JPH0450685B2 - - Google Patents

Info

Publication number
JPH0450685B2
JPH0450685B2 JP60056423A JP5642385A JPH0450685B2 JP H0450685 B2 JPH0450685 B2 JP H0450685B2 JP 60056423 A JP60056423 A JP 60056423A JP 5642385 A JP5642385 A JP 5642385A JP H0450685 B2 JPH0450685 B2 JP H0450685B2
Authority
JP
Japan
Prior art keywords
insulator
conductor
side end
electro
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60056423A
Other languages
Japanese (ja)
Other versions
JPS61214308A (en
Inventor
Kenji Tsuge
Masahiro Akizuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP60056423A priority Critical patent/JPS61214308A/en
Publication of JPS61214308A publication Critical patent/JPS61214308A/en
Publication of JPH0450685B2 publication Critical patent/JPH0450685B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Transformers For Measuring Instruments (AREA)
  • Insulators (AREA)
  • Testing Relating To Insulation (AREA)

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) この発明は送電線又は配電線などを支持すると
ともに、光による電界測定手段を有する電圧セン
サ内蔵碍子に関する。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to an insulator with a built-in voltage sensor that supports a power transmission line or distribution line, and has a means for measuring an electric field using light.

(従来の技術) 従来、送電線又は配電線では、変電所におい
て、線路に変成器を設けて事故電圧を検出し、継
電器を作動させ、遮断器をトリツプさせて線路を
保護していた。
(Prior Art) Conventionally, on power transmission lines or distribution lines, a transformer is installed on the line at a substation to detect fault voltage, operate a relay, and trip a circuit breaker to protect the line.

ところで、これまでに線路の電圧の検出に用い
られてきた装置は、導体を支持する碍子とは別体
のものであり、測定精度が充分でないばかりか、
大型で測定場所への取付作業も複雑で、その設置
によつて線路の美観を損ねることが少なくなかつ
た。このため、電圧の検出可能な電圧検出装置内
蔵型の碍子として、特開昭54−134395号公報に開
示された碍子が提案された。
By the way, the devices that have been used to date to detect line voltage are separate from the insulators that support the conductors, and not only do they not have sufficient measurement accuracy, but
Due to their large size, installation work at the measurement location was complicated, and their installation often spoiled the aesthetic appearance of the railroad tracks. For this reason, an insulator disclosed in Japanese Patent Application Laid-Open No. 134395/1983 was proposed as an insulator with a built-in voltage detection device capable of detecting voltage.

この碍子は第5図に示すように、磁器よりなる
碍子本体41の内部に空洞部42を設けるととも
に、同碍子本体41頂部に前記空洞部42と連通
する孔43を設け、その孔43にはチタン酸バリ
ウムなどを主成分とするセラミツクス体44が嵌
合固着されていた。更に、前記セラミツクス体4
4上端には、導体45を支持するための導体支持
部46を設けた電極47が一体に設けられるとと
もに、下端部には電極48が一体に設けられ、同
電極48には碍子外部に導出したリード線49が
接続されており、又、碍子本体41の下方にはベ
ース金具50がセメントで一体に嵌着されてい
た。
As shown in FIG. 5, this insulator has a cavity 42 inside an insulator body 41 made of porcelain, and a hole 43 communicating with the cavity 42 at the top of the insulator body 41. A ceramic body 44 mainly composed of barium titanate or the like was fitted and fixed. Furthermore, the ceramic body 4
4. An electrode 47 having a conductor support part 46 for supporting the conductor 45 is integrally provided at the upper end of 4, and an electrode 48 is integrally provided at the lower end of the electrode 48. A lead wire 49 was connected, and a base metal fitting 50 was integrally fitted below the insulator body 41 with cement.

これによつて、碍子本体41は線路の導体45
を大地から絶縁支持するとともに、電極47と電
極48の間にはセラミツクス体44が介在されて
いるので、前記電極47,48は極板として、セ
ラミツクス体44は誘電率の高い誘電体として作
用し、静電容量の大きいセラミツクスコンデンサ
が形成される。したがつて、電極48に接続され
たリード線49を測定器に接続させることより、
碍子本体41外周表面の汚損の影響をほとんど受
けず、線路電圧が容易に検出されていた。
With this, the insulator main body 41 is connected to the conductor 45 of the line.
Since the ceramic body 44 is interposed between the electrodes 47 and 48, the electrodes 47 and 48 act as electrode plates, and the ceramic body 44 acts as a dielectric with a high permittivity. , a ceramic capacitor with large capacitance is formed. Therefore, by connecting the lead wire 49 connected to the electrode 48 to the measuring instrument,
The line voltage was easily detected, almost unaffected by the contamination of the outer peripheral surface of the insulator body 41.

