JPH0451256B2 - - Google Patents

Info

Publication number
JPH0451256B2
JPH0451256B2 JP58009939A JP993983A JPH0451256B2 JP H0451256 B2 JPH0451256 B2 JP H0451256B2 JP 58009939 A JP58009939 A JP 58009939A JP 993983 A JP993983 A JP 993983A JP H0451256 B2 JPH0451256 B2 JP H0451256B2
Authority
JP
Japan
Prior art keywords
molten metal
twin rolls
housing
rolls
tundish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58009939A
Other languages
Japanese (ja)
Other versions
JPS59137162A (en
Inventor
Hisahiko Fukase
Kunio Matsui
Akira Iwawaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP993983A priority Critical patent/JPS59137162A/en
Publication of JPS59137162A publication Critical patent/JPS59137162A/en
Publication of JPH0451256B2 publication Critical patent/JPH0451256B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0622Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] この発明は急冷薄帯の連続鋳造装置に関するも
のである。 [従来の技術] 近年になつて例えば溶融金属(以下溶湯とい
う)を回転双ロール等の急冷装置に供給して急冷
して薄帯とし、偏析のない金属や平衡に関係のな
い合金相を有する金属、或いは微細結晶粒の金属
或いはまた非晶質金属を作る等の新しい金属の製
造についての研究が盛んに行なわれるようになつ
てきた。 これに用いられる装置として、一対のロール間
に溶湯を供給して急冷する双ロール式金型を使用
する装置が提案されている。 冷却用金型の移動面上に薄く溶湯を接触させる
ことによる急冷薄帯の連続鋳造装置において、薄
帯の厚さ方向のすべてにわたつて一定時間内に冷
却凝固させる上で最大のネツクになつている点は
冷却凝固させたい金属と金型との界面の熱伝達抵
抗であることは周知のとおりである。 この界面の熱伝達抵抗が小さく、換言すれば熱
伝達率αが大きければ一定以上の冷却速度で凝固
できる薄帯の厚さを増大できるが、従来この熱伝
達率αは金型によつて定まるいわゆる所与の条件
と考えられていたため、例えば非晶質の薄帯は数
十ミクロンの厚さが限度であつた。 その上、金型の表面に溶湯を単に接触させるだ
けでは、凝固収縮によるひずみによつて薄帯が片
面側に曲るいわゆるそり等が発生し、平坦性が悪
いという問題がある。 本発明は上記課題を解消すべく創案されたもの
であり、上記熱伝達率αの増大を図ることによ
り、一定以上の冷却速度で凝固させることができ
る薄帯の厚さの増大、薄帯の平坦性の改善、さら
には、生産速度の向上を達成し得る急冷薄帯の連
続鋳造装置を提供することを目的とする。 [課題を解決するための手段] 上記目的を達成するため本発明は、双ロール間
に溶融金属を供給して湯溜部を形成しつつ急冷薄
帯を製造する連続鋳造装置において、溶融金属供
給源からの溶融金属を双ロール間に案内すべくそ
の絞られた開口を双ロール間に臨ませて設けたタ
ンデツシユと、このタンデツシユにより供給され
た溶湯により上記双ロール間にロール頂部よりも
低い位置に湯面を位置させて形成される湯溜部
と、双ロール上に、そのロール軸に沿う側壁が上
記湯面の外側にガスシール手段を介して着座状に
設けられ、その内部に上記湯面を加圧するための
加圧室を区画形成するハウジングと、このハウジ
ング内に加圧ガスを供給するための加圧ガス供給
手段とを具備したものである。 [作 用] ここで、本発明の原理について説明する。本発
明者は溶湯と冷却用移動金型との接触直後の熱伝
達率αの特性を明らかにするため溶綱中に銅ブロ
ツクを浸漬し、銅ブロツクに付着する凝固双の厚
さと浸漬時間の関係、銅ブロツクの温度上昇を調
べて解析した。その結果の一例を示せば次のとお
りである。浸漬時間1秒、溶綱温度1600℃、材質
JIS S10C、銅ブロツク寸法100mm丸×60mm厚の場
合、第1表の結果が得られた。
[Industrial Field of Application] This invention relates to a continuous casting apparatus for quenched ribbon. [Prior art] In recent years, for example, molten metal (hereinafter referred to as molten metal) is supplied to a quenching device such as rotating twin rolls and quenched to form a thin ribbon, which has metals without segregation or alloy phases unrelated to equilibrium. Research into the production of new metals, such as the production of metals or fine-grained metals or even amorphous metals, has become active. As an apparatus used for this, an apparatus using a twin-roll mold that supplies molten metal between a pair of rolls and rapidly cools it has been proposed. In continuous casting equipment for rapidly cooling ribbons, which involves thinly contacting the molten metal onto the moving surface of a cooling mold, this is the biggest hurdle in cooling and solidifying the entire thickness of the ribbon within a certain amount of time. It is well known that the important factor is the heat transfer resistance at the interface between the metal to be cooled and solidified and the mold. If the heat transfer resistance at this interface is small, in other words, if the heat transfer coefficient α is large, the thickness of the ribbon that can be solidified at a cooling rate above a certain level can be increased, but conventionally, this heat transfer coefficient α is determined by the mold. Since this was considered to be a so-called given condition, for example, the thickness of an amorphous ribbon was limited to several tens of microns. Furthermore, simply bringing the molten metal into contact with the surface of the mold causes the ribbon to curve to one side due to distortion due to solidification shrinkage, resulting in poor flatness. The present invention was devised to solve the above problems, and by increasing the heat transfer coefficient α, the thickness of the ribbon that can be solidified at a cooling rate above a certain level can be increased, and the thickness of the ribbon can be increased. It is an object of the present invention to provide a continuous casting apparatus for quenched ribbon that can improve flatness and further increase production speed. [Means for Solving the Problems] In order to achieve the above object, the present invention provides a continuous casting apparatus that manufactures a quenched ribbon while supplying molten metal between twin rolls to form a sump. In order to guide molten metal from the source between the twin rolls, there is a tundish with its narrowed opening facing between the twin rolls, and the molten metal supplied by this tundish creates a gap between the twin rolls at a position lower than the top of the rolls. A molten water reservoir is formed by placing the molten water surface on the molten water surface, and a side wall along the roll axis is provided on the twin rolls so as to sit on the outside of the molten water surface via a gas sealing means, and the molten water is placed inside the sump portion. The device includes a housing defining a pressurizing chamber for pressurizing a surface, and pressurized gas supply means for supplying pressurized gas into the housing. [Function] Here, the principle of the present invention will be explained. In order to clarify the characteristics of the heat transfer coefficient α immediately after the contact between the molten metal and a moving mold for cooling, the present inventor immersed a copper block in the molten steel and determined the thickness of the solidified twin adhering to the copper block and the immersion time. The relationship and temperature rise of the copper block were investigated and analyzed. An example of the results is as follows. Immersion time 1 second, melt temperature 1600℃, material
In the case of JIS S10C and copper block dimensions of 100 mm round x 60 mm thick, the results shown in Table 1 were obtained.

