工程と、該バツフア
層および第1の半導電性の膜を被覆する第2の半
導電性の膜を形成する工程と、前記バツフア層上
部に位置する第2の半導電性の膜上に電極を形成
する工程とを有することを特徴とし、 さらに、本発明の第2の光導波路デバイスは、
導波路基板上に形成された光導波路と、該光導波
路上に形成されたバツフア層と、該バツフア層お
よび前記導波路基板を被覆する半導電性の膜と、
該半導電性の膜上に形成される電極とを有するこ
とを特徴とし、上記目的を達成する。
As an embodiment of the first optical waveguide device of the present invention is shown in FIG. a first film on the optical waveguide region;
a buffer layer formed on a semiconductive film, a second semiconductive film covering the buffer layer, and a buffer layer formed on the buffer layer via the second semiconductive film. The method for forming an optical waveguide device of the present invention is characterized in that it has a first semiconducting electrode on a waveguide substrate having an optical waveguide, as shown in FIG. forming a buffer layer on the first semiconductive film on the optical waveguide region; and forming a second semiconductive film covering the buffer layer and the first semiconductive film. The second optical waveguide of the present invention is characterized by comprising a step of forming a conductive film and a step of forming an electrode on a second semiconductive film located above the buffer layer. The device is
an optical waveguide formed on a waveguide substrate; a buffer layer formed on the optical waveguide; a semiconductive film covering the buffer layer and the waveguide substrate;
and an electrode formed on the semiconductive film, thereby achieving the above object.

〔作用〕[Effect]

本発明の光導波路デバイスでは、光導波路の上
部に形成される電極はバツフア層および半導電性
の膜を介して電気容量的に接続されるが、前記バ
ツフア層は光導波路の上部のみに存在し、このバ
ツフア層を半導電性の膜が被覆するように形成さ
れ、該半導電性の膜がパスを形成するようになる
ので、電極と導波路基板間の電圧降下が小さくな
る。
In the optical waveguide device of the present invention, the electrode formed on the top of the optical waveguide is capacitively connected via the buffer layer and the semiconductive film, but the buffer layer is present only on the top of the optical waveguide. A semiconductive film is formed to cover this buffer layer, and since the semiconductive film forms a path, the voltage drop between the electrode and the waveguide substrate is reduced.

さらに、導波路基板と電極との間には電荷が動
ける程度に大きな抵抗を持つ半導電膜が形成され
ているので、導波路の表面に電荷のたまりが発生
しても、これに対応して電極に供給される電荷は
半導電膜を介して一様に分布される。
Furthermore, a semiconducting film with a resistance large enough to allow charge to move is formed between the waveguide substrate and the electrode, so even if charge accumulates on the surface of the waveguide, it will not be able to cope with it. The charges supplied to the electrodes are uniformly distributed through the semiconducting film.

〔実施例〕〔Example〕

第1図は、本発明の実施例に係る光導波路デバ
イスの構成を示す斜視断面図である。
FIG. 1 is a perspective sectional view showing the configuration of an optical waveguide device according to an embodiment of the present invention.

図において、1はLiNbO3基板、2は光導波
路、3はバツフア層としてのSiO2膜、4a,4
bは半導電膜としてのSi膜、5はAuよりなる電
極である。
In the figure, 1 is a LiNbO 3 substrate, 2 is an optical waveguide, 3 is a SiO 2 film as a buffer layer, 4a, 4
b is a Si film as a semiconducting film, and 5 is an electrode made of Au.

以下、第2図に従つて本発明の実施例に係る光
導波路デバイスの形成工程を説明すると、
LiNbO3基板1の表面に形成されたTi蒸着膜を帯
状にパターニング形成した後、該Tiを導波路基
板中に熱拡散して、LiNbO3基板1よりも屈折率
の大きい7μm程度の径を有する光導波路2を形成
する(第2図a)。
Hereinafter, the process of forming an optical waveguide device according to an embodiment of the present invention will be explained according to FIG.
After patterning the Ti vapor deposited film formed on the surface of the LiNbO 3 substrate 1 into a band shape, the Ti is thermally diffused into the waveguide substrate to form a waveguide substrate with a diameter of about 7 μm, which has a larger refractive index than the LiNbO 3 substrate 1. An optical waveguide 2 is formed (FIG. 2a).