(発明が解決しようとする問題点) ところが、前述した碍子は、碍子内部のリード
線49が外部からの電磁誘導を受けるので、SN
比が低下すると言う欠点があつた。特に、近年は
送電線や配電線の信頼性を更に向上させために、
瞬時地絡や間欠地絡等、これまで検出困難であつ
た事故の検出も必要となりつつあるので、線路電
圧の精度の高い測定が望まれている。
(Problem to be Solved by the Invention) However, in the above-mentioned insulator, since the lead wire 49 inside the insulator receives electromagnetic induction from the outside, the SN
The disadvantage was that the ratio decreased. In particular, in recent years, in order to further improve the reliability of power transmission lines and distribution lines,
Since it is becoming necessary to detect faults that have been difficult to detect, such as instantaneous ground faults and intermittent ground faults, highly accurate measurement of line voltage is desired.

この発明は導体支持碍子の内部に電圧センサを
内蔵して、構造が簡単でコンパクト、かつ信号検
出が容易なばかりでなく、碍子本来の絶縁性を損
なうことなく、しかもSN比や測定精度の高い電
圧センサ内蔵碍子の提供を目的としている。
This invention has a built-in voltage sensor inside the conductor-supporting insulator, which not only has a simple and compact structure and facilitates signal detection, but also has a high signal-to-noise ratio and measurement accuracy without impairing the original insulation properties of the insulator. The purpose is to provide an insulator with a built-in voltage sensor.

発明の構成 (問題点を解決するための手段) 第1発明は前記問題点を解決するために、導体
7を支持する碍子において、前記碍子本体1には
その頭部に導体支持部を位置決めするフランジ金
具2を設けるとともに、導体支持側端から接地側
端へ貫通する空洞部13を設け、同空洞部13の
導体支持側端開口には前記導体7に接続した課電
側電極14をその底面である接地側端面14aが
前記フランジ金具2端部よりも接地側寄りに位置
するように嵌合し、前記課電側電極14の接地側
端面14aには導体7の電圧に応じて光を変調す
るための、例えば、ポツケルス素子16などの電
気光学素子を当接する。更に、電気光学素子の接
地側端には、光パワーを外部から導入し、同素子
を通過する間に電界強度に応じて変調された光を
外部へ導出するための一対の光フアイバ17a,
17bを接続するという構成を採用している。
Structure of the Invention (Means for Solving the Problems) In order to solve the above-mentioned problems, the first invention provides an insulator for supporting the conductor 7, in which a conductor support part is positioned at the head of the insulator body 1. In addition to providing the flange fitting 2, a hollow portion 13 penetrating from the conductor support side end to the ground side end is provided, and the energizing side electrode 14 connected to the conductor 7 is connected to the bottom surface of the conductor support side end opening of the hollow portion 13. The ground side end surface 14a of the energized side electrode 14 is fitted so that the ground side end surface 14a is located closer to the ground side than the end of the flange metal fitting 2, and the ground side end surface 14a of the energized side electrode 14 modulates light according to the voltage of the conductor 7. For example, an electro-optical element such as a Pockels element 16 is brought into contact therewith. Furthermore, a pair of optical fibers 17a are provided at the ground side end of the electro-optical element for introducing optical power from the outside and leading out the light that is modulated according to the electric field strength while passing through the element.
17b is connected.

次に、第2発明は同じく前記問題点を解決する
ために、導体7を支持する碍子において、前記碍
子本体21には導体支持側端から接地側端へ貫通
する空洞部13を設けるとともに同空洞部13の
上下両端開口を課電側電極及び接地側電極により
閉塞し、同空洞部13内における前記両電極の間
には、ほぼ全長にわたつて前記導体7の電圧変化
を光の強度変化に変換するための、例えば、ポツ
ケルス素子24などの電気光学素子を介装する。
更に、電気光学素子の接地側端には、光パワーを
外部から導入し、同素子を通過する間に電圧強度
に応じて変調された光を外部へ導出するための一
対の光フアイバ26a,26bを一体又は別体に
接続するという構成を採用している。
Next, in order to solve the above-mentioned problem, the second invention provides an insulator that supports the conductor 7, in which the insulator main body 21 is provided with a hollow portion 13 that penetrates from the conductor support side end to the ground side end. Openings at both upper and lower ends of the section 13 are closed by an energizing side electrode and a grounding side electrode, and between the two electrodes in the hollow section 13, voltage changes of the conductor 7 are converted into light intensity changes over almost the entire length. For example, an electro-optical element such as a Pockels element 24 is interposed for conversion.
Furthermore, a pair of optical fibers 26a and 26b are provided at the ground side end of the electro-optical element for introducing optical power from the outside and leading out the light that is modulated according to the voltage intensity while passing through the element. A configuration is adopted in which the two are connected together or separately.

