JPH0450096B2 - - Google Patents

Info

Publication number
JPH0450096B2
JPH0450096B2 JP58161954A JP16195483A JPH0450096B2 JP H0450096 B2 JPH0450096 B2 JP H0450096B2 JP 58161954 A JP58161954 A JP 58161954A JP 16195483 A JP16195483 A JP 16195483A JP H0450096 B2 JPH0450096 B2 JP H0450096B2
Authority
JP
Japan
Prior art keywords
belt
refrigerant
flow path
pressure
flat plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58161954A
Other languages
Japanese (ja)
Other versions
JPS6054247A (en
Inventor
Mutsuo Kuragasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16195483A priority Critical patent/JPS6054247A/en
Publication of JPS6054247A publication Critical patent/JPS6054247A/en
Publication of JPH0450096B2 publication Critical patent/JPH0450096B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/0677Accessories therefor for guiding, supporting or tensioning the casting belts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 〔本発明の技術分野〕 本発明は、金属や合金などの鋳片をベルト式鋳
型で連続的に鋳造する方法における該ベルトの冷
却方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for cooling a belt in a method for continuously casting slabs of metal, alloy, etc. in a belt-type mold.

〔従来のベルト式連続鋳造手段〕[Conventional belt type continuous casting method]

従来のベルト式連続鋳造装置は、第1図(縦断
面図)に示すように、一対の無端鋳造用ベルト3
がベルト駆動用ローラー4によつて駆動するよう
に構成されており、また、このベルト3は冷媒吐
出用ノズル6を介して冷媒7によつて冷却されて
いる。一方、この一対のベルト3は一定間隔の鋳
型空間を形成するよう各ベルトはベルトバツクア
ツプ用ローラー5によつて保持されている。
As shown in Fig. 1 (longitudinal sectional view), a conventional belt-type continuous casting device has a pair of endless casting belts 3.
is configured to be driven by a belt driving roller 4, and this belt 3 is cooled by a refrigerant 7 via a refrigerant discharge nozzle 6. On the other hand, each of the pair of belts 3 is held by a belt backup roller 5 so as to form a mold space at a constant interval.

溶融物質1は、溶融物質導入ノズル2を介して
上記鋳型空間の上面開口部に流入し、ベルト3に
より熱をうばわれて、そのベルト3の接触面から
凝固しはじめ、鋳型空間の下方開口部から鋳片8
として取出される。
The molten substance 1 flows into the upper opening of the mold space through the molten substance introduction nozzle 2, receives heat from the belt 3, begins to solidify from the contact surface of the belt 3, and then enters the lower opening of the mold space. Kara slab 8
is extracted as

〔上記従来手段の欠点〕[Disadvantages of the above conventional means]

上記従来手段では、溶融物質1の圧力でベルト
3が外側へ撓み、鋳片8の表面に皺やひゞ割れを
生ずると共にベルトの寿命が短い欠点を有してい
る。また、ベルトバツクアツプ用ローラ4と冷媒
吐出用ノズル6を多数設ける必要があり、コスト
が高く、しかも、これによつてもベルトの撓みは
完全には防止できないものである。
The conventional means described above has the disadvantage that the belt 3 is bent outward by the pressure of the molten material 1, causing wrinkles and cracks on the surface of the slab 8, and that the belt has a short service life. Furthermore, it is necessary to provide a large number of belt backup rollers 4 and refrigerant discharge nozzles 6, resulting in high cost, and even with this, it is not possible to completely prevent the belt from bending.

〔本発明の目的〕[Object of the present invention]

そこで、本発明は、上記従来手段における欠点
を簡単に、かつ、有効に解消するベルト式連続鋳
造法における該ベルトの冷却方法を提供すること
を目的とするものである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for cooling a belt in a continuous belt casting method, which easily and effectively overcomes the drawbacks of the conventional means.

