JPH0451318Y2 - - Google Patents

Info

Publication number
JPH0451318Y2
JPH0451318Y2 JP1982073917U JP7391782U JPH0451318Y2 JP H0451318 Y2 JPH0451318 Y2 JP H0451318Y2 JP 1982073917 U JP1982073917 U JP 1982073917U JP 7391782 U JP7391782 U JP 7391782U JP H0451318 Y2 JPH0451318 Y2 JP H0451318Y2
Authority
JP
Japan
Prior art keywords
heat source
coil
water
source coil
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982073917U
Other languages
Japanese (ja)
Other versions
JPS58177756U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7391782U priority Critical patent/JPS58177756U/en
Publication of JPS58177756U publication Critical patent/JPS58177756U/en
Application granted granted Critical
Publication of JPH0451318Y2 publication Critical patent/JPH0451318Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【考案の詳細な説明】 この考案は多熱源ヒートポンプ装置の改良に関
するものである。
[Detailed Description of the Invention] This invention relates to an improvement of a multi-source heat pump device.

従来、この種の多熱源ヒートポンプ装置におい
て、一般に空気熱源コイルは水平かやや傾斜して
設置されている。このためフアンによつて、吸気
は多熱源ヒートポンプ装置側部の吸気口から行い
排気は上部の排気口から吹出すという構造にあつ
た。しかし、このような構造の多熱源ヒートポン
プ装置は、水熱源単独運転時において、空気熱源
コイル内には暖められた冷媒が流れていることに
なり上記の開放された吸気口および排気口に起因
する熱損失が多いという欠点が免れなかつた。
Conventionally, in this type of multi-heat source heat pump device, the air heat source coil is generally installed horizontally or slightly inclined. For this reason, the structure of the fan was such that air was taken in through an intake port on the side of the multi-heat source heat pump device, and exhaust air was blown out from an exhaust port at the top. However, in a multi-heat source heat pump device with such a structure, when the water heat source is operated alone, warmed refrigerant flows in the air heat source coil, which is caused by the open intake and exhaust ports mentioned above. The disadvantage was that there was a lot of heat loss.

この考案は上述のような従来の欠点を除去する
ためになされたもので、空気熱源コイルを縦置き
にし、フアンの風圧によつてのみ開放すると共
に、常時は前記吸排気口を閉鎖するルーバにより
フアン停止時にはこれら吸排気口を閉鎖し、前記
フアンの動作時にはこれら吸排気口が開放される
構造とし、前記空気熱源コイルからの熱損失を減
少させることを目的としている。
This idea was made in order to eliminate the above-mentioned drawbacks of the conventional method.The air heat source coil is placed vertically, is opened only by the wind pressure of the fan, and is equipped with a louver that normally closes the intake and exhaust ports. When the fan is stopped, these intake and exhaust ports are closed, and when the fan is in operation, these intake and exhaust ports are opened, and the purpose is to reduce heat loss from the air heat source coil.

以下、図面により具体的な実施例についてこの
考案を説明する。図において、1は圧縮機、2は
水コイルであり、配管の一端を四方弁3を介して
圧縮機1に接続し、他の一端は膨張弁4を介して
縦置きされた空気熱源コイル5と接続している。
更に、空気熱源コイル5は水熱源コイル6と接続
され、この水熱源コイル6の他端は前記四方弁3
を介して、上記圧縮機1に接続されている。この
ように圧縮機1、四方弁3、水コイル2、膨張弁
4、、空気熱源コイル5、水熱源コイル6は直列
に接続されて、いわゆる閉回路を形成し全体がケ
ース7に収容された基本構成を有し、暖房時に冷
媒は実線に示すように上記の閉回路を循環する。
また8は温水などの熱源を水熱源コイル6に供給
するための水熱源水配管であり、9は水コイル2
より加熱される暖房用配管である。
Hereinafter, this invention will be explained with reference to specific embodiments with reference to the drawings. In the figure, 1 is a compressor, 2 is a water coil, one end of piping is connected to the compressor 1 via a four-way valve 3, and the other end is connected to an air heat source coil 5 vertically placed via an expansion valve 4. is connected to.
Further, the air heat source coil 5 is connected to a water heat source coil 6, and the other end of this water heat source coil 6 is connected to the four-way valve 3.
It is connected to the compressor 1 through. In this way, the compressor 1, four-way valve 3, water coil 2, expansion valve 4, air heat source coil 5, and water heat source coil 6 are connected in series to form a so-called closed circuit, and the whole is housed in the case 7. It has a basic configuration, and during heating, the refrigerant circulates through the above closed circuit as shown by the solid line.
Further, 8 is a water heat source water pipe for supplying a heat source such as hot water to the water heat source coil 6, and 9 is a water heat source water pipe for supplying a heat source such as hot water to the water heat source coil 6.
This is heating piping that gets heated even more.