(作用) この発明は前記構成を採用したことにより、次
のように作用する。
(Function) By employing the above configuration, the present invention functions as follows.

第1発明は、碍子に支持された導体にかかる電
圧が課電側電極に印加され、これと同時に同電極
近傍に生じる電界が電気光学素子に印加される。
このとき、碍子外部の発光ダイオードなどの光源
から出射された光パワーが入射光用光フアイバを
通じて、前記電気光学素子に導かれ、同光は電気
光学素子を通過する間に前記電界、つまり線路電
圧に応じて強度変調される。しかも、その電界検
出感度は碍子本体頭部のフランジ金具による遮蔽
効果を受けないため良好に保たれる。
In the first invention, a voltage applied to a conductor supported by an insulator is applied to a voltage-applying side electrode, and at the same time, an electric field generated near the electrode is applied to an electro-optical element.
At this time, optical power emitted from a light source such as a light emitting diode outside the insulator is guided to the electro-optic element through an optical fiber for incident light, and while the light passes through the electro-optic element, the electric field, that is, the line voltage The intensity is modulated accordingly. Furthermore, the electric field detection sensitivity is maintained at a good level because it is not affected by the shielding effect of the flange fitting on the head of the insulator body.

更に、この強度変調された光信号は、出射光用
光フアイバを通じて碍子外部に伝送され、受光素
子に導かれて電気信号となり、線路電圧が測定さ
れる。
Further, this intensity-modulated optical signal is transmitted to the outside of the insulator through an optical fiber for emitting light, guided to a light receiving element, converted into an electric signal, and the line voltage is measured.

第2発明は、碍子に支持された導体にかかる電
圧が、課電側電極及び接地側電極の間に介装され
た電気光学素子に印加される。ここで、同素子に
印加される電圧は線路の対地電圧、即ち碍子にか
かる全電圧とされる。そして、このとき、碍子外
部の発光ダイオードなどの光源から出射された光
が、入射光用光フアイバを通じて前記電気光学素
子へ導かれる。ここで、同光は電気光学素子の接
地側端から入射し、課電側端で反射して再び接地
側端へ回帰し、偏光要素を介した後線路電圧に応
じて強度変調される。
In the second aspect of the invention, a voltage applied to a conductor supported by an insulator is applied to an electro-optical element interposed between an energizing side electrode and a grounding side electrode. Here, the voltage applied to the element is the ground voltage of the line, that is, the total voltage applied to the insulator. At this time, light emitted from a light source such as a light emitting diode outside the insulator is guided to the electro-optical element through the incident light optical fiber. Here, the light enters from the ground side end of the electro-optical element, is reflected at the energized side end, returns to the ground side end, and is intensity-modulated according to the line voltage after passing through the polarizing element.

更に、前記強度変調された光信号は、出射光用
光フアイバを通じて碍子外部に伝送され、受光素
子に導かれて電気信号となり、線路の電圧が測定
される。
Further, the intensity-modulated optical signal is transmitted to the outside of the insulator through an optical fiber for outputting light, guided to a light receiving element, converted into an electric signal, and the voltage of the line is measured.

(実施例) 以下、第1発明を具体化した実施例を第1図に
従つて説明する。
(Example) Hereinafter, an example embodying the first invention will be described with reference to FIG.

