JPH0450336B2 - - Google Patents

Info

Publication number
JPH0450336B2
JPH0450336B2 JP59059782A JP5978284A JPH0450336B2 JP H0450336 B2 JPH0450336 B2 JP H0450336B2 JP 59059782 A JP59059782 A JP 59059782A JP 5978284 A JP5978284 A JP 5978284A JP H0450336 B2 JPH0450336 B2 JP H0450336B2
Authority
JP
Japan
Prior art keywords
resin
prepreg
glass
nonwoven fabric
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59059782A
Other languages
Japanese (ja)
Other versions
JPS60203641A (en
Inventor
Masayuki Noda
Kenichi Karya
Akio Kurahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP5978284A priority Critical patent/JPS60203641A/en
Publication of JPS60203641A publication Critical patent/JPS60203641A/en
Publication of JPH0450336B2 publication Critical patent/JPH0450336B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、反りが少ないコンポジツト積層板の
製造法に関するものである。 コンポジツト積層板は、周知のごとく補強用基
材としてガラス布及びガラス不織布を組合せて用
用いられ、これらに樹脂を含浸乾燥したプリプレ
グを、例えば中間層にガラス不織布を、表面層に
ガラス布配置し、所定枚数積層し、加熱加圧して
製造される。 従来、ガラス不織布は、密度が小さいため多量
の樹脂が含有されているが、その含浸作業には、
通常樹脂分重量60〜70%のエポキシ樹脂ワニスが
使用され、樹脂ワニスに含まれる溶剤などによ
り、エポキシ樹脂を含浸浸乾燥した一枚のプリプ
レグを加圧、加熱し生じる板状体の厚み比率は、
樹脂含浸前のガラス不織布基材の厚みの0.6〜0.7
となる。これは、プリプレグ中に多量の気泡が存
在するためであり、加熱、加圧成形した積層板に
ボイドが残留し加熱後のふくれの原因となつてい
た。また、不織布基材は、巾方向の重さばらつき
が6〜8%もあるため、成形された積層板に不均
一さをもたらし後加工工程で反りを生じ、印刷回
路板として用いるとき、電子部品の自動挿入に適
さないものであつた。 本発明は、かかる問題点を改善するために詳細
な研究を行なつた結果、エポキシ樹脂コンポジツ
ト積層板の成形に用いるガラス不織布基材プリプ
レグとして、次のものを用いることとした。すな
わち、樹脂分重量75%以上のエポキシ樹脂ワニス
をガラス不織布基材に含浸、乾燥させたものを用
いる。そして、ガラス不織布基材プリプレグの加
熱加圧成形後におけるその厚さが、樹脂含浸前の
ガラス不織布基材の厚さの0.75倍以上となる成形
条件で成形を行なう。これにより成形性が良好で
反りが発生し難いコンポジツト積層板を製造でき
る事を見い出した。 本発明においては、ガラス不織布基材プリプレ
グの加熱加圧成形後におけるその厚さを、樹脂含
浸前のガラス不織布基材の厚さの0.75倍以上とな
る成形条件で成形することにより、反りの小さい
コンポジツト積層板を製造できるわけであるが、
上記成形後における厚さを0.75倍以上とし積層板
中にボイドが含まれないようにするためには、樹
脂分重量75%以上のエポキシ樹脂ワニスをガラス
不織布に含浸させる必要があるわけである。樹脂
分重量%が小さいと、ワニス成分中の溶剤が乾燥
工程で揮散してプリプレグ中にできる空隙が多く
なつてしまう。 本発明では、ガラス不織布基材は樹脂が十分含
浸されており、ボイドの発生をなくすと共に、強
度に異方性があるガラス不織布基材に対して等方
性の樹脂の量を増やしているので、積層板の反り
を抑制できるのである。 尚、上記厚さ0.75倍以上の上限は特に定めるも
のではないが、1,2倍を越えるような含浸をす
ることは、実用上難しい。また、樹脂分重量75%
以上のエポキシ樹脂ワニスに、通常の常温で固形
のエポキシ樹脂を使用すると高粘度となり、含浸
作業性が悪かつた。そこで、常温で液状のエポキ
シ樹脂を用い、ビスフエノールAもしくはハロゲ
ン化ビスフエノールA、およびフエノールノボラ
ツク樹脂を含む樹脂組成物を使用すると樹脂分重
量が75重量%以上においても非常に低粘度で含浸
する事ができた。常温で固形のエポキシ樹脂は加
温して含浸することができる。 本発明に用いるガラス布は、従来積層板用に用
いられているガラス布であり、ガラス不織布は2
〜80mmの長さのガラス繊維をバインダーによつて
結合したものが一般的である。 次に、本発明の実施例について説明する。 実施例 1 エポキシ樹脂(油化シエル製、エピコート828、
粘度12000〜15000c p s、at25℃)75部、ビス
フエノールA25部、フエノールノボラツク(軟化
点90℃)25部、ジメチルベンジルアミン0.4部を
配合し樹脂分重量85重量%のエポキシ樹脂ワニス
を調製した。樹脂分重量%は、樹脂ワニスを160
℃のオーブン中に置いて溶剤等の成分を揮散さ
せ、その時の重量の、揮散前の重量に対する割合
を示したものである。これを、平織ガラス布及び
ガラス不織布(坪量50g/m2、厚み0.42mm)にそ
れぞれ樹脂量41重量%と93重量%になるよう含浸
乾燥し、プリプレグを得た。この作業は極めて円
滑に行なうことができた。 かくして得たガラス不織布プリプレグを3枚重
ね、その最外層にガラス布プリプレグを1枚ずつ
配置し、更に銅箔を両面に重ね、温度170℃、圧
力20Kg/cm2で1.5時間積層成形し厚み1.6mmの銅張
り積層板を得た。この積層板の物性を第1表に示
す。 実施例 2 エピコート828を100部、ジメチルベンジルアミ
ン0.4部、フエノールノボラツク40部を配合し、
樹脂固形分85重量%のエポキシ樹脂ワニスを調製
した。これを、ガラス不織布(坪量50g/m2、厚
み0.42mm)に樹脂量92重量%となるように含浸乾
燥しプリプレグを得た。この作業も、含有する樹
脂量が多いにも拘らず良好に行なうことができ
た。 かくして得たガラス不織布プリプレグを3枚重