次に、上記の多熱源ヒートポンプ装置のケース
7の両側部には、吸気口10および排気口11が
対向して設けられ、それぞれ開閉自在なルーバ1
2が取り付けられている。また、吸気口10と排
気口11間には、該吸気口側に空気熱源コイル5
を設置すると共に、前記吸気口10から吸気して
排気口11から排気させるためのフアン13が設
置され、ここに形成される通風路を隔壁14によ
つて区画しておく。
Next, on both sides of the case 7 of the multi-heat source heat pump device, an intake port 10 and an exhaust port 11 are provided facing each other, and each has a louver 1 that can be opened and closed.
2 is installed. Further, between the intake port 10 and the exhaust port 11, an air heat source coil 5 is provided on the intake port side.
A fan 13 is installed to take in air from the intake port 10 and exhaust it from the exhaust port 11, and a ventilation path formed here is partitioned by a partition wall 14.

次に、以上のような構成の本考案に係る多熱源
ヒートポンプ装置の動作について説明する。
Next, the operation of the multi-source heat pump device according to the present invention having the above configuration will be explained.

暖房運転時に、太陽熱や排熱などにより熱源温
水の温度が外気温より高くなつている場合、この
熱源温水は水熱源水配管8により多熱源ヒートポ
ンプ装置へ供給される。そして、多熱源ヒートポ
ンプ装置の冷媒は、この熱源温水により水熱源コ
イル6にて蒸発即ち吸熱する。次いで、蒸発した
冷媒は四方弁3を介して圧縮機1へ送られ、該圧
縮機1で圧縮され水コイル2で放熱する。これに
より暖房用配管9内の水はこの水コイル2で加熱
され、所定個所へ送られて暖房に供される。
During heating operation, if the temperature of the heat source hot water is higher than the outside air temperature due to solar heat, waste heat, etc., this heat source hot water is supplied to the multi-heat source heat pump device through the water heat source water pipe 8. Then, the refrigerant of the multi-heat source heat pump device evaporates, that is, absorbs heat, in the water heat source coil 6 using the heat source hot water. Next, the evaporated refrigerant is sent to the compressor 1 via the four-way valve 3, compressed by the compressor 1, and radiated heat by the water coil 2. As a result, the water in the heating pipe 9 is heated by the water coil 2 and sent to a predetermined location for heating.

水コイル2で放熱した冷媒は、膨張弁4および
空気熱源コイル5を介して水熱源コイル6へ戻
り、ここで再び吸熱蒸発し、前述の動作が繰り返
される。このように、熱源温水の温度が外気温よ
り高い場合には空気熱源コイル5は動作させず、
従つてフアン13も停止している。そのため、フ
アン13による風圧で開く吸排気口10,11の
ルーバ12は閉じられたままになつており、これ
により空気熱源コイル5からの熱損失が阻止され
る。換言すれば、膨張弁4を通過した後の冷媒の
状態は、空気熱源コイル5と水熱源コイル6の双
方の温度により決定される。すなわち、空気熱源
コイル5と水熱源コイル6内は圧力がほぼ一定と
なるため、温度の高い方のコイルで多く蒸発し吸
熱することになる。従つて、例えば、熱源温水温
度が15℃、外気が−5℃の場合、両コイル5,6
内の冷媒の温度は0℃となり、この場合水熱源コ
イル6内では吸熱するも空気熱源コイル5では排
熱即ち損失となる。
The refrigerant that has radiated heat in the water coil 2 returns to the water heat source coil 6 via the expansion valve 4 and the air heat source coil 5, where it absorbs heat and evaporates again, and the above-described operation is repeated. In this way, when the temperature of the heat source hot water is higher than the outside air temperature, the air heat source coil 5 is not operated.
Therefore, the fan 13 is also stopped. Therefore, the louvers 12 of the intake and exhaust ports 10 and 11, which are opened by the wind pressure from the fan 13, remain closed, thereby preventing heat loss from the air heat source coil 5. In other words, the state of the refrigerant after passing through the expansion valve 4 is determined by the temperatures of both the air heat source coil 5 and the water heat source coil 6. That is, since the pressure within the air heat source coil 5 and the water heat source coil 6 is approximately constant, the higher temperature coil evaporates and absorbs more heat. Therefore, for example, if the heat source hot water temperature is 15°C and the outside air is -5°C, both coils 5 and 6
The temperature of the refrigerant inside becomes 0° C., and in this case, heat is absorbed in the water heat source coil 6, but it becomes waste heat, that is, loss, in the air heat source coil 5.