図面中1は磁器よりなるクランプトツプライン
ポスト型の碍子本体であつて、上下端部外周には
フランジ金具2,3がセメントで接着され、同フ
ランジ金具2,3には端子板4,5がそれぞれボ
ルトで締付されている。6は前記端子板4上端の
凹状溝4aに填め込まれた導電性の軟質金属より
なる座金であつて、その上部には導体7が設置さ
れている。8は前記導体7を把持するためのクラ
ンプ金具であつて、端子板4上部の図示しないね
じ穴に螺合され、ナツト9で締付られたボルト1
0に係合され、ナツト11によつて締付固定され
ている。12は碍子1頭部を被覆する絶縁カバー
である。
In the drawing, reference numeral 1 denotes a clamp-to-spline post type insulator body made of porcelain, with flange fittings 2 and 3 bonded with cement to the outer periphery of the upper and lower ends, and terminal plates 4 and 5 attached to the flange fittings 2 and 3. Each is tightened with a bolt. Reference numeral 6 denotes a washer made of a conductive soft metal that is fitted into the concave groove 4a at the upper end of the terminal plate 4, and a conductor 7 is installed on the upper part of the washer. Numeral 8 is a clamp fitting for holding the conductor 7, and a bolt 1 is screwed into a screw hole (not shown) in the upper part of the terminal plate 4 and tightened with a nut 9.
0 and is tightened and fixed by a nut 11. 12 is an insulating cover that covers the head of the insulator 1.

13は碍子本体1の上下端部を貫通して設けら
れた空洞部であつて、その上部には有底円筒状の
課電側電極14が嵌合され、同電極14の接地側
端面14aがフランジ金具2下端より下方に位置
するようにしている。前記課電側電極14は、基
端フランジ14bが碍子1の上端面と端子板4と
の間に挾持固定され、かつ、端子板4に電気的に
接続され、同電極14の内側にはゴム又はレジン
などの充填物15が詰められている。16は前記
課電側電極14の接地側端面14aに接着された
電気光学素子としてのポツケルス素子であつて、
下端には高絶縁性と無誘導性とを有する入射光用
及び出射光用の一対の光フアイバ17a,17b
が接続されている。又、前記光フアイバ17a,
17bの他端は、光コネクタ18に接続され、同
コネクタ18は端子板5に嵌合固定されている。
なお、19は空洞部13内部に詰められた、レジ
ン、コンパウンドあるいは絶縁油、SF6ガスなど
の絶縁物である。
Reference numeral 13 denotes a cavity provided through the upper and lower ends of the insulator body 1, into which a cylindrical electrified side electrode 14 with a bottom is fitted, and the ground side end surface 14a of the electrode 14 is fitted. It is positioned below the lower end of the flange fitting 2. The power-supplying side electrode 14 has a base end flange 14b clamped and fixed between the upper end surface of the insulator 1 and the terminal plate 4, and is electrically connected to the terminal plate 4. Alternatively, it is filled with a filler 15 such as resin. Reference numeral 16 denotes a Pockels element as an electro-optical element bonded to the ground side end surface 14a of the energized side electrode 14,
A pair of optical fibers 17a and 17b for incident light and output light having high insulation properties and non-inductive properties are provided at the lower end.
is connected. Further, the optical fiber 17a,
The other end of 17b is connected to an optical connector 18, which is fitted and fixed to the terminal plate 5.
Note that 19 is an insulating material such as resin, compound, insulating oil, SF 6 gas, etc., which is filled inside the cavity 13 .

次に、前記のように構成した電圧センサ内蔵碍
子の作用について説明する。
Next, the operation of the insulator with a built-in voltage sensor configured as described above will be explained.

今、第1図に示す導体7に電圧が印加される
と、同時に座金6及び端子板4を介して課電側電
極14に電圧が印加され、課電側電極14の接地
側端面14aに接着されたポツケルス素子16内
に電界が加わる。なお、課電側電極14の端面1
4aが、フランジ金具2の端部よりも下方に位置
しているので、前記ポツケルス素子16中の電界
は同金具2の端部による遮蔽効果を受けず、弱め
られることがないため、電界検出感度の低下はな
い。
Now, when a voltage is applied to the conductor 7 shown in FIG. An electric field is applied within the Pockels element 16. Note that the end surface 1 of the energizing side electrode 14
4a is located below the end of the flange fitting 2, the electric field in the Pockels element 16 is not shielded by the end of the flange fitting 2 and is not weakened, so that the electric field detection sensitivity is reduced. There is no decrease in

これに次いで、碍子外部の図示しない光源(例
えば、発光ダイオード)より光コネクタ18を介
して入射光用光フアイバ17aに光パワーが伝送
され、更に、ポツケルス素子16中を光が通過す
る間に、同光はポツケルス効果により電界強度、
すなわち、導体7の電圧に応じて位相変調を受け
て、ポツケルス素子16に付加された偏光要素に
より強度変調される。更に、この被変調光は、出
射光用光フアイバ17bによつて、外部からの電
磁誘導を受けることなく伝送され、光コネクタ1
8を介して、碍子外部の図示しない受光器に導か
れ、その後電気信号となつて電圧が測定される。
Next, optical power is transmitted from a light source (for example, a light emitting diode) outside the insulator to the incident light optical fiber 17a via the optical connector 18, and further, while the light passes through the Pockels element 16, Due to the Pockels effect, the electric field strength of this light is
That is, it undergoes phase modulation according to the voltage of the conductor 7, and is intensity modulated by the polarizing element added to the Pockels element 16. Furthermore, this modulated light is transmitted by the output light optical fiber 17b without receiving electromagnetic induction from the outside, and is connected to the optical connector 1.
8, the light is guided to a light receiver (not shown) outside the insulator, and the voltage is then converted into an electric signal and measured.

なお、この第1発明は次のように実施すること
もできる。
Note that this first invention can also be implemented as follows.

第2図に示すように、空洞部13をポツケルス
素子16及び光フアイバ17a,17bが収容で
きる程度に可及的に狭くすること。
As shown in FIG. 2, the cavity 13 is made as narrow as possible to accommodate the Pockels element 16 and the optical fibers 17a, 17b.

この別例では、空洞部13内の絶縁物19の使
用量を少なくし、碍子本体1の機械的強度を高め
ることができる。
In this alternative example, the amount of insulator 19 used in cavity 13 can be reduced, and the mechanical strength of insulator body 1 can be increased.

次に、第2発明の構成について第3図に従つて
説明する。なお、第1図に示す実施例と同一の機
能を有する部材については、同一の番号を附して
説明を省略する。
Next, the configuration of the second invention will be explained with reference to FIG. It should be noted that members having the same functions as those in the embodiment shown in FIG. 1 are given the same numbers and their explanations will be omitted.

図面中21は磁器よりなるタイトツプ型のライ
ンポスト碍子本体、22は端子板4の下面中央に
一体に形成した課電側電極である。同電極22の
端部には反射板23を介して絶縁性の電気光学素
子であるポツケルス素子24が当接され、同素子
24下端は偏光要素を介してベース金具25に嵌
合固定された光コネクタ18に接続されている。
同コネクタ18には碍子外部から高絶縁性と無誘
導性とを有する入射光用及び出射光用の一対の光
フアイバ26a,26bが接続可能になつてい
る。
In the drawing, reference numeral 21 indicates a tight-tipped line post insulator body made of porcelain, and reference numeral 22 indicates a power-supplying side electrode integrally formed at the center of the lower surface of the terminal plate 4. A Pockels element 24, which is an insulating electro-optical element, is brought into contact with the end of the electrode 22 via a reflective plate 23, and the lower end of the element 24 is fitted with a polarizing element to provide light that is fitted and fixed to a base metal fitting 25. Connected to connector 18.
A pair of optical fibers 26a and 26b for incident light and output light having high insulation properties and non-inductive properties can be connected to the connector 18 from outside the insulator.

次に、前記のように構成された電圧センサ内蔵
碍子の作用について説明する。
Next, the operation of the insulator with a built-in voltage sensor configured as described above will be explained.

今、第3図に示す導体7に電圧が印加される
と、同時に座金6及び端子板4の課電側電極22
を介して、同電極22とベース金具25との間に
介装された反射板23及びポツケルス素子24に
電圧が印加される。このとき、ポツケルス素子2
4に印加される電圧は、線路の対地電圧、すなわ
ち碍子に加わる全電圧である。このため、碍子本
体21の汚損により、同碍子21外表面に漏れ電
流が生じても、碍子21外表面及び内部の電界の
乱れとは無関係に線路電圧が検出される。従つ
て、ポツケルス素子24により線路の対地電圧の
微弱な変化を精度よく検出できる。
Now, when a voltage is applied to the conductor 7 shown in FIG.
A voltage is applied to the reflective plate 23 and the Pockels element 24 which are interposed between the electrode 22 and the base metal fitting 25. At this time, Pockels element 2
The voltage applied to 4 is the line voltage to ground, that is, the total voltage applied to the insulator. Therefore, even if leakage current occurs on the outer surface of the insulator 21 due to contamination of the insulator main body 21, the line voltage is detected regardless of disturbances in the electric field on the outer surface and inside the insulator 21. Therefore, the Pockels element 24 can detect minute changes in the ground voltage of the line with high accuracy.

これに次いで、碍子外部の図示しない光源(例
えば、発光ダイオード)より光パワーが入射光用
光フアイバ26a伝送され、光コネクタ18を介
してポツケルス素子24に導入される。すると、
同光は光コネクタ18上端から同素子24内部を
通り反射板23で反射され、再び素子24内部を
通つて光コネクタ18上端に回帰する。この間、
前記光はポツケルス効果により、同素子24に印
加される電圧の変化に応じて位相変調され、偏光
要素を介して強度変調される。従つて、その後光
コネクタ18より導出され、外部からの電磁誘導
を受けることなく出射光用光フアイバ26aを通
つて、碍子外部の図示しない受光器に伝送された
変調後の光信号は、電気信号となつて電圧が測定
される。
Next, optical power is transmitted from an unillustrated light source (for example, a light emitting diode) outside the insulator through the incident light optical fiber 26a, and is introduced into the Pockels element 24 via the optical connector 18. Then,
The light passes from the upper end of the optical connector 18 through the inside of the optical connector 24, is reflected by the reflecting plate 23, passes through the inside of the element 24 again, and returns to the upper end of the optical connector 18. During this time,
Due to the Pockels effect, the light is phase modulated in accordance with changes in the voltage applied to the element 24, and intensity modulated via the polarizing element. Therefore, the modulated optical signal that is then led out from the optical connector 18 and transmitted to a light receiver (not shown) outside the insulator through the output optical fiber 26a without receiving electromagnetic induction from the outside is an electrical signal. The voltage is then measured.

なお、第2発明は次のように実施することもで
きる。
Note that the second invention can also be implemented as follows.

第4図に示すように、複数のポツケルス素子2
7を光フアイバ28とリード線で光学的及び電気
的に接続して電気光学素子とすること。
As shown in FIG. 4, a plurality of Pockels elements 2
7 is optically and electrically connected to the optical fiber 28 by a lead wire to form an electro-optical element.

この実施例は、高価な大型の素子を用いなくて
も機能が低下することがないので経済的である。
This embodiment is economical because the functionality does not deteriorate even if expensive large-sized elements are not used.

なお、前記第1発明及び第2発明の実施例で用
いられる光フアイバ17a,17b,26a,2
6bは、光フアイバの単体の他に、光フアイバの
単体をPVCシースなどで被覆保護した光フアイ
バケーブルも含めたものである。
Note that the optical fibers 17a, 17b, 26a, 2 used in the embodiments of the first invention and the second invention
6b includes not only a single optical fiber but also an optical fiber cable in which a single optical fiber is covered and protected with a PVC sheath or the like.

又、この第1発明及び第2発明の電圧センサ内
蔵碍子は、それぞれ導体7の支持として従来のよ
うに変電所などの所要箇所に設置するだけでな
く、電線路における各電柱などに設置して電圧を
測定し、その信号を伝送するようにしておけば、
各フイーダごとの地絡、短絡などの事故などを集
中監視することができる。又、電線路において
は、携帯式電圧測定器を用いることによつて、光
コネクタ18を介して適宜測定することもでき
る。
In addition, the insulators with built-in voltage sensors of the first and second inventions can be installed not only at required locations such as substations to support the conductor 7 as in the past, but also on each utility pole in the power line. If you measure the voltage and transmit the signal,
Accidents such as ground faults and short circuits can be centrally monitored for each feeder. Further, in the electric line, it is also possible to appropriately measure the voltage via the optical connector 18 by using a portable voltage measuring device.

発明の効果 以上詳述したように、本願発明によれば導体支
持碍子の内部に電圧センサを内蔵したことによ
り、構造が簡単でコンパクトなばかりでなく、碍
子本来の絶縁性を損なうことなく導体にかかる電
圧を無誘導で測定できるとともに、特に、第1発
明では課電側電極の接地側端面がフランジ金具の
端部よりも接地側寄りに位置しているので、同フ
ランジ金具の端部による遮蔽効果によつて電気光
学素子中の電界が弱められることもなく、電界検
出感度を良好に保つことができるという効果があ
る。
Effects of the Invention As detailed above, according to the present invention, by incorporating a voltage sensor inside the conductor-supporting insulator, the structure is not only simple and compact, but also can be easily applied to the conductor without impairing the insulating properties inherent to the insulator. In addition to being able to measure such voltage without induction, in particular, in the first invention, since the ground side end face of the energizing side electrode is located closer to the ground side than the end of the flange metal fitting, shielding by the end of the flange metal fitting is possible. As a result, the electric field in the electro-optical element is not weakened, and the electric field detection sensitivity can be maintained at a good level.