次いで、光導波路2およびLiNbO3基板1を覆
う第1の半導電性の膜であるSi膜4aをスパツタ
により300〜1000Å程度形成する(第2図b)。
Next, a Si film 4a, which is a first semiconducting film, covering the optical waveguide 2 and the LiNbO 3 substrate 1 is formed with a thickness of about 300 to 1000 Å by sputtering (FIG. 2b).

続いて、光導波路2の上方であつてSi膜4aの
上にバツフア層となる膜厚2000〜4000Å程度の
SiO2膜3を形成する(第2図c)。
Next, a film with a thickness of about 2000 to 4000 Å is formed as a buffer layer on the Si film 4a above the optical waveguide 2.
A SiO 2 film 3 is formed (FIG. 2c).

さらに、スパツタにより前記SiO2膜3(バツ
フア層)およびSi膜4a(第1の半導電性の膜)
を被覆する第2の半導電性の膜であるSi膜4bを
形成する(第2図d)。
Furthermore, the SiO 2 film 3 (buffer layer) and the Si film 4a (first semiconductive film) are removed by sputtering.
A Si film 4b, which is a second semiconductive film, is formed to cover the wafer (FIG. 2d).

最後に、Si膜4bの膜上で上記光導波路2の上
部位置に帯状、例えば幅が数μm、厚さ3μm程度
のAu薄膜からなる電極5を蒸着およびメツキ等
の手段を用いて形成すると、本発明の実施例に係
る光機能デバイスが完成する(第1図)。
Finally, a band-shaped electrode 5 made of a thin Au film, for example, several μm wide and about 3 μm thick, is formed on the Si film 4b above the optical waveguide 2 by means of vapor deposition, plating, etc. An optical functional device according to an embodiment of the present invention is completed (FIG. 1).

このように本発明の光導波路デバイスでは、バ
ツフア層としてのSiO2膜3は光導波路2の上部
のみに存在し、該SiO2膜3を被覆するようSi膜
4b形成されているので、電極5とLiNbO3基板
1との間にパスが形成されるようになり、僅かな
電流が流れるようになる。従つて、電極5と
LiNbO3基板1との間に生じる電圧降下は従来に
比べて小さくなるので、光導波路2に印加される
電界は実効的に大きくなる。
In this way, in the optical waveguide device of the present invention, the SiO 2 film 3 as a buffer layer exists only on the upper part of the optical waveguide 2, and the Si film 4b is formed to cover the SiO 2 film 3, so that the electrode 5 A path is now formed between the substrate 1 and the LiNbO 3 substrate 1, and a small amount of current begins to flow. Therefore, electrode 5 and
Since the voltage drop generated between the optical waveguide 2 and the LiNbO 3 substrate 1 is smaller than that in the conventional case, the electric field applied to the optical waveguide 2 becomes effectively larger.

さらに、Si膜4の存在により、光導波路2の表
面に電荷のたまりが発生した場合、これに対応し
て電極5に供給される電荷はSi膜4を介して一様
に分布されるので、電荷の局所的な集中が防止さ
れる。
Furthermore, due to the presence of the Si film 4, when charges accumulate on the surface of the optical waveguide 2, the corresponding charges supplied to the electrodes 5 are uniformly distributed via the Si film 4. Local concentration of charge is prevented.

従つて、DCドリフトの発生を防止し、かつ効
果的な電界印加が可能な光導波路デバイスの提供
が可能になる。
Therefore, it is possible to provide an optical waveguide device that can prevent the occurrence of DC drift and can effectively apply an electric field.

第3図は他の実施例であり、この場合には第2
図の作成手順でbのSi膜4aの形成工程が省略さ
れているが、この方法でも電圧降下およびDCド
リフトに対して改善が行える。
FIG. 3 shows another embodiment, in which the second
Although the process of forming the Si film 4a in b is omitted in the drawing procedure, this method can also improve the voltage drop and DC drift.