しかしながら、このようなとき、前述したよう
にルーバ12は閉じられており通風路14はほぼ
密閉された状態となつているため、この空気熱源
コイル5による放熱が阻止され、熱損失を防ぐこ
とができる。
However, in such a case, as described above, the louver 12 is closed and the ventilation path 14 is in a substantially sealed state, so heat radiation by the air heat source coil 5 is blocked, and heat loss cannot be prevented. can.

次に、熱源温水の温度が外気温より低くなる
と、水熱源水配管8内での水の流れが防止され、
他方フアン13が作動されて温度の高い外気から
の吸熱が空気熱源コイル5によつて行なわれる。
すなわち、フアン13の運転が開始されると、通
風路14を流れる外気の風圧でルーバ12が開
き、外気の熱が空気熱源コイル5に供給され、こ
こで冷媒の蒸発即ち吸熱が行なわれる。
Next, when the temperature of the heat source hot water becomes lower than the outside air temperature, the flow of water in the water heat source water piping 8 is prevented,
On the other hand, the fan 13 is operated and the air heat source coil 5 absorbs heat from the high temperature outside air.
That is, when the fan 13 starts operating, the louver 12 is opened by the wind pressure of the outside air flowing through the ventilation path 14, and the heat of the outside air is supplied to the air heat source coil 5, where the refrigerant evaporates, that is, absorbs heat.

ここで、これまでの説明につき、さらに定性
的、概念的説明を以下に述べる。
Here, a more qualitative and conceptual explanation will be given below regarding the explanation so far.

暖房時は、圧縮機1から吐出された高温高圧の
ガス状の冷媒は、水コイル2で熱交換され、水を
加熱して暖房に供する。これにより冷媒は熱エネ
ルギーを放出し、凝縮した高圧の液冷媒となる。
During heating, the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 1 undergoes heat exchange in the water coil 2 to heat water and provide heating. This causes the refrigerant to release thermal energy and become a condensed, high-pressure liquid refrigerant.

この液冷媒は膨張弁4を通り減圧され、ガスが
一部混在した低圧の液となる。
This liquid refrigerant passes through the expansion valve 4 and is depressurized to become a low-pressure liquid partially mixed with gas.

さて低圧側の状態は空気熱源コイル5と水熱源
コイル6が同じ圧力状態である、つまり同じ温度
で冷媒が空気または熱源水からの熱を吸収し、蒸
発する。具体例として、空気温度が−5℃、熱源
水温が10℃であれば、高温熱源を利用するため、
空気熱源コイル用のフアン13は停止し、シヤツ
ターも閉じており、低圧部の温度は例えば5℃程
度の温度でほぼ一定しており、この状態で冷媒は
蒸発していく。これは熱源水からの吸熱を行うた
めである。
Now, on the low pressure side, the air heat source coil 5 and the water heat source coil 6 are in the same pressure state, that is, the refrigerant absorbs heat from the air or the heat source water and evaporates at the same temperature. As a specific example, if the air temperature is -5℃ and the heat source water temperature is 10℃, in order to use a high temperature heat source,
The fan 13 for the air heat source coil is stopped, the shutter is closed, and the temperature of the low-pressure part is approximately constant at, for example, 5° C., and the refrigerant evaporates in this state. This is to absorb heat from the heat source water.

このため仮に外気が流入してくると、冷凍サイ
クル系内の熱が外気に熱損損失として失われるこ
とになる。何故ならば、空気熱源コイル5内も5
℃であり、外気は−5℃であるからである。
Therefore, if outside air were to flow in, the heat within the refrigeration cycle system would be lost to the outside air as heat loss. This is because the inside of the air heat source coil 5 is also
℃, and the outside air is -5℃.

以上のように、本考案は上述した構成のヒート
ポンプ装置において、空気熱源コイルを縦置きに
すると共にケース側部の吸気口および排気口をフ
アンにより開閉自在な構造としたことにより、水
熱源単独運転時には上述のルーバが閉鎖し、その
結果空気熱源コイルからの熱損失が抑えられ効率
の良い多熱源ヒートポンプ装置が得られるという
効果がある。
As described above, in the heat pump device having the above-mentioned configuration, the present invention has a structure in which the air heat source coil is placed vertically and the intake and exhaust ports on the side of the case can be opened and closed by a fan, thereby allowing independent operation of the water heat source. Sometimes the above-mentioned louvers are closed, which has the effect of suppressing heat loss from the air heat source coil and providing a highly efficient multi-source heat pump device.