〔本発明の構成〕[Configuration of the present invention]

そして、本発明は、上記目的を達成する手段と
して、溶融物質によつてベルト面に作用する圧力
とその反対面の冷媒によつてベルト面に作用する
圧力とを等しく維持する点にある。すなわち、本
発明は、溶融金属のような溶融物質を一対の無端
鋳造用ベルト間に連続的に導入し、かつ該ベルト
を溶融物質と接触する面の反対面から冷媒にて冷
却しながら鋳造する連続鋳造方法において、冷媒
整流タンクの周囲の側壁をベルト背面に摺接し、
該タンク内にベルトに対向する平板を設け、ベル
トの移動方向の前方に位置する平板の端部と該タ
ンクの側壁との間に入口流路を設け、後方に位置
する平板の端部と該タンクの側壁との間に出口流
路を設け、平板表面に多数のバツクアツプフイン
を取り付けてバツクアツプフインの先端でベルト
背面を支持し、バツクアツプフインの配列、数、
形状、大きさなどを予め設定してベルトと平板と
の間の冷媒流路の流動抵抗を調整することによ
り、溶融物質によるベルトへの圧力勾配と冷媒に
よるベルトへの圧力勾配とをほぼ等しくし、入口
流路を配管を介して冷媒供給ポンプに接続し、か
つ、出口流路に接続する配管に出口弁を設け、出
口流路の冷媒圧力を出口流路に対向する位置の溶
融物質の圧力とほぼ等しくなるように出口弁を制
御することを特徴とする連続鋳造方法である。
In order to achieve the above object, the present invention maintains the pressure exerted on the belt surface by the molten substance and the pressure exerted on the belt surface by the refrigerant on the opposite surface equally. That is, the present invention continuously introduces a molten substance such as molten metal between a pair of endless casting belts, and casts the belt while cooling it with a refrigerant from the opposite side of the surface that contacts the molten substance. In the continuous casting method, the side wall around the refrigerant rectifying tank is brought into sliding contact with the back of the belt,
A flat plate facing the belt is provided in the tank, an inlet flow path is provided between the end of the flat plate located at the front in the direction of movement of the belt and the side wall of the tank, and an inlet flow path is provided between the end of the flat plate located at the rear and the side wall of the tank. An outlet flow path is provided between the side wall of the tank, a large number of back up fins are attached to the surface of the flat plate, and the back surface of the belt is supported by the tips of the back up fins.
By setting the shape, size, etc. in advance and adjusting the flow resistance of the refrigerant flow path between the belt and the flat plate, the pressure gradient on the belt due to the molten substance and the pressure gradient on the belt due to the refrigerant are approximately equalized. , the inlet flow path is connected to the refrigerant supply pump via piping, and an outlet valve is provided on the piping connected to the outlet flow path, and the refrigerant pressure in the outlet flow path is adjusted to the pressure of the molten material at a position opposite to the outlet flow path. This is a continuous casting method characterized by controlling the outlet valve so that it is approximately equal to .

本発明において、ベルトの冷却手段としては、
鋳型ベルトとこれに両側端が摺接する冷却気器壁
により囲まれて形成した却水路中に冷却水を導入
するのが好ましい。また、この冷却水路中に流路
抵抗体としてのバツクアツプフインを挿設するの
が好ましい。そして、この冷却水路内の冷却水に
よるベルト面への圧力を調節する手段として、例
えば、この冷却水路の出口配管に出口圧調節弁を
配設するものである。
In the present invention, the belt cooling means includes:
Preferably, the cooling water is introduced into a cooling channel formed by being surrounded by a mold belt and a cooling air vessel wall whose opposite ends are in sliding contact with the mold belt. Further, it is preferable to insert a back-up fin as a flow path resistor into this cooling water channel. As a means for adjusting the pressure exerted on the belt surface by the cooling water in the cooling water channel, for example, an outlet pressure regulating valve is disposed in the outlet piping of the cooling water channel.