〔発明の効果〕〔Effect of the invention〕

本発明の光導波路デバイスによれば、バツフア
層は光導波路の上部のみに存在し、このバツフア
層を被覆するように形成された半導電性の膜がパ
スを形成して電極と導波路基板間の電圧降下を小
さくする。従つて、光導波路に印加される電界は
実効的に大きくなる。
According to the optical waveguide device of the present invention, the buffer layer exists only in the upper part of the optical waveguide, and the semiconductive film formed to cover the buffer layer forms a path between the electrode and the waveguide substrate. Reduce voltage drop. Therefore, the electric field applied to the optical waveguide becomes effectively large.

さらに、導波路基板と電極との間に形成された
半導電膜により、導波路の表面に電荷のたまりが
発生した場合、これに対応して電極に供給される
電荷は半導電膜を介して一様に分布されるので、
電荷の局所的な集中が防止される。
Furthermore, if charge accumulates on the surface of the waveguide due to the semiconducting film formed between the waveguide substrate and the electrode, the corresponding charge supplied to the electrode will be transferred via the semiconducting film. Since it is uniformly distributed,
Local concentration of charge is prevented.

従つて、DCドリフトの発生を防止し、かつ効
果的な電界印加が可能な光導波路デバイスの提供
が可能になる。
Therefore, it is possible to provide an optical waveguide device that can prevent the occurrence of DC drift and can effectively apply an electric field.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る光導波路デバイ
スの構成を示す斜視断面図、第2図は本発明の実
施例に係る光導波路デバイスの形成工程説明図、
第3図は本発明の他の実施例に係る光導波路デバ
イスの構成を示す斜視断面図、第4図は従来例に
係る光導波路デバイスの構成を示す斜視断面図で
ある。 符号の説明、1……LiNbO3基板、2……光導
波路、3……SiO2膜、4a,4b……Si膜、5
……電極。
FIG. 1 is a perspective cross-sectional view showing the configuration of an optical waveguide device according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of the formation process of an optical waveguide device according to an embodiment of the present invention,
FIG. 3 is a perspective sectional view showing the structure of an optical waveguide device according to another embodiment of the present invention, and FIG. 4 is a perspective sectional view showing the structure of an optical waveguide device according to a conventional example. Explanation of symbols, 1... LiNbO 3 substrate, 2... Optical waveguide, 3... SiO 2 film, 4a, 4b... Si film, 5
……electrode.

Claims (1)

【特許請求の範囲】 1 導波路基板上に形成された光導波路と、前記
導波路基板を被覆する第1の半導電性の膜と、前
記光導波路領域上の第1の半導電性の膜上に形成
されたバツフア層と、さらに該バツフア層を被覆
する第2の半導電性の膜と、第2の半導電性の膜
を介して前記バツフア層上部に形成された電極と
を有することを特徴とする光導波路デバイス。 2 光導波路を備える導波路基板上に第1の半導
電性の膜を形成する工程と、前記光導波路領域上
の第1の半導電性の膜上にバツフア層を形成する
工程と、該バツフア層および第1の半導電性の膜
を被覆する第2の半導電性の膜を形成する工程
と、前記バツフア層上部に位置する第2の半導電
性の膜上に電極を形成する工程とを有することを
特徴とする光導波路デバイスの形成方法。 3 導波路基板上に形成された光導波路と、該光
導波路上に形成されたバツフア層と、該バツフア
層および前記導波路基板を被覆する半導電性の膜
と、該半導電性の膜上に形成される電極とを有す
ることを特徴とする光導波路デバイス。
[Scope of Claims] 1. An optical waveguide formed on a waveguide substrate, a first semiconducting film covering the waveguide substrate, and a first semiconducting film on the optical waveguide region. It has a buffer layer formed thereon, a second semiconductive film covering the buffer layer, and an electrode formed on the buffer layer via the second semiconductive film. An optical waveguide device featuring: 2. A step of forming a first semiconducting film on a waveguide substrate including an optical waveguide, a step of forming a buffer layer on the first semiconducting film on the optical waveguide region, and a step of forming a buffer layer on the first semiconducting film on the optical waveguide region. forming a second semiconducting film covering the layer and the first semiconducting film; and forming an electrode on the second semiconducting film located on top of the buffer layer. A method for forming an optical waveguide device, comprising: 3. An optical waveguide formed on a waveguide substrate, a buffer layer formed on the optical waveguide, a semiconductive film covering the buffer layer and the waveguide substrate, and an optical waveguide formed on the semiconductive film. 1. An optical waveguide device comprising: an electrode formed in the optical waveguide device;
JP13391288A 1988-05-31 1988-05-31 Optical waveguide device and its forming method Granted JPH01302325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13391288A JPH01302325A (en) 1988-05-31 1988-05-31 Optical waveguide device and its forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13391288A JPH01302325A (en) 1988-05-31 1988-05-31 Optical waveguide device and its forming method