又、同じく第2発明では、特に、電気光学素子
に印加される電圧を線路の対地電圧、即ち、碍子
に加わる全電圧とすることができるので、碍子の
外表面に漏れ電流等で電界の乱れが生じても、こ
れと無関係に精度の高い測定を行うことができる
という効果がある。
Also, in the second invention, in particular, since the voltage applied to the electro-optical element can be set to the ground voltage of the line, that is, the total voltage applied to the insulator, there is no disturbance in the electric field due to leakage current etc. on the outer surface of the insulator. Even if this occurs, there is an effect that highly accurate measurement can be performed regardless of this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1発明の実施例を示す断面図、第2
図は同じく第1発明の別例を示す断面図、第3図
は第2発明の実施例を示す断面図、第4図は同じ
く第2発明の別例を示す断面図、第5図は従来例
を示す断面図である。 1,21……碍子本体、7……導体、13……
空洞部、14,22……課電側電極、14a……
端面、17a,17b,26a,26b……光フ
アイバ。
FIG. 1 is a sectional view showing an embodiment of the first invention;
The figure is a sectional view showing another example of the first invention, FIG. 3 is a sectional view showing an embodiment of the second invention, FIG. 4 is a sectional view showing another example of the second invention, and FIG. 5 is a conventional example. It is a sectional view showing an example. 1, 21... Insulator body, 7... Conductor, 13...
Cavity part, 14, 22...Electrifying side electrode, 14a...
End face, 17a, 17b, 26a, 26b...optical fiber.

Claims (1)

【特許請求の範囲】 1 導体7を支持する碍子において、前記碍子本
体1にはその頭部に導体支持部を位置決めするフ
ランジ金具2を設けるとともに、導体支持側端か
ら接地側端へ貫通する空洞部13を設け、同空洞
部13の導体支持側端開口には前記導体7に接続
した課電側電極14をその底面である接地側端面
14aが前記フランジ金具2端部よりも接地側寄
りに位置するように嵌合し、前記課電側電極14
の接地側端面14aには前記導体7の電圧変化を
光の強度変化に変換するための電気光学素子を当
接し、同電気光学素子の接地側端には同素子へ光
パワーを供給し、前記素子により変調された光を
外部へ導出するための光フアイバ17a,17b
を接続したことを特徴とする電圧センサ内蔵碍
子。 2 前記課電側電極14は有底筒状で空洞部13
の内周面に嵌合されている特許請求の範囲第1項
に記載の電圧センサ内蔵碍子。 3 導体7を支持する碍子において、前記碍子本
体21には導体支持側端から接地側端へ貫通する
空洞部13を設けるとともに同空洞部13の上下
両端開口を課電側電極及び接地側電極により閉塞
し、同空洞部13内における前記両電極の間に
は、ほぼ全長にわたつて前記導体7の電圧変化を
光の強度変化に変換するための電気光学素子を介
装し、同電気光学素子の接地側端には同素子へ光
パワーを供給し、前記素子により変調された光を
外部へ導出するための光フアイバ26a,26b
を一体又は別体に接続したことを特徴とする電圧
センサ内蔵碍子。 4 前記電気光学素子は課電側電極との接続部に
光の反射板23を設けた特許請求の範囲第3項に
記載の電圧センサ内蔵碍子。 5 前記電気光学素子は接地側電極に設けた光コ
ネクタ18に連結され、光フアイバ26a,26
bと接続される特許請求の範囲第4項に記載の電
圧センサ内蔵碍子。
[Scope of Claims] 1. In an insulator that supports a conductor 7, the insulator body 1 is provided with a flange fitting 2 on its head for positioning the conductor support part, and a hollow penetrating from the conductor support side end to the ground side end. A portion 13 is provided in the conductor support side end opening of the hollow portion 13, and the energizing side electrode 14 connected to the conductor 7 is placed such that the grounding side end surface 14a, which is the bottom surface thereof, is closer to the grounding side than the end portion of the flange fitting 2. the energizing side electrode 14
An electro-optical element for converting the voltage change of the conductor 7 into a light intensity change is brought into contact with the ground side end surface 14a of the conductor 7, and the ground side end of the electro-optical element supplies optical power to the element. Optical fibers 17a and 17b for guiding the light modulated by the element to the outside
An insulator with a built-in voltage sensor. 2 The energizing side electrode 14 has a bottomed cylindrical shape and has a hollow portion 13.
The insulator with a built-in voltage sensor according to claim 1, which is fitted onto the inner circumferential surface of the insulator. 3. In the insulator that supports the conductor 7, the insulator body 21 is provided with a cavity 13 penetrating from the conductor support side end to the ground side end, and the openings at both upper and lower ends of the cavity 13 are connected to the energizing side electrode and the grounding side electrode. Between the two electrodes in the closed cavity 13, an electro-optical element for converting the voltage change of the conductor 7 into a light intensity change is interposed over almost the entire length, and the electro-optical element Optical fibers 26a and 26b are connected to the ground side end of the device for supplying optical power to the device and guiding the light modulated by the device to the outside.
An insulator with a built-in voltage sensor, characterized in that the insulators are connected integrally or separately. 4. The insulator with a built-in voltage sensor according to claim 3, wherein the electro-optical element is provided with a light reflecting plate 23 at a connection portion with the energized electrode. 5 The electro-optical element is connected to an optical connector 18 provided on the ground side electrode, and is connected to optical fibers 26a, 26
The voltage sensor built-in insulator according to claim 4, which is connected to b.
JP60056423A 1985-03-20 1985-03-20 Voltage sensor built-in insulator Granted JPS61214308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60056423A JPS61214308A (en) 1985-03-20 1985-03-20 Voltage sensor built-in insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60056423A JPS61214308A (en) 1985-03-20 1985-03-20 Voltage sensor built-in insulator