また、本発明では、ベルトの冷却面側に、多数
の突起(又はフイン)のある冷媒の流路を有した
冷媒整流タンクを設け、その入口を、入口弁が設
けられて冷媒供給ポンプに通じたダクトに接続
し、更に、該冷媒整流タンクの出口を、出口弁が
取付けられた冷媒排出ダクトに接続する。このよ
うにしてベルト間に導入された溶融物質によるベ
ルトの圧力勾配と冷媒流路側の圧力勾配が等しく
なるように流路内突起の流動抵抗を該突起の配
列、数、形状、大きさで調整する。更に冷媒流路
入口部と流路出口部の圧力を溶融物質の導入され
た側のベルト面圧に等しくなるよう出口弁で制御
する。これによつてベルトの撓みが防止され製品
の品質向上とベルト駆動々力が減少する。
Further, in the present invention, a refrigerant rectifying tank having a refrigerant flow path with a large number of protrusions (or fins) is provided on the cooling surface side of the belt, and the inlet thereof is provided with an inlet valve to communicate with the refrigerant supply pump. The outlet of the refrigerant rectifier tank is further connected to a refrigerant discharge duct equipped with an outlet valve. In this way, the flow resistance of the protrusions in the channel is adjusted by the arrangement, number, shape, and size of the protrusions so that the pressure gradient on the belt due to the molten material introduced between the belts is equal to the pressure gradient on the refrigerant channel side. do. Further, the pressure at the inlet and outlet of the refrigerant flow path is controlled by an outlet valve so that it becomes equal to the belt surface pressure on the side into which the molten material is introduced. This prevents belt deflection, improves product quality, and reduces belt drive force.

以下第2〜7図に基づいて本発明をより詳細に
説明する。第2〜7図は本発明を実施するための
ベルト式連続鋳造装置及びその冷却器を示し、こ
の内、第2図は、前記した従来装置である第1図
に対応した図(ただし左半部は省略)であつて縦
断面図であり、第3図は正面図、第4図は第3図
−線断面拡大図、第5図は第4図−線断
面図、第6図は溶融物質の自重によつて生ずるベ
ルト表面への圧力分布を並記した冷却器の断面拡
大図、第7図は冷媒の流動に伴なつて生ずるベル
ト面への圧力分布を並記した冷却器の断面拡大図
である。この第2〜7図に示す本発明を実施する
ための装置と従来装置との相違は本発明ではベル
トバツクアツプ用ローラ5と冷媒吐出用ズル6に
代えて一体構造の冷媒整流タンク50を設けたこ
とである。
The present invention will be explained in more detail below based on FIGS. 2 to 7. Figures 2 to 7 show a belt-type continuous casting apparatus and its cooler for carrying out the present invention, of which Figure 2 corresponds to Figure 1, which is the conventional apparatus described above (however, the left half Fig. 3 is a front view, Fig. 4 is an enlarged sectional view taken along the line in Fig. 3, Fig. 5 is a sectional view taken along the line in Fig. 4, and Fig. 6 is a longitudinal sectional view. Figure 7 is an enlarged cross-sectional view of the cooler showing the pressure distribution on the belt surface caused by the weight of the material, and Figure 7 is a cross-sectional view of the cooler showing the pressure distribution on the belt surface caused by the flow of refrigerant. It is an enlarged view. The difference between the apparatus for carrying out the present invention shown in FIGS. 2 to 7 and the conventional apparatus is that in the present invention, an integrated refrigerant rectifying tank 50 is provided in place of the belt backup roller 5 and the refrigerant discharge nozzle 6. That's what happened.

図中の矢印はベルト駆動用ローラーの回転方
向、ベルトの移動方向、溶融物質及び冷媒の流動
方向を示す。
Arrows in the figure indicate the rotational direction of the belt driving roller, the moving direction of the belt, and the flowing direction of the molten substance and the coolant.