ねその最外層に実施例1で用いたガラス布プリプ
レグを1枚ずつ配置し、更に銅箔を両面に重ね、
実施例1と同様に成形し厚み1.6mmの銅張り積層
板を得た。この積層板の物性を第1表に示す。 実施例 3 エポキシ樹脂(油化シエル製、エピコート
1001、融点65〜75℃)100部、フエノールノボラ
ツク(軟化点90℃)25部、ジメチルベンジルアミ
ン0.3部を配合し、樹脂固形分80重量%エポキシ
樹脂ワニスを調製した。これを、65℃に加温しガ
ラス不織布(坪量50g/m2、厚み0.42mm)に樹脂
量92重量%になるよう含浸乾燥プリプレグを得
た。 かくして得たガラス不織布プリプレグを3枚重
ね、その最外層に実施例1で得たガラス布プリプ
レグを1枚ずつ配置し、更に銅箔を両面に重ね、
実施例1と同様に成形し厚み1.6mmの銅張り積層
板を得た。この積層板の物性を第1表に示す。 比較例 1 実施例3で使用したエポキシ樹脂組成物を室温
(18℃)でガラス不織布(坪量50g/m2、厚み
0.42mm)に含浸乾燥しようとしたが出来なかつ
た。 比較例 2 実施例3で使用した樹脂組成物を、樹脂固形分
62重量%に希釈し、これを、比較例1で使用した
ガラス不織布に含浸乾燥し樹脂量63重量%のプリ
プレグを得た。 かくして得たガラス不織布プリプレグを10枚重
ね、その最外層に実施例1で用いたガラス布プリ
プレグを配置し、実施例1の成形条件により厚み
1.6mmの銅張り積層板を得た。この積層板の物性
を第1表に示す。 なお、プリプレグの樹脂量は次式で計算した。 樹脂量(重量%) =プリプレグの重量−基材の重量/プリプレグの
重量×100
The present invention relates to a method for manufacturing composite laminates with less warpage. As is well known, composite laminates are made by combining glass cloth and glass non-woven fabric as reinforcing base materials, and prepreg which is impregnated with resin and dried, for example, glass non-woven fabric is placed in the middle layer and glass cloth is placed in the surface layer. It is manufactured by laminating a predetermined number of sheets and heating and pressurizing them. Conventionally, glass nonwoven fabrics contain a large amount of resin due to their low density, but the impregnation process requires
Usually, an epoxy resin varnish with a resin content of 60 to 70% is used, and the thickness ratio of the plate-shaped body produced by pressing and heating a sheet of prepreg that has been impregnated with the epoxy resin and dried using the solvent contained in the resin varnish is ,
0.6~0.7 of the thickness of the glass nonwoven fabric base material before resin impregnation
becomes. This is due to the presence of a large amount of air bubbles in the prepreg, which causes voids to remain in the heated and pressure-molded laminate, causing swelling after heating. In addition, non-woven fabric substrates have a weight variation of 6 to 8% in the width direction, which causes non-uniformity in the formed laminate and causes warping in post-processing processes, and when used as printed circuit boards, electronic parts It was not suitable for automatic insertion. In the present invention, as a result of detailed research conducted in order to improve such problems, it was decided to use the following as a glass nonwoven fabric base prepreg used for molding an epoxy resin composite laminate. That is, a glass nonwoven fabric base material is impregnated with an epoxy resin varnish having a resin content of 75% or more and dried. Then, molding is performed under molding conditions such that the thickness of the glass nonwoven fabric prepreg after heating and pressure molding is 0.75 times or more the thickness of the glass nonwoven fabric base before resin impregnation. It has been found that by this method, it is possible to produce a composite laminate that has good moldability and is less likely to warp. In the present invention, the thickness of the glass nonwoven fabric base prepreg after heating and pressure molding is 0.75 times or more the thickness of the glass nonwoven fabric base material before resin impregnation, thereby reducing warpage. Although composite laminates can be manufactured,
In order to increase the thickness after molding by 0.75 times or more and to prevent voids from being included in the laminate, it is necessary to impregnate the glass nonwoven fabric with an epoxy resin varnish having a resin content of 75% or more. If the weight percentage of the resin is small, the solvent in the varnish component will volatilize during the drying process, resulting in more voids being formed in the prepreg. In the present invention, the glass nonwoven fabric base material is sufficiently impregnated with resin, eliminating the generation of voids, and increasing the amount of isotropic resin compared to the glass nonwoven fabric base material having anisotropic strength. , it is possible to suppress warping of the laminate. Although the upper limit of 0.75 times or more of the above-mentioned thickness is not particularly determined, it is practically difficult to impregnate the material to a thickness exceeding 1 or 2 times. Also, the resin content is 75% by weight.
When an epoxy resin that is solid at ordinary temperature is used in the above-mentioned epoxy resin varnish, the viscosity becomes high and impregnating workability is poor. Therefore, when using an epoxy resin that is liquid at room temperature and a resin composition containing bisphenol A or halogenated bisphenol A and a phenol novolac resin, impregnation is achieved with a very low viscosity even when the resin content is 75% by weight or more. I was able to do it. Epoxy resins that are solid at room temperature can be impregnated by heating. The glass cloth used in the present invention is the glass cloth conventionally used for laminated boards, and the glass nonwoven fabric is
Generally, glass fibers with a length of ~80 mm are bonded together with a binder. Next, examples of the present invention will be described. Example 1 Epoxy resin (Yuka Ciel Co., Ltd., Epicoat 828,
An epoxy resin varnish with a resin content of 85% by weight was prepared by blending 75 parts of bisphenol A, 25 parts of phenol novolak (softening point 90°C), and 0.4 parts of dimethylbenzylamine. did. Resin content weight% is 160 for resin varnish.
℃ oven to volatilize components such as solvent, and the ratio of the weight at that time to the weight before volatilization is shown. This was impregnated into a plain woven glass cloth and a glass nonwoven fabric (basis weight 50 g/m 2 , thickness 0.42 mm) to give a resin content of 41% by weight and 93% by weight, respectively, and then dried to obtain a prepreg. This work was carried out extremely smoothly. Three sheets of glass nonwoven fabric prepreg thus obtained were stacked, one sheet of glass fabric prepreg was placed on the outermost layer, copper foil was further layered on both sides, and lamination molding was performed at a temperature of 170°C and a pressure of 20 kg/cm 2 for 1.5 hours to a thickness of 1.6 A copper-clad laminate of mm was obtained. The physical properties of this laminate are shown in Table 1. Example 2 100 parts of Epicote 828, 0.4 parts of dimethylbenzylamine, and 40 parts of phenol novolak were blended,
An epoxy resin varnish with a resin solid content of 85% by weight was prepared. This was impregnated into a glass nonwoven fabric (basis weight 50 g/m 2 , thickness 0.42 mm) to a resin content of 92% by weight and dried to obtain a prepreg. This work was also successfully carried out despite the large amount of resin contained. Three sheets of the thus obtained glass nonwoven fabric prepreg were stacked, and one sheet of the glass fabric prepreg used in Example 1 was placed on the outermost layer, and copper foil was further layered on both sides.
A copper-clad laminate having a thickness of 1.6 mm was obtained by molding in the same manner as in Example 1. The physical properties of this laminate are shown in Table 1. Example 3 Epoxy resin (manufactured by Yuka Ciel, Epicoat
1001 (melting point: 65-75°C), 25 parts of phenol novolak (softening point: 90°C), and 0.3 part of dimethylbenzylamine were mixed to prepare an epoxy resin varnish with a resin solid content of 80% by weight. This was heated to 65°C to obtain a dried prepreg impregnated with a glass nonwoven fabric (basis weight 50 g/m 2 , thickness 0.42 mm) to a resin content of 92% by weight. Three sheets of the thus obtained glass nonwoven fabric prepreg were stacked, one glass fabric prepreg obtained in Example 1 was placed on the outermost layer, and copper foil was further stacked on both sides.
A copper-clad laminate having a thickness of 1.6 mm was obtained by molding in the same manner as in Example 1. The physical properties of this laminate are shown in Table 1. Comparative Example 1 The epoxy resin composition used in Example 3 was mixed into a glass nonwoven fabric (basis weight 50 g/m 2 , thickness
I tried to impregnate and dry it to 0.42mm), but it didn't work. Comparative Example 2 The resin composition used in Example 3 was
The resin was diluted to 62% by weight and impregnated into the glass nonwoven fabric used in Comparative Example 1 and dried to obtain a prepreg with a resin content of 63% by weight. Ten sheets of the thus obtained glass nonwoven fabric prepreg were stacked, and the glass fabric prepreg used in Example 1 was placed on the outermost layer, and the thickness was adjusted according to the molding conditions of Example 1.
A 1.6 mm copper-clad laminate was obtained. The physical properties of this laminate are shown in Table 1. Note that the amount of resin in the prepreg was calculated using the following formula. Resin amount (weight%) = weight of prepreg - weight of base material / weight of prepreg x 100

【表】 本発明によれば、樹脂固形分の含有量の大なる
樹脂ワニスをガラス不織布に多量に含浸したプリ
プレグを用いるので、第1表から明らかなよう
に、反りが少なく耐熱性の優れたコンポジツト積
層板を製造することができ、その工業的価値は極
めて大なるものである。
[Table] According to the present invention, since a prepreg in which glass nonwoven fabric is impregnated with a large amount of resin varnish having a high resin solid content is used, as is clear from Table 1, the prepreg has less warpage and excellent heat resistance. Composite laminates can be produced, and their industrial value is extremely great.

Claims (1)

【特許請求の範囲】 1 ガラス不織布基材のプリプレグとガラス織布
基材のプリプレグを組合わせて重ね合わせ、これ
を加熱加圧成形するコンポジツト積層板の製造に
おいて、 樹脂としてエポキシ樹脂を用い、 ガラス不織布基材のプリプレグとして、樹脂分
重量が75重量%以上のエポキシ樹脂ワニスをガラ
ス不織布基材に含浸、乾燥させたものを用い、 ガラス不織布基材プリプレグの加熱加圧成形後
におけるその厚さが、樹脂含浸前のガラス不織布
基材の厚さの0.75倍以上となる成形条件で成形を
行なうことを特徴とするコンポジツト積層板の製
造法。 2 エポキシ樹脂として常温で液状のエポキシ樹
脂を用いることを特徴とする特許請求の範囲第1
項記載のコンポジツト積層板の製造法。
[Scope of Claims] 1. In the manufacture of a composite laminate in which a prepreg of a glass non-woven fabric base material and a prepreg of a glass woven fabric base material are combined and layered and then heated and pressure molded, an epoxy resin is used as the resin, and glass As the prepreg for the nonwoven fabric base material, we used a glass nonwoven fabric base material impregnated with an epoxy resin varnish with a resin content of 75% by weight or more and dried. A method for producing a composite laminate, characterized in that molding is performed under molding conditions such that the thickness is 0.75 times or more the thickness of the glass nonwoven fabric substrate before resin impregnation. 2. Claim 1, characterized in that an epoxy resin that is liquid at room temperature is used as the epoxy resin.
A method for producing a composite laminate as described in Section 1.
JP5978284A 1984-03-28 1984-03-28 Manufacture of composite laminate board Granted JPS60203641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5978284A JPS60203641A (en) 1984-03-28 1984-03-28 Manufacture of composite laminate board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5978284A JPS60203641A (en) 1984-03-28 1984-03-28 Manufacture of composite laminate board

Publications (2)

Publication Number Publication Date
JPS60203641A JPS60203641A (en) 1985-10-15
JPH0450336B2 true JPH0450336B2 (en) 1992-08-14

Family

ID=13123204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5978284A Granted JPS60203641A (en) 1984-03-28 1984-03-28 Manufacture of composite laminate board

Country Status (1)

Country Link
JP (1) JPS60203641A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207830A (en) * 1987-02-24 1988-08-29 Shin Kobe Electric Mach Co Ltd Production of laminated sheet
JPH03128239A (en) * 1989-10-16 1991-05-31 Sumitomo Bakelite Co Ltd Manufacture of laminate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837135A (en) * 1971-09-09 1973-06-01
JPS50143871A (en) * 1974-05-10 1975-11-19
JPS55113526A (en) * 1979-02-23 1980-09-02 Matsushita Electric Works Ltd Production of resin-impregnated blank material
JPS58220730A (en) * 1982-06-17 1983-12-22 新神戸電機株式会社 Manufacture of laminated board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837135A (en) * 1971-09-09 1973-06-01
JPS50143871A (en) * 1974-05-10 1975-11-19
JPS55113526A (en) * 1979-02-23 1980-09-02 Matsushita Electric Works Ltd Production of resin-impregnated blank material
JPS58220730A (en) * 1982-06-17 1983-12-22 新神戸電機株式会社 Manufacture of laminated board

Also Published As

Publication number Publication date
JPS60203641A (en) 1985-10-15

Similar Documents

Publication Publication Date Title
JPH0450336B2 (en)
JPS5942628B2 (en) Manufacturing method for copper clad laminates
JPS6221626B2 (en)
JP2002348754A (en) Glass cloth, prepreg, laminated sheet, and printed wiring board
JPH04259543A (en) Manufacture of laminated board for printed circuit
JPS5921774B2 (en) Manufacturing method of cyanate resin laminate
JP2551249B2 (en) Composite laminate
JPH0457794B2 (en)
JPH0771839B2 (en) Laminated board manufacturing method
JPH07100360B2 (en) Copper clad laminate
JPS6330538A (en) Production of laminated sheet
JPH02258337A (en) Manufacture of laminate for printed circuit
JP2001244588A (en) Composite sheet and laminated board using it
JPH0192237A (en) Production of copper-clad laminated sheet
JPH03139897A (en) Manufacture of laminate sheet for printed circuit
JPH03211892A (en) Manufacture of laminated board for printed circuit
JP2001335651A (en) Epoxy resin composition for impregnation of organic fiber substrate, and prepreg, laminated sheet and printed wiring board using the same
JPS63172641A (en) Copper-clad laminated board
JPH0381140A (en) Manufacture of laminated sheet for printed circuit
JPH06134912A (en) Production of composite laminated sheet
JPH024422B2 (en)
JPH04268785A (en) Copper plated laminated board
JPS61246050A (en) Manufacture of laminated sheet
JPS63234015A (en) Production of laminate
JPH06909A (en) Composite laminate

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term