JPH0449952A - X-ray ct apparatus - Google Patents

X-ray ct apparatus

Info

Publication number
JPH0449952A
JPH0449952A JP2153879A JP15387990A JPH0449952A JP H0449952 A JPH0449952 A JP H0449952A JP 2153879 A JP2153879 A JP 2153879A JP 15387990 A JP15387990 A JP 15387990A JP H0449952 A JPH0449952 A JP H0449952A
Authority
JP
Japan
Prior art keywords
data
scanning
subject
angle
scan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2153879A
Other languages
Japanese (ja)
Other versions
JP2970680B2 (en
Inventor
Mitsuru Hachiman
満 八幡
Yukihiro Ogawa
幸宏 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2153879A priority Critical patent/JP2970680B2/en
Publication of JPH0449952A publication Critical patent/JPH0449952A/en
Application granted granted Critical
Publication of JP2970680B2 publication Critical patent/JP2970680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/027Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis characterised by the use of a particular data acquisition trajectory, e.g. helical or spiral

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PURPOSE:To enable the lowering of artifact by a method wherein a moving distance of an object to be inspected at a scanning part for which a data is used is reduced to lessen a deviation of a slicing surface in a helical scan and, moreover, a discontinuous deviation of the data is reduced by a correction processing. CONSTITUTION:An object P to be inspected is canned with a scanner section 2 and a data pertaining to an X-ray absorption coefficient obtained with a detector 9 is sent to an information processing section 3. With an interpolation processing section 11, a data which is gained by a scanning with a scan angle of 180 + fan angle + a specified angle is only used to obtain one rotation of data. Therefore, in the case of a helical scanning, a smaller moving distance is enough for the object P to be inspected at a scanning part from which a data is obtained, hence resulting in a smaller deviation of a slicing surface as caused by the movement of the object P to be inspected. Moreover, with a correction processing section 12, a weighted average of data of a specified angle part near initial and final positions of the above scanning part and an opposite data of the data is provided as a correction data for the part involved, thereby enablinx the reducing of artifact significantly at the helical scanning with a decrease in discontinuous deviation of the data at the initial and final positions of the scanning part.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、被検体にX線を照射して得られる被検体のX
線吸収係数に関するデータを基にして被検体の所定断面
の断層像を再構成するX1CT装置に係り、特にスキャ
ン時に被検体を体軸方向に移動させるいわゆるヘリカル
スキャン(またはスパイラルスキャンという)を行うX
線CT装置に関する。
Detailed Description of the Invention [Purpose of the Invention (Industrial Field of Application) The present invention relates to
It relates to an X1CT device that reconstructs a tomographic image of a predetermined cross section of a subject based on data regarding linear absorption coefficients, and in particular performs a so-called helical scan (or spiral scan) in which the subject is moved in the body axis direction during scanning.
It relates to a line CT device.

(従来の技術) X@CT装置は、被検体の回りをX線管及び検出器が回
転してスキャンを行うスキャナ部と、検出器で得られる
被検体のX線吸収係数に関するデータを基にして被検体
の画像を再構成する画像再構成部とを備えている。最近
、スキャン時にX線管及び検出器を被検体の回りで連続
的に回転させるとともに、被検体を1体軸方向に移動さ
せるいわゆるヘリカル(スパイラル)スキャンを行うX
線CT装置が提案されている。
(Prior art) An X@CT device is based on a scanner section in which an X-ray tube and a detector scan by rotating around the subject, and data on the X-ray absorption coefficient of the subject obtained by the detector. and an image reconstruction unit that reconstructs an image of the subject. Recently, so-called helical (spiral) scanning, in which the X-ray tube and detector are continuously rotated around the subject during scanning, and the subject is moved in the axial direction, has been recently introduced.
A line CT device has been proposed.