以下、従来装置である第1図と共通事項を省略
して、説明すると、 第6図において1対の無端鋳造用ベルト3の間
に導入される溶融物質1は、このベルト3間を満
し走行するベルト3によつて下方へ移送される。
Hereinafter, the explanation will be given while omitting the common features with the conventional device shown in FIG. 1. In FIG. It is transported downward by the running belt 3.

この溶融物質1がベルト3間に導入されること
によつてベルト3にはこれを外側(冷媒流路70
側)に撓ませる力が作用する。この力は溶融物質
1の自重による圧力で、第6図に示すように溶融
物質1の自由表面h0−h0を起点としてこれより下
方へ距離hを隔てた点における溶融物質1による
ベルト表面31の圧力(Ps)はPs=γ×hで表わ
される。
By introducing this molten substance 1 between the belts 3, it is transferred to the outside (coolant flow path 70) of the belt 3.
A bending force acts on the side). This force is the pressure due to the weight of the molten material 1, and as shown in FIG . The pressure (P s ) of No. 31 is expressed as P s =γ×h.

但し、Ps:圧力(Kg/cm2) h:距離(cm) γ:溶融物質の密度(Kg/cm3) この圧力分布を第6図に並記する。この図にお
いて溶融物質1の自由表面h0−h0からh1及びh2
距離を隔てた点のベルト表面31の圧力を夫々
Ps1Ps2とすればそれらの間の差圧(△Ps)は△Ps
=Ps2−Ps1でありこの量は2点間の距離(△h)
と溶融物質1の密度γで決定される。(△Ps=△
h×γ)、これら溶融物質1の自重による圧力が
ベルトを外側(冷媒流路70側)に押し広げるよ
うに作用し、ベルト3を撓ませ或いはベルト面3
2と冷媒流路70のバツクアツプフイン60との
摺動面圧を増大させ、ベルト3の駆動々力を増大
させるように作用する。
However, Ps : Pressure (Kg/cm 2 ) h: Distance (cm) γ: Density of molten substance (Kg/cm 3 ) This pressure distribution is also shown in FIG. In this figure, the pressures on the belt surface 31 at points separated by distances h 1 and h 2 from the free surface h 0 −h 0 of the molten substance 1 are respectively
If P s1 P s2 , the differential pressure between them (△P s ) is △P s
=P s2 −P s1 , and this quantity is the distance between two points (△h)
and the density γ of the molten substance 1. (△P s =△
h x γ), the pressure due to the weight of these molten substances 1 acts to spread the belt outward (toward the coolant flow path 70 side), bending the belt 3 or causing the belt surface 3 to
2 and the back up fin 60 of the refrigerant flow path 70, thereby increasing the driving force of the belt 3.

一方、冷媒流路70側のベルト面32には冷媒
の流動圧力がベルト3を内側(溶融物質1側)に
押し、撓ませるように作用する。即ち、第7図に
おいて冷媒供給タンク91から冷媒供給ポンプ7
3によつて入口弁75、入口ダクト71を経て冷
媒整流タンク50に供給された冷媒は更に入口流
路51を通つて冷却用冷媒流路70に流れベルト
3から熱吸収を行いながら出口流路52へと流
れ、出口ダクト72、出口弁76を経て排出タン
ク92に排出される。なお、第7図中の74はバ
イパス弁である。
On the other hand, the flow pressure of the refrigerant acts on the belt surface 32 on the side of the refrigerant flow path 70 so as to push the belt 3 inward (toward the molten substance 1 side) and bend it. That is, in FIG. 7, from the refrigerant supply tank 91 to the refrigerant supply pump 7
3, the refrigerant is supplied to the refrigerant rectifying tank 50 via the inlet valve 75 and the inlet duct 71. The refrigerant further passes through the inlet flow path 51 and flows into the cooling refrigerant flow path 70, absorbing heat from the belt 3 and passing through the outlet flow path. 52 and is discharged to a discharge tank 92 via an outlet duct 72 and an outlet valve 76. Note that 74 in FIG. 7 is a bypass valve.