Publications (2)

Publication Number Publication Date
JPS61214308A JPS61214308A (en) 1986-09-24
JPH0450685B2 true JPH0450685B2 (en) 1992-08-17

Family

ID=13026687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60056423A Granted JPS61214308A (en) 1985-03-20 1985-03-20 Voltage sensor built-in insulator

Country Status (1)

Country Link
JP (1) JPS61214308A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0494217U (en) * 1991-01-11 1992-08-17
BR0010399A (en) * 1999-04-02 2002-11-26 Lindsey Mfg Company Isolator support current sensor
JP4643532B2 (en) * 2006-09-14 2011-03-02 株式会社東芝 Optical VT device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54134395A (en) * 1978-04-07 1979-10-18 Ngk Insulators Ltd Porcelain insulator
JPS5557135A (en) * 1978-10-24 1980-04-26 Doujin Kagaku Kenkyusho:Kk Light absoption intensity quantization method for dehydrogeneration enzyme using tetrasolium chloride and its compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54134395A (en) * 1978-04-07 1979-10-18 Ngk Insulators Ltd Porcelain insulator
JPS5557135A (en) * 1978-10-24 1980-04-26 Doujin Kagaku Kenkyusho:Kk Light absoption intensity quantization method for dehydrogeneration enzyme using tetrasolium chloride and its compound

Also Published As

Publication number Publication date
JPS61214308A (en) 1986-09-24

Similar Documents

Publication Publication Date Title
EP0338542B1 (en) A current and/or voltage detector for a distribution system
US5202812A (en) Apparatus for detecting faults on power transmission lines
EP1175623B1 (en) Insulator support current sensor
US3936742A (en) Apparatus for measuring electrical quantities at high-voltage potential
US5012182A (en) Electrical measuring device
US6016053A (en) Gas-insulated switchgear with voltage transformer and optical measuring element
US4894609A (en) Electrical measuring device
JPH0450685B2 (en)
JPH0439606Y2 (en)
JPH0312168Y2 (en)
JPH0325183Y2 (en)
JP2537898B2 (en) Voltage divider
JPH0668509B2 (en) Zero-phase voltage detector for three-phase power line
JPS6350762A (en) Insulator for detecting voltage
JPH0336195Y2 (en)
JPS62116265A (en) Voltage detector
JPS61214309A (en) Voltage sensor built-in type lightningproof insulator
JPS61178669A (en) Voltage monitor system of power distribution line
JPH0236140Y2 (en)
JPH0562954B2 (en)
KR20000028507A (en) Apparatus for detecting voltage of extra high voltage distribution line
JP2569127B2 (en) Insulator with photocurrent sensor
JPH0664952B2 (en) Insulator for current detection
JPH01311283A (en) Current monitoring instrument
JPS63121758A (en) Method for measuring zero phase current by using electro-optic effect element