なお水熱源コイル6と空気熱源コイル5の接続
順序を逆にしたものについても上記実施例と同様
の効果を奏する。
Note that the same effects as in the above embodiment can be obtained even when the connection order of the water heat source coil 6 and the air heat source coil 5 is reversed.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの考案の一実施例による多熱源ヒートポ
ンプ装置を示す構成図である。 1……圧縮機、2……水コイル、5……空気熱
源コイル、6……水熱源コイル、7……ケース、
10……吸気口、11……排気口、12……ルー
バ、13……フアン。
The figure is a configuration diagram showing a multi-source heat pump device according to an embodiment of this invention. 1...Compressor, 2...Water coil, 5...Air heat source coil, 6...Water heat source coil, 7...Case,
10... Intake port, 11... Exhaust port, 12... Louver, 13... Fan.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 暖房時には、少なくとも圧縮機、水コイル、空
気熱源コイルおよび水熱源コイルを直列に接続す
ることにより閉回路を形成し、冷媒を、この順序
で流し、循環し、冷房時には、少なくとも圧縮
機、水熱源コイル、空気熱源コイル、膨張弁およ
び水コイルを直列に接続することにより閉回路を
形成し、冷媒を、この順序で流し、循環するよう
に構成された多熱源ヒートポンプ装置であつて、
前記空気熱源コイルが風圧によつて開くルーバを
それぞれ備える吸気口と排気口との間の通風路内
に設置されていることを特徴とする多熱源ヒート
ポンプ装置。
During heating, a closed circuit is formed by connecting at least the compressor, water coil, air heat source coil, and water heat source coil in series, and the refrigerant flows and circulates in this order. During cooling, at least the compressor, water heat source coil, and water heat source coil are connected in series. A multi-heat source heat pump device configured to form a closed circuit by connecting a coil, an air heat source coil, an expansion valve, and a water coil in series, and to flow and circulate a refrigerant in this order,
A multi-heat source heat pump device, wherein the air heat source coil is installed in a ventilation path between an intake port and an exhaust port, each of which has a louver that opens due to wind pressure.
JP7391782U 1982-05-20 1982-05-20 Multi-source heat pump equipment Granted JPS58177756U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7391782U JPS58177756U (en) 1982-05-20 1982-05-20 Multi-source heat pump equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7391782U JPS58177756U (en) 1982-05-20 1982-05-20 Multi-source heat pump equipment

Publications (2)

Publication Number Publication Date
JPS58177756U JPS58177756U (en) 1983-11-28
JPH0451318Y2 true JPH0451318Y2 (en) 1992-12-03

Family

ID=30083398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7391782U Granted JPS58177756U (en) 1982-05-20 1982-05-20 Multi-source heat pump equipment

Country Status (1)

Country Link
JP (1) JPS58177756U (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512387A (en) * 1978-07-12 1980-01-28 Mitsubishi Electric Corp Multiple heat source air conditioner
JPS5515554B2 (en) * 1975-11-22 1980-04-24

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352467U (en) * 1976-10-07 1978-05-04
JPS5515554U (en) * 1978-07-17 1980-01-31

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515554B2 (en) * 1975-11-22 1980-04-24
JPS5512387A (en) * 1978-07-12 1980-01-28 Mitsubishi Electric Corp Multiple heat source air conditioner

Also Published As

Publication number Publication date
JPS58177756U (en) 1983-11-28

Similar Documents

Publication Publication Date Title
JPS6155018B2 (en)
JPH0451318Y2 (en)
JPH0431499Y2 (en)
JPS6018761Y2 (en) Air conditioning equipment
JPH033902Y2 (en)
JPH05240528A (en) Heat pump and air conditioner
JP2000028219A (en) Outdoor machine unit and air conditioner
JP2000310433A (en) Ice storage air conditioning system
JP4073165B2 (en) Engine cooling device and refrigeration device
JPS6139586B2 (en)
JPS5849872A (en) Heat pump device
JPS5913573Y2 (en) Heat pump air conditioner
JPS5886366A (en) Air-conditioning hot-water supply device
JPS604040Y2 (en) Separate air conditioner/heater
JPS5872853A (en) Absorption air conditioner
JPH0212541Y2 (en)
JPS58108372A (en) Air-conditioning hot-water supply device
JPS6226428A (en) Heat pump type air conditioner
JPS6238200Y2 (en)
SU1691666A1 (en) Air-conditioning plant
JPS6320934Y2 (en)
JPH0220913B2 (en)
JP3249238B2 (en) Air conditioner
JPS604008Y2 (en) ventilation air conditioner
JPH02115637A (en) Room cooler/heater