この冷媒の流動過程において冷却用冷媒流路7
0の入口流路51ではPw1、出口流路52では
Pw2の圧力が発生し冷媒流路出入口間には△Pw
圧力差が生じているがこれらはベルト3を内側
(溶融物質1側)に撓ませるように作用する。
In the flow process of this refrigerant, the cooling refrigerant flow path 7
0 in the inlet flow path 51 and P w1 in the outlet flow path 52.
A pressure of P w2 is generated and a pressure difference of ΔP w is generated between the entrance and exit of the refrigerant flow path, and these act to bend the belt 3 inward (toward the molten material 1 side).

第7図には冷媒の流動に伴つて生ずるベルト表
面の圧力分布をも示す。冷媒流路70の入口と出
口間の距離を△hとするその間の圧力差(△Pw
は次のように表わされる。
FIG. 7 also shows the pressure distribution on the belt surface that occurs as the refrigerant flows. The pressure difference between the inlet and outlet of the refrigerant flow path 70 (△P w ) where the distance between them is △h
is expressed as follows.

△Pw=△Pw〓+△Pwl △Pw〓=△h×ρ (冷媒の自重による圧力) △Pwl=ρ/2V2o×ρ(流動抵抗) 但し、ρ:冷媒の密度(Kg/cm3) Vo:冷媒の流路70内流速(cm/s) ρ:冷媒流路の抵抗係数 △h:入口流路と出口流路間の距離
(cm) また、出口流路52の圧力はPw2は出口弁76
の調整にて制御でき、従つて、入口流路51の圧
力Pw1(Pw1=Pw2+△Pw)も自ずと決まる。
△P w = △P w 〓+△P wl △P w 〓=△h×ρ (Pressure due to refrigerant's own weight) △P wl = ρ/2V 2 o×ρ (Flow resistance) However, ρ: Refrigerant density (Kg/cm 3 ) Vo: Flow velocity of refrigerant in flow path 70 (cm/s) ρ: Resistance coefficient of refrigerant flow path △h: Distance between inlet flow path and outlet flow path (cm) Also, outlet flow path 52 The pressure of P w2 is the outlet valve 76
Therefore, the pressure P w1 (P w1 =P w2 +△P w ) of the inlet flow path 51 is also determined automatically.

〔本発明の効果〕[Effects of the present invention]