Publications (2)

Publication Number Publication Date
JPH01302325A JPH01302325A (en) 1989-12-06
JPH0451812B2 true JPH0451812B2 (en) 1992-08-20

Family

ID=15115999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13391288A Granted JPH01302325A (en) 1988-05-31 1988-05-31 Optical waveguide device and its forming method

Country Status (1)

Country Link
JP (1) JPH01302325A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10722631B2 (en) 2018-02-01 2020-07-28 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US11185677B2 (en) 2017-06-07 2021-11-30 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11511103B2 (en) 2017-11-13 2022-11-29 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11654275B2 (en) 2019-07-22 2023-05-23 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
US11964145B2 (en) 2019-07-12 2024-04-23 Shifamed Holdings, Llc Intravascular blood pumps and methods of manufacture and use

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2867560B2 (en) * 1990-03-02 1999-03-08 富士通株式会社 Optical waveguide device
JP3628342B2 (en) * 1993-09-17 2005-03-09 富士通株式会社 Dielectric optical waveguide device
JPH07159743A (en) * 1993-12-08 1995-06-23 Japan Aviation Electron Ind Ltd Optical waveguide element
JP2894961B2 (en) * 1994-11-18 1999-05-24 日本電気株式会社 Light control device
JP5363679B2 (en) 2011-03-17 2013-12-11 日本碍子株式会社 Light modulation element
JP5360256B2 (en) * 2012-03-30 2013-12-04 住友大阪セメント株式会社 Optical waveguide device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11185677B2 (en) 2017-06-07 2021-11-30 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11511103B2 (en) 2017-11-13 2022-11-29 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US10722631B2 (en) 2018-02-01 2020-07-28 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US11229784B2 (en) 2018-02-01 2022-01-25 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US11964145B2 (en) 2019-07-12 2024-04-23 Shifamed Holdings, Llc Intravascular blood pumps and methods of manufacture and use
US11654275B2 (en) 2019-07-22 2023-05-23 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture

Also Published As

Publication number Publication date
JPH01302325A (en) 1989-12-06

Similar Documents

Publication Publication Date Title
US7529433B2 (en) Humidity tolerant electro-optic device
KR100231936B1 (en) Thin film transistor and manufacturing thereof
JP3628342B2 (en) Dielectric optical waveguide device
JPH03253815A (en) Optical waveguide device
JPH0451812B2 (en)
US5130772A (en) Thin film transistor with a thin layer of silicon nitride
JP5360256B2 (en) Optical waveguide device
JPH1039266A (en) Optical control device
JPH08146367A (en) Optical control device
US6282009B1 (en) Light modulator and method of manufacturing the light modulator
JP2000056281A5 (en)
US6480633B1 (en) Electro-optic device including a buffer layer of transparent conductive material
US6714267B2 (en) Liquid crystal display device and fabricating method thereof
US6473547B2 (en) Optical components
JPH03185840A (en) Thin film transistor
JPH063507B2 (en) Waveguide type optical switch
JP2002182173A (en) Optical waveguide element and method of manufacturing optical waveguide element
JPH10104559A (en) Optical waveguide device
JPS61198106A (en) Optical waveguide forming method
JP2850899B2 (en) Light control device
JPH0251124A (en) Optical waveguide progressive wave electrode
JP2550606B2 (en) Method of forming optical waveguide device
JPH0829745A (en) Optical waveguide device
JPH09269469A (en) Optical waveguide device
KR920007788B1 (en) Structure of thin film transistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees