JPH0450743A - Differential pressure transmitter - Google Patents

Differential pressure transmitter

Info

Publication number
JPH0450743A
JPH0450743A JP15865690A JP15865690A JPH0450743A JP H0450743 A JPH0450743 A JP H0450743A JP 15865690 A JP15865690 A JP 15865690A JP 15865690 A JP15865690 A JP 15865690A JP H0450743 A JPH0450743 A JP H0450743A
Authority
JP
Japan
Prior art keywords
pressure
medium passage
differential pressure
passage
pressure medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15865690A
Other languages
Japanese (ja)
Inventor
Akira Ishii
明 石井
Wataru Fukai
亘 深井
Satoru Ohata
覚 大畠
Yukio Hoshino
星野 幸男
Taichi Watanabe
太一 渡辺
Tadahiro Hayashi
林 忠広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15865690A priority Critical patent/JPH0450743A/en
Publication of JPH0450743A publication Critical patent/JPH0450743A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To make a zero-point adjustment with a small error by providing a mechanism which closes a by-pasby a valve mechanism at the time of differential pressure detection to lead the pressure of a diaphragm to a detecting element, and closes one pressure medium passage and open the by-pass at the time of the zero-point adjustment to apply equal pressure to both surfaces of the detecting element. CONSTITUTION:The valve mechanism 12 is provided to the connection part between a U-shaped pressure medium passage 9 and by-pass 11 and when differential pressure is detected, the high-pressure side downstream part 9aa and high-pressure side downstream part 9ab of the passage 9 are linked with each other to lead pressure Pa and Pb which are applied to respective diaphragms 7 to the surfaces of the element 10 with the by-pass 11 closed. When the zero-point adjustment is performed, the valve mechanism 12 is switched to close the high-pressure side upstream side part 9aa and links the low-pressure side downstream part 9bb with the high-pressure side downstream part 9ab, thereby applying the pressure Pb to the respective surfaces of the element 10. Consequently, the zero-point adjustment can be performed with a small error through remote operation without operating a three-branch valve mechanism installed outside the differential pressure transmitter.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は各種のプラント等で使用される差圧伝送器に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a differential pressure transmitter used in various plants and the like.

(従来の技術) 各種のプラント等で使用される差圧伝送器の1つとして
、従来、第4図に示すものが知られている。
(Prior Art) As one of the differential pressure transmitters used in various plants, the one shown in FIG. 4 is conventionally known.

この図に示す差圧伝送器は厚板状に形成されるブロック
部101と、このブロック部101の両側に各々設けら
れる受圧フランジ部102とを備えており、各受圧フラ
ンジ部102に接続された各プロセス配管工03a、1
03bの圧力差を検出してこれを外部に伝送する。
The differential pressure transmitter shown in this figure includes a block part 101 formed in a thick plate shape, and pressure receiving flange parts 102 provided on both sides of this block part 101, and a pressure receiving flange part 102 connected to each pressure receiving flange part 102. Each process plumber 03a, 1
03b is detected and transmitted to the outside.

ブロック部101は厚板状に形成されるブロック本体1
05と、このブロック本体105の両面に形成された各
凹部106を各々覆うように設けられる隔壁ダイヤフラ
ム107と、前記各凹部106を連通させるように前記
ブロック本体105内に形成された圧力媒体通路108
のほぼ中央部分に設けられる差圧検出素子109と、前
記圧力媒体通路108と前記ブロック本体105の上部
とを貫通するように前記ブロック本体105内に形成さ
れた信号線用穴110に挿通され前記差圧検出素子10
9の出力を外部に導く信号線111と、前記ブロック本
体105の前記信号線用穴110を塞ぎながら前記信号
線111を外部に導くハーメチックシール112と、前
記各隔壁ダイヤフラム107によって密閉された前記圧
力媒体通路108内および信号線用穴110に充填され
るシリコーンオイル、エチレングリコール等の圧力媒体
113とを備えている。
The block part 101 is a block body 1 formed in a thick plate shape.
05, a partition diaphragm 107 provided to cover each recess 106 formed on both sides of this block body 105, and a pressure medium passage 108 formed in the block body 105 so as to communicate each recess 106.
A differential pressure detecting element 109 provided approximately in the center of the block body 105 is inserted into a signal line hole 110 formed in the block body 105 so as to pass through the pressure medium passage 108 and the upper part of the block body 105. Differential pressure detection element 10
9 to the outside, a hermetic seal 112 that guides the signal line 111 to the outside while closing the signal line hole 110 of the block body 105, and the pressure sealed by each partition diaphragm 107. A pressure medium 113 such as silicone oil or ethylene glycol is provided to be filled in the medium passage 108 and the signal line hole 110.

また、各受圧フランジ部102は各々前記ブロック本体
105の各面を覆うように設けられる厚板状のフランジ
本体115と、このフランジ本体115の前記隔壁ダイ
ヤフラム107側に形成された周囲溝116内に嵌入さ
れるパツキン117と、これらの各フランジ本体115
を前記ブロック本体105の画面に密着させるボルトナ
ンド機構118とを備えており、前記プロセス配管10
3a、103bの圧力を前記フランジ本体115の上部
に形成された通路穴119を介して前記フランジ本体1
15の前記隔壁ダイヤフラム側に形成された凹部120
に導く。
Further, each pressure receiving flange portion 102 includes a thick plate-shaped flange body 115 provided so as to cover each surface of the block body 105, and a peripheral groove 116 formed on the partition wall diaphragm 107 side of this flange body 115. The packing 117 to be fitted and each of these flange bodies 115
and a bolt nand mechanism 118 that brings the process piping 10 into close contact with the screen of the block body 105.
3a, 103b is applied to the flange body 1 through a passage hole 119 formed in the upper part of the flange body 115.
A recess 120 formed on the partition wall diaphragm side of No. 15
lead to.

そして、各プロセス配管103a、103bからの圧力
によって各隔壁ダイヤフラム107が歪めば、これに応
じて差圧検出素子109の各両番こ加えられる圧力に差
が生じて、これが差圧検出素子109によって検出され
、この検呂結果が信号線111を介して外部に8力され
る。
If each partition diaphragm 107 is distorted by the pressure from each process pipe 103a, 103b, a difference will occur in the pressure applied to each side of the differential pressure detecting element 109, and this will be caused by the differential pressure detecting element 109. It is detected, and the test result is outputted to the outside via the signal line 111.

また、このような差圧伝送器以外にも、種々の構造のも
のも知られているが、原理的には間様な測定原理に基づ
いている。
In addition to such differential pressure transmitters, various structures are known, but they are based on different measurement principles.

(発明が解決しようとする課題) しかしながらこのような差圧伝送器では、経年変化や過
大圧力等によってごくわずかな永久歪みが生じ、これが
原因で零点ドリフトを起こすことがある。
(Problem to be Solved by the Invention) However, in such a differential pressure transmitter, slight permanent distortion occurs due to aging, excessive pressure, etc., and this may cause zero point drift.

そこで、このような差圧伝送器においては、据付は時に
各プロセス配管103a、103bに予めバイパス管1
21を掛は渡すとともに、これら各プロセス配管103
a、103bおよびバイパス管121にストップ弁12
2a、122b、122cを各々取り付けて三岐弁機構
を構成し、零点調整時にはバイパス管121に設けられ
たストップ弁122cを開状態にするとともに、各プロ
セス配管103a、103bに設けられたストップ弁1
22a、122bを閉状態にして差圧検出素子109に
加えられる圧力を同一にし、この差圧検出素子109か
ら出力される信号のオフセット量を測定した後、バイパ
ス管121に設けられたストップ弁122cを閉状態に
するとともに、各プロセス配管103a、103bに設
けられたストップ弁122a、122bを開状態にして
差圧測定を行なうようにしている。
Therefore, when installing such a differential pressure transmitter, a bypass pipe 1 is sometimes installed in each process pipe 103a, 103b in advance.
21, and each of these process piping 103
a, 103b and the stop valve 12 in the bypass pipe 121.
2a, 122b, and 122c are respectively attached to form a three-way valve mechanism, and when adjusting the zero point, the stop valve 122c provided in the bypass pipe 121 is opened, and the stop valve 1 provided in each process pipe 103a, 103b is opened.
22a and 122b are closed to make the pressure applied to the differential pressure detection element 109 the same, and after measuring the offset amount of the signal output from the differential pressure detection element 109, the stop valve 122c provided in the bypass pipe 121 is closed. is closed, and stop valves 122a and 122b provided in each process pipe 103a and 103b are opened to measure the differential pressure.

しかしながら、このような方法では、遠隔地から三岐弁
機構を操作することができないため、零点調整時には差
圧伝送器が設置されている場所まで行って三岐弁機構を
操作しなければならず、不便であった。
However, with this method, it is not possible to operate the three-way valve mechanism from a remote location, so when adjusting the zero point, it is necessary to go to the location where the differential pressure transmitter is installed and operate the three-way valve mechanism. , it was inconvenient.

本発明は上記の事情に鑑み、差圧伝送器外に設置しであ
る三岐弁機構を操作しなくても、遠隔地において誤差の
少ない零点調整を行なうことができる差圧伝送器を提供
することを目的としている。
In view of the above circumstances, the present invention provides a differential pressure transmitter that can perform zero point adjustment with less error at a remote location without operating a three-way valve mechanism installed outside the differential pressure transmitter. The purpose is to

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記の目的を達成するために本発明による差圧伝送器は
、ブロック本体内に形成された圧力媒体通路を遮る位置
に設けられる差圧検出素子と、前記圧力媒体通路の両端
を各々閉じる隔壁ダイヤフラムと、前記圧力媒体通路の
差圧検出素子の各面側をバイパスするバイパス路と、こ
のバイパス路と前記圧力媒体通路の接続部分に設けられ
、バイパス路の開通および圧力媒体通路の遮断と、バイ
パス路の遮断および圧力媒体通路の開通とを切り替える
弁機構とを備えたことを特徴としている。
(Means for Solving the Problems) In order to achieve the above object, a differential pressure transmitter according to the present invention includes a differential pressure detection element provided at a position that blocks a pressure medium passage formed in a block body, and a pressure A partition diaphragm that closes both ends of the medium passage, a bypass passage that bypasses each side of the differential pressure detection element of the pressure medium passage, and a bypass passage that bypasses each side of the differential pressure detection element of the pressure medium passage, and a bypass passage that is provided at a connecting portion between the bypass passage and the pressure medium passage, and is provided to open the bypass passage. and a valve mechanism that switches between blocking the pressure medium passage, blocking the bypass passage, and opening the pressure medium passage.

(作用) 上記の構成において、差圧検出時には弁機構によってバ
イパス路を閉じるとともに、圧力媒体通路を開いて各隔
壁ダイヤフラムに加えられた圧力を差圧検出素子の各面
に導き、また零点調整時には弁機構を切り替えて圧力媒
体通路の一方を閉じるとともに、バイパス路を開いて差
圧検出素子の両面に加わる圧力を同じにする。
(Function) In the above configuration, when differential pressure is detected, the bypass passage is closed by the valve mechanism, and the pressure medium passage is opened to guide the pressure applied to each partition diaphragm to each surface of the differential pressure detection element. The valve mechanism is switched to close one of the pressure medium passages, and the bypass passage is opened to equalize the pressure applied to both sides of the differential pressure detection element.

(実施例) 第1図は本発明による差圧伝送器の一実施例を示す断面
図である。
(Embodiment) FIG. 1 is a sectional view showing an embodiment of a differential pressure transmitter according to the present invention.

この図に示す差圧伝送器は厚板状に形成されるブロック
部1と、このブロック部1の両側に各々設けられる受圧
フランジ部2と、前記ブロック部1の駆動およびこのブ
ロック部1からの信号処理を行なう信号処理回路3とを
備えており、各受圧フランジ部2に接続された各プロセ
ス配管4a、4bの圧力差を検出してこれを信号処理回
路3を介して外部に伝送する。また、外部から零点調整
信号が供給されたときには信号処理回路3によってブロ
ック部1を駆動して零点調整を行なわせる。
The differential pressure transmitter shown in this figure includes a block portion 1 formed in the shape of a thick plate, pressure receiving flange portions 2 provided on both sides of the block portion 1, and drive and control of the block portion 1 and the pressure receiving flange portions 2 provided on both sides of the block portion 1. It is equipped with a signal processing circuit 3 that performs signal processing, detects the pressure difference between each process pipe 4a, 4b connected to each pressure receiving flange portion 2, and transmits this to the outside via the signal processing circuit 3. Further, when a zero point adjustment signal is supplied from the outside, the signal processing circuit 3 drives the block section 1 to perform the zero point adjustment.

ブロック部1は厚板状に形成されるブロック本体5と、
このブロック本体5の両面に形成された各凹部6を各々
覆うように設けられる隔壁ダイヤフラム7と、前記各凹
部6を連通させるように前記ブロック本体5内に形成さ
れた絞り8を有するU字型圧力媒体通路9の中央部分に
設けられる半導体式の差圧検出素子10と、この差圧検
出素子10の各面を連通させるように前記U字型圧力媒
体通路9の所要部分を連通させるバイパス路11と前記
U字型圧力媒体通路9との接続部分に設けられる弁機構
12とを備えている。
The block part 1 includes a block body 5 formed in a thick plate shape,
A U-shaped partition wall diaphragm 7 provided to cover each recess 6 formed on both sides of the block body 5, and a diaphragm 8 formed within the block body 5 so as to communicate the recesses 6. A semiconductor type differential pressure detection element 10 provided in the center of the pressure medium passage 9 and a bypass path that communicates required parts of the U-shaped pressure medium passage 9 so as to communicate each surface of the differential pressure detection element 10. 11 and a valve mechanism 12 provided at a connecting portion with the U-shaped pressure medium passage 9.

さらに、前記ブロック部1は前記U字型圧力媒体通路9
と前記ブロック本体5の上部とを貫通するように前記ブ
ロック本体5内に形成された信号線用穴13に挿通され
前記差圧検出素子10の出力を外部の信号処理回路3に
導く信号線14と、前記信号線用穴13に挿通され前記
信号処理回路3の駆動電圧を前記弁機構12に導く信号
線15と、前記ブロック本体5の前記信号線用穴13を
塞ぎながら前記各信号1!14.15を外部に導くハー
メチックシール16と、前記各隔壁ダイヤフラム7によ
って密閉された前記U字型圧力媒体通路9内およびバイ
パス路11内、信号線用穴13内に充填されるシリコー
ンオイル、エチレングリコール等の圧力伝達媒体17と
を備えている。
Further, the block portion 1 is configured to include the U-shaped pressure medium passage 9.
and a signal line 14 that is inserted into a signal line hole 13 formed in the block body 5 so as to pass through the upper part of the block body 5 and leads the output of the differential pressure detection element 10 to the external signal processing circuit 3. , the signal line 15 inserted through the signal line hole 13 and guiding the drive voltage of the signal processing circuit 3 to the valve mechanism 12, and each signal 1! while closing the signal line hole 13 of the block body 5! Silicone oil and ethylene are filled in the hermetic seal 16 that guides 14.15 to the outside, the U-shaped pressure medium passage 9 sealed by each partition diaphragm 7, the bypass passage 11, and the signal line hole 13. A pressure transmission medium 17 such as glycol is provided.