前記溶融物質1のベルト3を外側に押し撓ませ
るように作用する圧力(Ps)と冷媒7によるベル
ト3を内側に押し、撓ませる圧力(Pw)とが冷
媒流路70の入口流路51と出口流路52の間で
等しくなるよう出口弁76と冷却用冷媒流路のバ
ツクアツプフイン60による抵抗で調整、制御す
ることによつてベルト3の撓みが防止され、鋳造
物の品質の向上(皺ひび割れ防止)は勿論ベルト
の寿命が延び、更にはベルト摺動面圧の降下でベ
ルトの駆動々力も減少する顕著は効果が生ずるも
のである。
The pressure (P s ) that acts to push the belt 3 of the molten substance 1 outward and bend it, and the pressure (P w ) that pushes the belt 3 inward and bends the coolant 7 are applied to the inlet flow path of the coolant flow path 70 . By adjusting and controlling the resistance between the outlet valve 76 and the back up fin 60 of the cooling refrigerant channel so that the resistance is equal between the belt 51 and the outlet flow path 52, deflection of the belt 3 is prevented, and the quality of the casting is improved. Not only does this improve the belt life (prevention of wrinkling and cracking), it also extends the life of the belt, and furthermore, the driving force of the belt is reduced due to a reduction in the belt sliding surface pressure, which is a significant effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のベルト式連続鋳造装置の縦断面
図である。第2〜7図は本発明を実施するための
ベルト式連続鋳造装置及びその冷却器を示し、こ
の内、第2図は縦断面図、第3図は正面図、第4
図は第3図−線断面拡大図、第5図は第4図
−線断面図、第6図は溶融物質の自重によつ
て生ずるベルト表面への圧力分布を並記した冷却
器の断面拡大図、第7図は冷媒の流動に伴なつて
生ずるベルト面への圧力分布を並記した冷却器の
断面拡大図である。 1:溶融物質、2:溶融物質導入ノズル、3:
無端鋳造用ベルト、4:ベルト駆動用ローラー、
5:ベルトバツクアツプ用ローラー、6:冷媒吐
出用ノズル、7:冷媒、8:鋳片、31:溶融物
質側ベルト表面、32:ベルト面、50:冷媒整
流タンク、51:入口流路、52:出口流路、6
0:バツクアツプフイン、70:冷媒流路、7
1:入口ダクト、72:出口ダクト、73:供給
ポンプ、74:バイパス弁、75:入口弁、7
6:出口弁、7:冷媒、91:冷媒供給タンク、
92:排出タンク。
FIG. 1 is a longitudinal sectional view of a conventional belt type continuous casting apparatus. Figures 2 to 7 show a belt type continuous casting apparatus and its cooler for carrying out the present invention, in which Figure 2 is a longitudinal sectional view, Figure 3 is a front view, and Figure 4 is a front view.
The figure is an enlarged cross-sectional view taken from Figure 3, a cross-sectional view taken from Figure 4, and Figure 6 is an enlarged cross-sectional view of the cooler showing the pressure distribution on the belt surface caused by the weight of the molten material. FIG. 7 is an enlarged cross-sectional view of the cooler, showing the pressure distribution on the belt surface caused by the flow of the refrigerant. 1: Molten substance, 2: Molten substance introduction nozzle, 3:
Endless casting belt, 4: Belt driving roller,
5: Belt backup roller, 6: Refrigerant discharge nozzle, 7: Refrigerant, 8: Slab, 31: Melt material side belt surface, 32: Belt surface, 50: Refrigerant rectifying tank, 51: Inlet channel, 52 : Outlet channel, 6
0: Backup fin, 70: Refrigerant flow path, 7
1: Inlet duct, 72: Outlet duct, 73: Supply pump, 74: Bypass valve, 75: Inlet valve, 7
6: Outlet valve, 7: Refrigerant, 91: Refrigerant supply tank,
92: Discharge tank.

Claims (1)

【特許請求の範囲】[Claims] 1 溶融金属のような溶融物質を一対の無端鋳造
用ベルト間に連続的に導入し、かつ該ベルトを溶
融物質と接触する面の反対面から冷媒にて冷却し
ながら鋳造する連続鋳造方法において、冷媒整流
タンクの周囲の側壁をベルト背面に摺接し、該タ
ンク内にベルトに対向する平板を設け、ベルトの
移動方向の前方に位置する平板の端部と該タンク
の側壁との間に入口流路を設け、後方に位置する
平板の端部と該タンクの側壁との間に出口流路を
設け、平板表面に多数のバツクアツプフインを取
り付けてバツクアツプフインの先端でベルト背面
を支持し、バツクアツプフインの配列、数、形
状、大きさなどを予め設定してベルトと平板との
間の冷媒流路の流動抵抗を調整することにより、
溶融物質によるベルトへの圧力勾配と冷媒による
ベルトへの圧力勾配とをほぼ等しくし、入口流路
を配管を介して冷媒供給ポンプに接続し、かつ、
出口流路に接続する配管に出口弁を設け、出口流
路の冷媒圧力を出口流路に対向する位置の溶融物
質の圧力とほぼ等しくなるように出口弁を制御す
ることを特徴とする連続鋳造方法。
1. A continuous casting method in which a molten substance such as molten metal is continuously introduced between a pair of endless casting belts, and the belt is cast while being cooled with a refrigerant from the surface opposite to the surface that contacts the molten substance, The side wall around the refrigerant rectifying tank is in sliding contact with the back of the belt, a flat plate facing the belt is provided inside the tank, and an inlet flow is formed between the end of the flat plate located forward in the direction of movement of the belt and the side wall of the tank. an outlet flow path is provided between the end of the flat plate located at the rear and the side wall of the tank, a large number of back up fins are attached to the surface of the flat plate, and the back surface of the belt is supported by the tips of the back up fins; By setting the arrangement, number, shape, size, etc. of the back up fins in advance and adjusting the flow resistance of the refrigerant flow path between the belt and the flat plate,
the pressure gradient on the belt due to the molten material and the pressure gradient on the belt due to the refrigerant are approximately equal, the inlet flow path is connected to the refrigerant supply pump via piping, and
Continuous casting characterized by providing an outlet valve in the piping connected to the outlet flow path and controlling the outlet valve so that the refrigerant pressure in the outlet flow path is approximately equal to the pressure of the molten material at a position facing the outlet flow path. Method.
JP16195483A 1983-09-05 1983-09-05 Cooling method of belt with belt type continuous casting method Granted JPS6054247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16195483A JPS6054247A (en) 1983-09-05 1983-09-05 Cooling method of belt with belt type continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16195483A JPS6054247A (en) 1983-09-05 1983-09-05 Cooling method of belt with belt type continuous casting method