【表】 第1表から、冷却凝固させたい金属と冷却用移
動金型間の接触圧力に相当する銅ブロツクの溶綱
中への浸漬深さの増大により、銅ブロツクの表面
に発達する凝固厚さと熱伝達率αが増大すること
が判明した。また凝固層の厚さdと浸漬時間tと
の関係はd=K・t-0.5(ただしKは定数)で示さ
れ、この関係と銅ブロツクの温度変化から熱伝達
率αの時間変化は第2図に示すように双曲線的に
溶綱との接触直後に大きいことも明らかになつ
た。 これは加圧によつて溶湯と金型との間の濡れ性
が改善されること、および発達した凝固層が凝固
歪に起因して金型から不均一にそつて離れること
により真の接触面が小さくなることが防止される
ことによるものと考えられる。 これらのことから急冷薄帯の製造において溶湯
と冷却用移動金型とを加圧状態で接触させると熱
伝達率αの高い状態で凝固させることができ、非
晶質金属薄帯或いは急冷による結晶特性を向上さ
せた急冷薄帯等を一層厚さを厚く製造することが
できることになる。 例えば加圧室内の圧力を大気圧からおよそ0.2
Kg/cm2上げれば加圧しない場合の約2倍のαにな
り、その効果は顕著である。 [実施例] 次に添付図面に示す実施例について説明する。 第1図において、3は溶融金属供給源たる溶湯
供給装置であり、溶湯供給装置3を構成する金属
溶融炉3′の出湯口4の下方には双ロール1,1
が設けられている。溶融炉3′の出湯口4と双ロ
ール1,1との間には、溶融炉3′からの溶湯を
双ロール1,1間に案内するためのタンデツシユ
2が設けられている。タンデツシユ2は、出湯口
4に臨むその上部開口が大きく開口され、双ロー
ル1,1間に臨むその下部開口が小さく絞られて
いる。すなわち、タンデツシユ2は、溶融炉3′
の出湯口4から出た溶湯を一旦受けて、双ロール
1,1間への溶湯の供給流量を制限するものであ
り、上記双ロール1,1間には、このタンデツシ
ユ2を介して溶湯が供給されることにより、ロー
ル頂部よりも低い位置に湯面8を有して湯溜部9
が形成されるようになつている。溶湯供給装置3
は、溶融炉3′内に挿入されたロツド状のストツ
パ5を上下に移動させることにより出湯口4を開
閉できるようになつている。 双ロール1,1の溶湯入口側には、上記溶湯供
給装置3とタンデツシユ2とを収容するようにし
て、下部が開口されたハウジング6が設けられて
いる。このハウジング6のローラ軸に沿う両側壁
は双ロール1,1の頂部よりも外側に着座状に設
けられ、ローラ軸と直交する両側壁(図示せず)
はその下部がロール形状に合わせて形成されて双
ロール1,1端部近傍に着座状に設けられてい
る。また、双ローラ1,1間の両端には、溶湯の
漏れを防ぐために堰板(図示せず)が設けられて
いる。ハウジング6と双ロール1,1との摺動部
は、ガスの漏洩を防止するため通例のガスシール
手段、例えば針金を密生させたブラシをハウジン
グ6側に配置するとか、またはメカニカルシール
等の通例のガスシール手段によつてシールされて
いる。上記ストツパ5の駆動軸がハウジング6を
貫通している部分にも同様にガスシールが施され
ている。このハウジング6の側壁上部には、加圧
ガス供給手段たるガス供給管7が接続されてお
り、このガス供給管7を介してガス供給源(図示
せず)より加圧室6内に加圧ガスが供給されるよ
うになつている。かくしてハウジング6は、その
内部に、上記湯溜部9の湯面を加圧するための加
圧室を区画形成する。 急冷薄帯の製造の際には、所望の金属を溶湯供
給装置3の溶融炉3′中で溶融させ且つハウジン
グ6内にガス供給管7を通してガス体、好ましく
は非酸化性ガスまたは不活性ガスを送つてハウジ
ング内を昇圧させておいて、ストツパ5を上げて
ノズル4を開け、溶融炉3′中の溶湯をタンデツ
シユ2を介して双ロール1,1間に供給する。 このとき双ロール1,1間の湯面8はハウジン
グ6内の加圧ガスによつて圧力を受けるため溶湯
および凝固相10はロール面に押しつけられ、金
属と双ロール1,1との接触界面の接触圧が高く
なる。これによつて熱伝達率αが増大すると共に
凝固歪による薄帯の不均一なそりの発生も防止さ
れる。 双ロール1,1とハウジング6とのシール部は
溶湯に直接触れる場所でないので、この部分のシ
ール手段としてはガスシールに通例用いられるメ
カニカルシールの如きシール法で十分対応でき、
ハウジング6の内圧さえ0.2Kg/cm2程度に保つこ
とができれば多少漏洩しても差支えない。 [発明の効果] 以上要するに本発明によれば、次の如き優れた
効果を発揮する。 (1) 双ロール間に形成した湯溜部の湯面を加圧す
ることにより、冷却凝固させたい金属とロール
面間の熱伝達率αを増大させることができるの
で、一定以上の冷却速度で凝固させることがで
きる薄帯の厚さの増大、薄帯の平坦性の改善、
さらには、生産速度の向上を図ることができ
る。 (2) 加圧室を形成するハウジングと双ロール間に
はさほど高いシール性は要求されないので、ガ
スシールに通例用いられる簡易なシール法で十
分対応できる。
[Table] From Table 1, the solidification thickness that develops on the surface of the copper block increases as the immersion depth of the copper block into the molten steel increases, which corresponds to the contact pressure between the metal to be cooled and solidified and the moving mold for cooling. It was found that the heat transfer coefficient α increases with increasing temperature. In addition, the relationship between the thickness d of the solidified layer and the immersion time t is expressed as d = K・t -0.5 (where K is a constant), and from this relationship and the temperature change of the copper block, the time change of the heat transfer coefficient α is As shown in Figure 2, it was also revealed that the molten steel becomes hyperbolically large immediately after contact with the molten steel. This is because the wettability between the molten metal and the mold is improved by pressurization, and the solidified layer that has developed is unevenly moved away from the mold due to solidification strain, resulting in a true contact surface. This is thought to be due to the fact that it is prevented from becoming smaller. For these reasons, in the production of quenched metal ribbons, if the molten metal is brought into contact with the moving mold for cooling under pressure, it can be solidified in a state with a high heat transfer coefficient α. This makes it possible to produce thicker quenched ribbons with improved properties. For example, the pressure inside the pressurized chamber is approximately 0.2 from atmospheric pressure.
If Kg/cm 2 is increased, α will be approximately twice that of the case without pressurization, and the effect is remarkable. [Example] Next, an example shown in the attached drawings will be described. In FIG. 1, reference numeral 3 denotes a molten metal supply device as a molten metal supply source, and twin rolls 1, 1
is provided. A tundish 2 for guiding the molten metal from the melting furnace 3' between the twin rolls 1, 1 is provided between the tap port 4 of the melting furnace 3' and the twin rolls 1, 1. The tundish 2 has a large upper opening facing the tap 4, and a narrower lower opening facing between the twin rolls 1. That is, the tundish 2 is connected to the melting furnace 3'
Once the molten metal comes out from the outlet 4, the flow rate of the molten metal is restricted between the twin rolls 1 and 1. By being supplied, the molten water pool 9 is formed with the molten water level 8 at a lower position than the top of the roll.
is beginning to form. Molten metal supply device 3
The tap 4 can be opened and closed by moving up and down a rod-shaped stopper 5 inserted into the melting furnace 3'. A housing 6 with an open bottom is provided on the molten metal inlet side of the twin rolls 1, 1 to accommodate the molten metal supply device 3 and the tundish 2. Both side walls of the housing 6 along the roller axis are seated outside the tops of the twin rolls 1, 1, and both side walls (not shown) are perpendicular to the roller axis.
The lower part of the roller is formed to match the shape of the roll and is seated near the end of the twin rolls 1 and 1. Furthermore, weir plates (not shown) are provided at both ends between the twin rollers 1, 1 to prevent leakage of molten metal. The sliding parts between the housing 6 and the twin rolls 1, 1 are provided with a conventional gas sealing means to prevent gas leakage, such as by placing a brush with dense wire on the housing 6 side, or by using a mechanical seal, etc. sealed by a gas sealing means. A gas seal is similarly applied to the portion where the drive shaft of the stopper 5 passes through the housing 6. A gas supply pipe 7 serving as pressurized gas supply means is connected to the upper side wall of the housing 6, and pressurization is applied into the pressurizing chamber 6 from a gas supply source (not shown) through the gas supply pipe 7. Gas is now being supplied. Thus, the housing 6 defines therein a pressurizing chamber for pressurizing the hot water surface of the hot water reservoir 9. During production of the quenched ribbon, the desired metal is melted in the melting furnace 3' of the molten metal supply device 3 and a gaseous body, preferably a non-oxidizing gas or an inert gas, is passed through the gas supply pipe 7 into the housing 6. The pressure in the housing is increased by raising the pressure in the housing, the stopper 5 is raised to open the nozzle 4, and the molten metal in the melting furnace 3' is supplied between the twin rolls 1 through the tundish 2. At this time, the molten metal surface 8 between the twin rolls 1, 1 is subjected to pressure by the pressurized gas in the housing 6, so the molten metal and solidified phase 10 are pressed against the roll surface, and the contact interface between the metal and the twin rolls 1, 1. contact pressure increases. This increases the heat transfer coefficient α and also prevents uneven warping of the ribbon due to solidification strain. Since the sealing part between the twin rolls 1, 1 and the housing 6 is not a place that comes into direct contact with the molten metal, a sealing method such as a mechanical seal commonly used for gas sealing can be used as a sealing method for this part.
As long as the internal pressure of the housing 6 can be maintained at about 0.2 kg/cm 2 , there is no problem even if there is some leakage. [Effects of the Invention] In summary, according to the present invention, the following excellent effects are achieved. (1) By pressurizing the surface of the molten metal in the sump formed between the twin rolls, it is possible to increase the heat transfer coefficient α between the metal to be cooled and solidified and the roll surface, so solidification occurs at a cooling rate above a certain level. The thickness of the ribbon can be increased, the flatness of the ribbon can be improved,
Furthermore, production speed can be improved. (2) Since very high sealing performance is not required between the housing forming the pressurized chamber and the twin rolls, a simple sealing method commonly used for gas sealing can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の装置の実施例を図解的に示し
た縦断面図、第2図は接触時間と熱伝達率との関
係の一例を示すグラフである。 1…双ロール、2…タンデツシユ、3…溶融金
属供給装置、3′…金属溶融炉、4…ノズル(出
湯口)、5…ストツパ、6…ハウジング、7…加
圧ガス供給手段たるガス供給管、8…湯面、9…
湯溜部、10…凝固相。
FIG. 1 is a longitudinal sectional view schematically showing an embodiment of the apparatus of the present invention, and FIG. 2 is a graph showing an example of the relationship between contact time and heat transfer coefficient. DESCRIPTION OF SYMBOLS 1...Twin rolls, 2...Tundish, 3...Molten metal supply device, 3'...Metal melting furnace, 4...Nozzle (tapping port), 5...Stopper, 6...Housing, 7...Gas supply pipe serving as pressurized gas supply means , 8... hot water surface, 9...
Water reservoir section, 10... solidification phase.

Claims (1)

【特許請求の範囲】[Claims] 1 双ロール間に溶融金属を供給して湯溜部を形
成しつつ急冷薄帯を製造する連続鋳造装置におい
て、溶融金属供給源からの溶融金属を双ロール間
に案内すべくその絞られた開口を双ロール間に臨
ませて設けたタンデツシユと、このタンデツシユ
により供給された溶湯により上記双ロール間にロ
ール頂部よりも低い位置に湯面を位置させて形成
される湯溜部と、双ロール上に、そのロール軸に
沿う側壁が上記湯面の外側にガスシール手段を介
して着座状に設けられ、その内部に上記湯面を加
圧するための加圧室を区画形成するハウジング
と、このハウジング内に加圧ガスを供給するため
の加圧ガス供給手段とを具備したことを特徴とす
る急冷薄帯の連続鋳造装置。
1. In a continuous casting device that manufactures quenched ribbon by supplying molten metal between twin rolls to form a sump, a constricted opening is used to guide molten metal from a molten metal supply source between the twin rolls. a tundish which faces between the twin rolls; a tundish formed by the molten metal supplied by the tundish with the molten metal surface positioned between the twin rolls at a position lower than the top of the rolls; a housing whose side wall along the roll axis is seated on the outside of the hot water surface through a gas sealing means and defines a pressurizing chamber for pressurizing the hot water surface inside the housing; 1. A continuous casting apparatus for rapidly quenched ribbon, comprising a pressurized gas supply means for supplying pressurized gas into the apparatus.
JP993983A 1983-01-26 1983-01-26 Device for producing quenched strip Granted JPS59137162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP993983A JPS59137162A (en) 1983-01-26 1983-01-26 Device for producing quenched strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP993983A JPS59137162A (en) 1983-01-26 1983-01-26 Device for producing quenched strip

Publications (2)

Publication Number Publication Date
JPS59137162A JPS59137162A (en) 1984-08-07
JPH0451256B2 true JPH0451256B2 (en) 1992-08-18

Family

ID=11733980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP993983A Granted JPS59137162A (en) 1983-01-26 1983-01-26 Device for producing quenched strip

Country Status (1)

Country Link
JP (1) JPS59137162A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60199551A (en) * 1984-03-23 1985-10-09 Nippon Steel Corp Method and device for producing thin metallic strip
JP2591098B2 (en) * 1988-07-26 1997-03-19 石川島播磨重工業株式会社 Twin roll continuous casting machine
KR101190772B1 (en) 2011-04-15 2012-10-12 한국기계연구원 A continuous casting method of bulk amorphous alloy strip and low melting temperature bulk amorphous alloy strip produced thereby
CN109967703B (en) * 2019-04-08 2020-09-18 东北大学 Method for continuously and efficiently preparing wide amorphous thin strip with thickness of 80-1500 mu m at high cooling speed

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336249A (en) * 1976-09-16 1978-04-04 Fuji Xerox Co Ltd Metod of making mirror replica
JPS5496432A (en) * 1978-01-18 1979-07-30 Noboru Tsuya Method and apparatus for making thin member
JPS58224048A (en) * 1982-06-22 1983-12-26 Hitachi Zosen Corp Preventing method of slip in formation of solidified shell with twin molding rolls

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336249A (en) * 1976-09-16 1978-04-04 Fuji Xerox Co Ltd Metod of making mirror replica
JPS5496432A (en) * 1978-01-18 1979-07-30 Noboru Tsuya Method and apparatus for making thin member
JPS58224048A (en) * 1982-06-22 1983-12-26 Hitachi Zosen Corp Preventing method of slip in formation of solidified shell with twin molding rolls

Also Published As

Publication number Publication date
JPS59137162A (en) 1984-08-07

Similar Documents

Publication Publication Date Title
EP2218527B1 (en) Method and apparatus for unidirection solidification of castings
US4715428A (en) Method and apparatus for direct casting of crystalline strip by radiant cooling
JPS6277151A (en) Method and apparatus for twin roll type continuous casting
JPH0328253B2 (en)
JPS58212844A (en) Continuous casting device for thin plate
US4545423A (en) Refractory coating of edge-dam blocks for the purpose of preventing longitudinal bands of sinkage in the product of a continuous casting machine
JPH0451256B2 (en)
US4678719A (en) Method and apparatus for continuous casting of crystalline strip
US4911226A (en) Method and apparatus for continuously casting strip steel
JP2007507351A (en) Steel strip casting
EP0174765B1 (en) Method and apparatus for continuous casting of crystalline strip
EP0174767B1 (en) Method and apparatus for direct casting of crystalline strip by radiantly cooling
JPS5841656A (en) Continuous casting device for thin sheet
US5535812A (en) Method of and apparatus for continuous casting of metal
US4955430A (en) Continuous lead-float casting of steel
EP0174766B1 (en) Method and apparatus for direct casting of crystalline strip in non-oxidizing atmosphere
JPH081284A (en) Twin roll type continuous casting method and apparatus therefor
JPH0519165Y2 (en)
JPH04266459A (en) Continuous casting device for producing cladded material
JPH0259147A (en) Apparatus for producing rapidly solidified strip in twin roll method
JPS58103944A (en) Continuous casting device
JPS59169653A (en) Continuous casting device
JPH01127147A (en) Method for casting molten metal
JPH02197352A (en) Mold for continuous casting
JPH01237050A (en) Horizontal continuous casting method