前記弁機構12は第2図(a)に示す如くバイパス路1
1とU字型圧力媒体通路9との接続部分に形成されたチ
ャンバー18内に収納される弁19と、前記チャンバー
18に設けられた穴部2゜にスライド自在に挿通され前
記弁19を矢印A、B方向にスライド自在に支持する駆
動軸21と、前記穴部20内に収納され駆動軸21を矢
印A方向に付勢して前記弁19に形成された一方の二ド
ル部19aによって前記U字型圧力媒体通路9の高圧側
上流部分9aaを閉じさせるとともに、前記バイパス路
11と前記U字型圧カ媒体通路9の高圧側下流部分9a
bとを連通させるバネ22とを備えている。
The valve mechanism 12 is connected to the bypass passage 1 as shown in FIG. 2(a).
1 and a U-shaped pressure medium passage 9, the valve 19 is housed in a chamber 18, and the valve 19 is slidably inserted into a hole 2° provided in the chamber 18, and the valve 19 is indicated by the arrow. The drive shaft 21 is slidably supported in the directions A and B, and the drive shaft 21 is accommodated in the hole 20 and biased in the direction of the arrow A. The high-pressure side upstream portion 9aa of the U-shaped pressure medium passage 9 is closed, and the bypass passage 11 and the high-pressure side downstream portion 9a of the U-shaped pressure medium passage 9 are closed.
and a spring 22 that communicates with b.

さらに、前記弁機構12は前記穴部20の周囲に埋設さ
れ前記信号線15を介して駆動電圧が供給されたとき前
記駆動軸21を矢βμB方向に付勢して前記弁19に形
成された他方のニードル部19bによってバイパス路1
1を閉じさせるとともに、前記U字型圧力媒体通路9の
高圧側上流部9aaを開いてこのU字型圧力媒体通路9
の高圧側と流部9aaと高圧側下流部分9abとを連通
させる駆動コイル23とを備えている。
Furthermore, the valve mechanism 12 is embedded around the hole 20 and is formed in the valve 19 by urging the drive shaft 21 in the direction of arrow βμB when a drive voltage is supplied through the signal line 15. Bypass path 1 by the other needle portion 19b
1 is closed, and the high pressure side upstream portion 9aa of the U-shaped pressure medium passage 9 is opened to open the U-shaped pressure medium passage 9.
A drive coil 23 is provided that communicates the high pressure side of the flow section 9aa and the high pressure side downstream portion 9ab.

また、各受圧フランジ部2は各々前記ブロック本体5の
各面を覆うように設けられる厚板状のフランジ本体26
と、このフランジ本体26の前記隔壁ダイヤフラム7側
に形成された周囲溝27内に嵌入されるパツキン28と
、これらの各フランジ本体26を前記ブロック本体5の
両面に密着させるボルトナツト機構29とを備えており
、前記プロセス配管4a、4bの圧力を前記フランジ本
体26の上部に形成された通路穴30を介して前記フラ
ンジ本体26の前記隔壁ダイヤフラム7側に形成された
凹部31に導く。
Further, each pressure receiving flange portion 2 has a thick plate-shaped flange body 26 provided so as to cover each surface of the block body 5.
A packing 28 is fitted into a circumferential groove 27 formed on the partition wall diaphragm 7 side of the flange body 26, and a bolt and nut mechanism 29 that brings each of the flange bodies 26 into close contact with both sides of the block body 5. The pressure in the process pipes 4a and 4b is guided to a recess 31 formed on the partition wall diaphragm 7 side of the flange main body 26 through a passage hole 30 formed in the upper part of the flange main body 26.

また、信号処理回路3は第3図に示す如く前記信号線1
4を介して供給される前記差圧検出素子10からの差圧
検出信号を増幅する増幅増幅器35と、A/D変換部3
4を持ち前記増幅器35から供給される差圧検出信号を
A/D変換した後、予め設定されている各種の補正処理
、演算処理を行なうマイクロプロセッサ36と、このマ
イクロプロセッサ36の作業エリア等として使用される
メモリ37とを備えている。
Further, the signal processing circuit 3 includes the signal line 1 as shown in FIG.
an amplifier 35 for amplifying the differential pressure detection signal from the differential pressure detection element 10 supplied via the A/D converter 3;
4, which performs A/D conversion of the differential pressure detection signal supplied from the amplifier 35, and then performs various preset correction processing and arithmetic processing, and a working area of this microprocessor 36. A memory 37 is also provided.

さらに、前記信号処理回路3は前記マイクロプロセッサ
36の処理結果をD/A変換するD/A変換器38と、
このD/A変換器38の高力に基づいて2線式伝送ライ
ン41を介して外部から供給された電流を変調して差圧
検出信号を外部に伝送する変調器39と、外部から入力
された零点調整信号によって動作するスイッチ43と、
このスイッチ43が零点調整位置になっているとき駆動
電圧の発生を停止して前記弁機構12の駆動コイル23
への通電を停止する弁駆動回路40とを備えている。
Further, the signal processing circuit 3 includes a D/A converter 38 for D/A converting the processing result of the microprocessor 36;
A modulator 39 modulates the current supplied from the outside via the two-wire transmission line 41 based on the high power of the D/A converter 38, and transmits a differential pressure detection signal to the outside. a switch 43 operated by the zero point adjustment signal;
When this switch 43 is in the zero point adjustment position, the generation of drive voltage is stopped and the drive coil 23 of the valve mechanism 12 is
The valve drive circuit 40 is provided with a valve drive circuit 40 that stops energizing the valve.

次に、この実施例の差圧検出動作と、零点調整動作とを
順次説明する。
Next, the differential pressure detection operation and zero point adjustment operation of this embodiment will be sequentially explained.

まず、差圧検出動作においては、高圧側に加わった圧力
Paは隔壁ダイヤフラム7を介して圧力伝達媒体17に
伝達された後、この圧力伝達媒体17が充填されている
U字型圧力媒体通路9の高圧側上流部分9aaを介して
弁機構12に伝達される。
First, in the differential pressure detection operation, the pressure Pa applied to the high pressure side is transmitted to the pressure transmission medium 17 via the partition diaphragm 7, and then the U-shaped pressure medium passage 9 filled with this pressure transmission medium 17 is transmitted to the valve mechanism 12 via the high-pressure side upstream portion 9aa.

ここで、差圧横比時には第2図(b)に示す如く駆動コ
イル23によって駆動軸21が矢印B方向に付勢され、
弁19のニードル部19bがバイパス路11を閉じると
ともに、前記U空圧力媒体通路9の高圧側上流部分9a
aを開いているので、U字型圧力媒体通路9の高圧側上
流部分9aaからの圧力はU字型圧力媒体通路9の低圧
側上流部分9baおよび低圧側下流部分9bbには伝わ
らずに、U字型圧力媒体通路9の高圧側下流部分9ab
を介して差圧検出素子1oの一面側にのみ伝えられる。
Here, at the time of differential pressure transverse ratio, the drive shaft 21 is urged in the direction of arrow B by the drive coil 23 as shown in FIG. 2(b).
The needle portion 19b of the valve 19 closes the bypass passage 11 and closes the high pressure side upstream portion 9a of the U air pressure medium passage 9.
a is open, the pressure from the high-pressure side upstream portion 9aa of the U-shaped pressure medium passage 9 is not transmitted to the low-pressure side upstream portion 9ba and the low-pressure side downstream portion 9bb of the U-shaped pressure medium passage 9; High pressure side downstream portion 9ab of the shape pressure medium passage 9
It is transmitted only to one side of the differential pressure detection element 1o via the.

一方、低圧側に加わった圧力pbは隔壁ダイヤフラム7
を介して圧力伝達媒体17に伝達された後、この圧力伝
達媒体17が充填されているU字型圧力媒体通路9の低
圧側上流部分9ba、低圧側下流部分9bbを介して差
圧検出素子10の他面側に伝えられる。
On the other hand, the pressure pb applied to the low pressure side is
After being transmitted to the pressure transmission medium 17 via the pressure transmission medium 17, the pressure transmission medium 17 is transmitted to the differential pressure detection element 10 via the low pressure side upstream portion 9ba and the low pressure side downstream portion 9bb of the U-shaped pressure medium passage 9 filled with the pressure transmission medium 17. is transmitted to the other side.

このとき、弁機構12によってバイパス路11が閉じら
れているので、U字型圧力媒体通路9の低圧側の圧力は
U字型圧力媒体通路9の高圧側には伝わらない。
At this time, since the bypass passage 11 is closed by the valve mechanism 12, the pressure on the low pressure side of the U-shaped pressure medium passage 9 is not transmitted to the high pressure side of the U-shaped pressure medium passage 9.

したがって、この状態では差圧検出素子10はその両面
に加えられている圧力Pa、Pbの差圧に応じた値の差
圧検出信号を発生するとともに、これを信号線14を介
して信号処理回路3に供給する。
Therefore, in this state, the differential pressure detection element 10 generates a differential pressure detection signal having a value corresponding to the pressure difference between the pressures Pa and Pb applied to both sides thereof, and sends this signal to the signal processing circuit via the signal line 14. Supply to 3.

そして、信号処理回路3のマイクロプロセッサ36は増
幅器35を介して差圧検出信号が供給されると、これを
A/D変換して取り込むとともに、補正処理、演算処理
等を施した後、D/A変換器38に供給してD/A変換
させて変調器39に供給させる。
Then, when the microprocessor 36 of the signal processing circuit 3 is supplied with the differential pressure detection signal via the amplifier 35, it A/D converts and takes in the signal, and after performing correction processing, arithmetic processing, etc. The signal is supplied to an A converter 38 for D/A conversion and supplied to a modulator 39.

これによって、変調器39は外部から供給される電流を
変調して前記D/A変換器38から供給された差圧検出
信号を外部に伝える。
Thereby, the modulator 39 modulates the current supplied from the outside and transmits the differential pressure detection signal supplied from the D/A converter 38 to the outside.

また、零点調整動作時には、まず外部からの指示によっ
てスイッチ43が零点調整位置にされ、これに対応して
弁駆動回路40は駆動コイル23への通電を停止する。
Further, during the zero point adjustment operation, the switch 43 is first set to the zero point adjustment position by an instruction from the outside, and in response, the valve drive circuit 40 stops energizing the drive coil 23.

これによって、第2図(a)に示す如くバネ22によっ
て駆動軸21が矢印A方向に付勢され、弁19のニード
ル部19aがU字型圧力媒体通路9の高圧側上流部分9
aaを閉じるとともに、バイパス路11とU字型圧力媒
体通路9の高圧側下流部分9abとを連通させる。
As a result, the drive shaft 21 is urged in the direction of arrow A by the spring 22 as shown in FIG.
aa is closed, and the bypass passage 11 and the high-pressure side downstream portion 9ab of the U-shaped pressure medium passage 9 are made to communicate with each other.

この結果、U字型圧力媒体通路9の高圧側上流部分9a
aからの圧力はU字型圧力媒体通路9の高圧側下流部分
9abには伝わらずに、U字型圧力媒体通路9の低圧側
下流部分9bbの圧力がU字型圧力媒体通路9の高圧側
下流部分9abに伝わり、差圧検出素子10の両面に圧
力pbが加わる。またこのとき、U字型圧力媒体通路9
の高圧側上流部分9aaと、低圧側上流部分9haとに
設けられた絞り8によってU字型圧力媒体通路9の高圧
側上流部分Qaa側および低圧側上流部分9ba側から
U字型圧力媒体通路9の高圧側下流部分Qab側および
低圧側下流部分9bb側に流れ込む圧力伝達媒体17の
移動が抑制される。
As a result, the high pressure side upstream portion 9a of the U-shaped pressure medium passage 9
The pressure from a is not transmitted to the high pressure side downstream portion 9ab of the U-shaped pressure medium passage 9, and the pressure in the low pressure side downstream portion 9bb of the U-shaped pressure medium passage 9 is transferred to the high pressure side of the U-shaped pressure medium passage 9. The pressure pb is transmitted to the downstream portion 9ab, and pressure pb is applied to both sides of the differential pressure detection element 10. Also at this time, the U-shaped pressure medium passage 9
The U-shaped pressure medium passage 9 is connected from the high pressure side upstream portion Qaa side and the low pressure side upstream portion 9ba side of the U-shaped pressure medium passage 9 by the throttle 8 provided in the high pressure side upstream portion 9aa and the low pressure side upstream portion 9ha of the U-shaped pressure medium passage 9. Movement of the pressure transmission medium 17 flowing into the high-pressure side downstream portion Qab side and the low-pressure side downstream portion 9bb side is suppressed.

したがって、この状態では差圧検出素子10から差圧が
零のときにおける差圧検出信号が出力され、これが信号
線14を介して信号処理回路3に供給されて増幅された
後、A/D変換されてデジタル処理による補正処理、演
算処理等が施された後、D/A変換されて変調器39を
介して外部に出力される。
Therefore, in this state, the differential pressure detection element 10 outputs a differential pressure detection signal when the differential pressure is zero, and this is supplied to the signal processing circuit 3 via the signal line 14 and amplified, and then A/D converted. After being subjected to correction processing, arithmetic processing, etc. by digital processing, it is D/A converted and outputted to the outside via a modulator 39.

このようにこの実施例においては、U字型圧力媒体通路
9とバイパス路11との接続部分に弁機構12を設け、
差圧検出時には弁機構12によってU字型圧力媒体通路
9の高圧側上流部分9aaと、U字型圧力媒体通路9の
高圧側下流部分9abとを連通させるとともに、バイパ
ス路11を閉じて各隔壁ダイヤフラム7に加えられた圧
力Pa、Pbを差圧検出素子10の各面に導き、また零
点調整時には弁機構12を切り替えてU字型圧力媒体通
路9の高圧側上流部分9aaを閉じるとともに、バイパ
ス路11を開いてU字型圧力媒体通路9の低圧側下流部
分9bbと、U字型圧力媒体通路9の高圧側下流部分a
bとを連通させて差圧検出素子10の各面に圧力pbが
加わるようにしたので、差圧伝送器外に設置しである三
核弁機構を操作しなくても、外部からスイッチ43を制
御するだけで遠隔地において誤差の少ない零点調整を行
なうことができる。
As described above, in this embodiment, the valve mechanism 12 is provided at the connection portion between the U-shaped pressure medium passage 9 and the bypass passage 11,
When differential pressure is detected, the valve mechanism 12 connects the high-pressure side upstream portion 9aa of the U-shaped pressure medium passage 9 and the high-pressure side downstream portion 9ab of the U-shaped pressure medium passage 9, closes the bypass passage 11, and closes each partition wall. The pressures Pa and Pb applied to the diaphragm 7 are guided to each surface of the differential pressure detection element 10, and when adjusting the zero point, the valve mechanism 12 is switched to close the high-pressure side upstream portion 9aa of the U-shaped pressure medium passage 9, and the bypass The passage 11 is opened to connect the low-pressure side downstream portion 9bb of the U-shaped pressure medium passage 9 and the high-pressure side downstream portion a of the U-shaped pressure medium passage 9.
Since the pressure pb is applied to each surface of the differential pressure detection element 10 by communicating with Zero point adjustment with little error can be performed at a remote location simply by controlling the system.

また、この実施例においては、1つの弁機構12の1動
作でU字型圧力媒体通路9の高圧側上流部分9aaの遮
断と、バイパス路11の開通とを行なうことができるの
で、土岐弁機構を用いる場合より構造を簡単にすること
ができるとともに、低消費電力で駆動することができる
Furthermore, in this embodiment, the high-pressure side upstream portion 9aa of the U-shaped pressure medium passage 9 can be shut off and the bypass passage 11 can be opened by one operation of one valve mechanism 12. The structure can be made simpler than when using , and it can be driven with lower power consumption.

また、この実施例においては、弁機構12を動作させて
もU字型圧力媒体通路9内やバイパス路11内にある圧
力伝達媒体17がほとんど移動しないので、誤差の発生
を最小にすることができる。
Furthermore, in this embodiment, even when the valve mechanism 12 is operated, the pressure transmission medium 17 in the U-shaped pressure medium passage 9 and the bypass passage 11 hardly moves, so it is possible to minimize the occurrence of errors. can.

また、この実施例においては、U字型圧力媒体通路9の
高圧側上流部分9aaと低圧側上流部分9baとに絞り
8を設けているので、零点調整を行なったとき、圧力伝
達媒体17の移動を少なくして差圧が零になるまでの時
間を短くすることができる。
Furthermore, in this embodiment, since the throttles 8 are provided in the high-pressure side upstream portion 9aa and the low-pressure side upstream portion 9ba of the U-shaped pressure medium passage 9, the movement of the pressure transmission medium 17 is reduced when zero point adjustment is performed. The time required for the differential pressure to reach zero can be shortened by reducing the

さらに、ブロック本体5内部に弁機構12を設けている
ので、外部に弁機構を設けたときのように、プロセス配
管4a、4b内の流体中に含まる異物等による詰まりゃ
腐蝕による誤動作の恐れを完全に無くすことができる。
Furthermore, since the valve mechanism 12 is provided inside the block body 5, there is a risk of malfunction due to corrosion if the process piping 4a, 4b is clogged with foreign matter contained in the fluid, unlike when the valve mechanism is provided externally. can be completely eliminated.

また、上述した実施例においては、差圧検出素子10と
して半導体感圧素子を使用するようにしているが、静電
容量式の差圧検出素子を使用するようにしても良い。
Further, in the above embodiment, a semiconductor pressure sensitive element is used as the differential pressure detecting element 10, but a capacitance type differential pressure detecting element may be used.

また、上述した実施例においては、各プロセス配管4a
、4b中にある流体の差圧を検出するようにしているが
、低圧側を大気に開放するようにして大気との差圧を検
出するようにしても良い。
In addition, in the embodiment described above, each process pipe 4a
, 4b, the pressure difference between the fluid and the atmosphere may be detected by opening the low pressure side to the atmosphere.

また、上述した実施例においては、ニードル式の弁19
を使用するようにしているが、同様の機能を有する弁、
例えば0−リングシール式の弁などを使用するようにし
ても良い。
Further, in the embodiment described above, the needle type valve 19
Valve with similar function,
For example, an O-ring seal type valve may be used.

また、上述した実施例においては、U字型圧力媒体通路
9の高圧側と、バイパス路11との接続部分に弁機構1
2を設けるようにしているが、U字型圧力媒体通路9の
低圧側と、バイパス路1iとの接続部分に弁機構12を
設けるようにしても良い。
Further, in the embodiment described above, the valve mechanism 1 is provided at the connection portion between the high pressure side of the U-shaped pressure medium passage 9 and the bypass passage 11.
However, the valve mechanism 12 may be provided at the connection portion between the low pressure side of the U-shaped pressure medium passage 9 and the bypass passage 1i.

また、上述した実施例においては、駆動コイル23によ
って弁19を駆動するようにしているが、他の駆動機構
、例えば圧電素子等を使用した駆動機構によって弁19
を駆動するようにしても良い。
Further, in the embodiment described above, the valve 19 is driven by the drive coil 23, but the valve 19 is driven by another drive mechanism, for example, a drive mechanism using a piezoelectric element or the like.
It is also possible to drive the

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、差圧伝送器外に設
置しである土岐弁機構を操作しなくても、遠隔地におい
て誤差の少ない零点調整を行なうことができる。
As explained above, according to the present invention, zero point adjustment with less error can be performed at a remote location without operating the Toki valve mechanism installed outside the differential pressure transmitter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による差圧伝送器の一実施例を示す断面
図、第2図は第1図に示す弁機構の詳細な断面図、第3
図は第1図に示す信号処理回路の詳細なブロック図、第
4図は従来から知られている差圧伝送器の一例を示す断
面図である。 1・・・ブロック部 2・・・受圧フランジ部 5・・・ブロック本体 7・・・隔壁ダイヤフラム 8・・・絞り 9・・ 圧力媒体通路 10・・・差圧検出素子 1−・・ バイパス路 12・・・弁機構
FIG. 1 is a cross-sectional view showing one embodiment of the differential pressure transmitter according to the present invention, FIG. 2 is a detailed cross-sectional view of the valve mechanism shown in FIG. 1, and FIG.
This figure is a detailed block diagram of the signal processing circuit shown in FIG. 1, and FIG. 4 is a sectional view showing an example of a conventionally known differential pressure transmitter. 1... Block part 2... Pressure receiving flange part 5... Block body 7... Partition diaphragm 8... Restriction 9... Pressure medium passage 10... Differential pressure detection element 1-... Bypass path 12... Valve mechanism

Claims (2)

【特許請求の範囲】[Claims] (1)ブロック本体内に形成された圧力媒体通路を遮る
位置に設けられる差圧検出素子と、 前記圧力媒体通路の両端を各々閉じる隔壁ダイヤフラム
と、 前記圧力媒体通路の差圧検出素子の各面側をバイパスす
るバイパス路と、 このバイパス路と前記圧力媒体通路の接続部分に設けら
れ、バイパス路の開通および圧力媒体通路の遮断と、バ
イパス路の遮断および圧力媒体通路の開通とを切り替え
る弁機構と、 を備えたことを特徴とする差圧伝送器。
(1) A differential pressure detection element provided at a position that blocks a pressure medium passage formed in the block body, a partition diaphragm that closes both ends of the pressure medium passage, and each surface of the differential pressure detection element of the pressure medium passage. a bypass passage that bypasses the side; and a valve mechanism that is provided at a connecting portion between the bypass passage and the pressure medium passage and switches between opening the bypass passage and blocking the pressure medium passage, and closing the bypass passage and opening the pressure medium passage. A differential pressure transmitter comprising:
(2)前記圧力媒体通路のうち、前記圧力媒体通路と前
記バイパス路との接続部分より隔壁ダイヤフラム側の所
定部分に絞りを形成した請求項1記載の差圧伝送器。
(2) The differential pressure transmitter according to claim 1, wherein a restriction is formed in a predetermined portion of the pressure medium passage closer to the partition diaphragm than the connection portion between the pressure medium passage and the bypass passage.
JP15865690A 1990-06-19 1990-06-19 Differential pressure transmitter Pending JPH0450743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15865690A JPH0450743A (en) 1990-06-19 1990-06-19 Differential pressure transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15865690A JPH0450743A (en) 1990-06-19 1990-06-19 Differential pressure transmitter

Publications (1)

Publication Number Publication Date
JPH0450743A true JPH0450743A (en) 1992-02-19

Family

ID=15676479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15865690A Pending JPH0450743A (en) 1990-06-19 1990-06-19 Differential pressure transmitter

Country Status (1)

Country Link
JP (1) JPH0450743A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06108990A (en) * 1992-09-29 1994-04-19 Mitsubishi Electric Corp Pressure sensor correcting device and air blower control device
JPH0643535U (en) * 1992-11-16 1994-06-10 山武ハネウエル株式会社 Differential pressure / pressure transmitter
JP2011516858A (en) * 2008-04-03 2011-05-26 ローズマウント インコーポレイテッド Industrial pressure sensor with dielectric modified fill fluid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932915U (en) * 1982-08-26 1984-02-29 ジエコ−株式会社 Tilt sensor
JPS5910036B2 (en) * 1974-02-14 1984-03-06 松下電工株式会社 discharge lamp lighting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910036B2 (en) * 1974-02-14 1984-03-06 松下電工株式会社 discharge lamp lighting device
JPS5932915U (en) * 1982-08-26 1984-02-29 ジエコ−株式会社 Tilt sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06108990A (en) * 1992-09-29 1994-04-19 Mitsubishi Electric Corp Pressure sensor correcting device and air blower control device
JPH0643535U (en) * 1992-11-16 1994-06-10 山武ハネウエル株式会社 Differential pressure / pressure transmitter
JP2011516858A (en) * 2008-04-03 2011-05-26 ローズマウント インコーポレイテッド Industrial pressure sensor with dielectric modified fill fluid

Similar Documents

Publication Publication Date Title
EP1769159B1 (en) Feedback control methods and apparatus for electro-pneumatic control systems
CN102047009B (en) Method and apparatus for detecting and compensating for pressure transducer errors
FR2764037B1 (en) REGULATORY APPARATUS
JP2019511038A (en) Proportional valve
WO1997045665A1 (en) Control valve device
KR100537484B1 (en) Device for diagonosing an air operated valve system
JPH0450743A (en) Differential pressure transmitter
US20200355286A1 (en) Pressure reducer
JPH0750418B2 (en) Pneumatic Regulator
AU2012219366B2 (en) Pressure transducer arrangement
JPH0450742A (en) Differential pressure transmitter
US10802510B2 (en) Relay valve and force balancing method
JPH04105030A (en) Differential pressure transmitter
MXPA06006514A (en) Device for surveying the pressure of fluids housed in tanks or flowing through ducts.
RU2545177C2 (en) Device for pressure difference sensorial determination in work pipeline
JPH04151083A (en) Control circuit for poppet valve
JP3178564B2 (en) Differential pressure measuring device
JP2984075B2 (en) Electro-pneumatic regulator
CN111365518B (en) Pilot-operated proportional flow valve with flow feedback function
CN217440917U (en) Leakage detection device of pneumatic actuator for valve
CN111365517B (en) Pilot-operated proportional flow valve with position feedback function
KR20190051736A (en) Pneumatic servo valve using 2way proportional valve and control method thereof
JPS62207924A (en) Differential pressure measuring instrument
SU922396A1 (en) Safety valve
KR0172858B1 (en) Vacuum measurement system