Publications (2)

Publication Number Publication Date
JPS6054247A JPS6054247A (en) 1985-03-28
JPH0450096B2 true JPH0450096B2 (en) 1992-08-13

Family

ID=15745210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16195483A Granted JPS6054247A (en) 1983-09-05 1983-09-05 Cooling method of belt with belt type continuous casting method

Country Status (1)

Country Link
JP (1) JPS6054247A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781565A (en) * 1982-12-27 1988-11-01 Sri International Apparatus for obtaining silicon from fluosilicic acid
JPS61129259A (en) * 1984-11-28 1986-06-17 Kawasaki Steel Corp Cooling pad for belt type continuous casting machine
US5725046A (en) * 1994-09-20 1998-03-10 Aluminum Company Of America Vertical bar caster

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100851A (en) * 1980-12-17 1982-06-23 Hitachi Ltd Synchronous continuous casting machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100851A (en) * 1980-12-17 1982-06-23 Hitachi Ltd Synchronous continuous casting machine

Also Published As

Publication number Publication date
JPS6054247A (en) 1985-03-28

Similar Documents

Publication Publication Date Title
US2904860A (en) Metal casting method and apparatus
US3036348A (en) Metal casting methods and apparatus
US4828012A (en) Apparatus for and process of direct casting of metal strip
US3426836A (en) Machine for the continuous casting of slabs between bands
US5725046A (en) Vertical bar caster
US6003589A (en) Strip casting apparatus
US6012508A (en) Strip casting
JPH0450096B2 (en)
BR9201946A (en) METHOD OF FOUNDING METAL STRIPS AND METAL DISTRIBUTION TUBE FOR DISTRIBUTING METAL IN MELTING
EP0962271B1 (en) Radial-flow distributor for uniform nonturbulent non-dribbling pouring of molten metal into a continuous metal-casting machine methods and apparatus
US7823623B2 (en) Belt casting machine having adjustable contact length with cast metal slab
JPH05500187A (en) Direct casting method of dandish and strip
US4632176A (en) Apparatus for continuous strip casting of aluminum sheet material
US5148855A (en) Feeding system for belt casting of molten metal
JPH04231147A (en) Casting device for bandlike object and its device
US5251687A (en) Casting of metal strip
JPH0222117Y2 (en)
EP0594951A1 (en) Tundish outlet edge seal and riser for continuous casting apparatus and method
JPH10192951A (en) Method and device for cooling high temp. steel plate
JPS59150646A (en) Method and device for continuous casting of metallic plate
JPH0115340B2 (en)
SU889172A1 (en) Apparatus for cooling strip rolled stock
SU1107922A1 (en) Rolled stock cooling arrangement
EP0495115A4 (en) System for continuously cooling metal strip
JPS6021151A (en) Continuous casting device for thin plate