第7図に示すように、ヘリカルスキャンの場合には、X
線管の位置は被検体Pに対して相対的にらせん状の軌跡
101を描く。画像再構成部では、例えば軌跡101に
おける点すから点Cに至る部分に対応するデータを用い
て、これを点すと点Cとてつながった1回転分のデータ
とみなして画像の再構成を行う。このようなヘリカルス
キャンには、短時間で、被検体Pの所定範囲のデータを
連続的に得て、被検体Pの3次元的な情報を得ることが
できるという長所かある。
As shown in Figure 7, in the case of helical scanning,
The position of the wire tube draws a spiral trajectory 101 relative to the subject P. The image reconstruction unit reconstructs the image by using, for example, data corresponding to the portion of the trajectory 101 from point C to point C, and regarding this as data for one rotation connected to point C. conduct. Such a helical scan has the advantage that it is possible to continuously obtain data in a predetermined range of the subject P in a short period of time, and to obtain three-dimensional information about the subject P.

(発明が解決しようとする課題) しかしながら上記した従来技術の場合には、実際には点
すと点Cにおける被検体Pのスライス面はずれているに
もかかわらずこれらを1スライス面とみなすため、デー
タに矛盾が生じ、このデータを用いて構成される画像に
は非常に顕著なストリーク状アーチファクトが生じるこ
とになる。
(Problem to be Solved by the Invention) However, in the case of the above-mentioned prior art, even though the slice planes of the subject P at point C are actually shifted, these are regarded as one slice plane. The data will be inconsistent and images constructed using this data will have very noticeable streak artifacts.

このため、ヘリカルスキャンCTを実用化することは難
しいという問題があった。
For this reason, there has been a problem that it is difficult to put helical scan CT into practical use.

本発明は上記した従来技術の課題を解決するためになさ
れたもので、その目的とするところは、ヘリカルスキャ
ンにおけるアーチファクトの発生を低減させることかで
きるX線CT装置を提供することにある。
The present invention has been made to solve the problems of the prior art described above, and its purpose is to provide an X-ray CT apparatus that can reduce the occurrence of artifacts in helical scanning.

[発明の構成] (課題を解決するための手段) 上記目的を達成するために、本発明にあっては、被検体
の回りをX線管及び検出器が回転してスキャンを行うス
キャナ部と、該検出器で得られる被検体のX線吸収係数
に関するデータを基にして被検体の画像を再構成する画
像再構成部とを備えて成るX線CT装置において、 前記X線管及び検出器が被検体に対して180・にファ
ン角度と補正処理のための所定角度とを加えた角度だけ
スキャンを行って得られるデータを用いて補間処理を行
い1回転分のデータを得る補間処理部と、前記所定角度
に対応するデータと該データの対向データとの加重平均
をこの所定角度に対応する補正データとする補正処理部
とが設けられて成ることを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention includes a scanner section in which an X-ray tube and a detector scan by rotating around the subject; , an image reconstruction unit that reconstructs an image of the subject based on data regarding the X-ray absorption coefficient of the subject obtained by the detector, the X-ray tube and the detector; an interpolation processing unit that performs interpolation processing to obtain data for one rotation using data obtained by scanning the subject by an angle equal to 180° plus a fan angle and a predetermined angle for correction processing; , and a correction processing unit that uses a weighted average of data corresponding to the predetermined angle and opposing data of the data as correction data corresponding to the predetermined angle.

(作用) 上記構成を有する本発明のX線CT装置においては、上
記補間処理部によって、検出器で得られるデータのうち
スキャン角度が(1,80’+ファン角度十所定角度)
のいわゆるハーフスキャンに近い短時間のスキャンで得
られるデータのみを用いて1回転分のデータが得られる
。従って、特にヘリカルスキャンの場合に、データを得
るスキャン部分における被検体の移動距離が小さくて済
むので、スキャン中の被検体の移動により生じるスライ
ス面のずれも小さい。
(Function) In the X-ray CT apparatus of the present invention having the above configuration, the interpolation processing section determines that the scan angle is (1,80'+fan angle + predetermined angle) out of the data obtained by the detector.
Data for one rotation can be obtained using only data obtained in a short scan period, which is close to a so-called half scan. Therefore, especially in the case of a helical scan, the movement distance of the subject in the scan portion where data is obtained is small, and the deviation of the slice plane caused by movement of the subject during scanning is also small.

その上、上記補正処理部により、上記スキャン部分の最
初や最後の位置近傍の所定角度部分のデータとこのデー
タの対向データとの加重平均がこの部分の補正データと
されるので、このスキャン部分の最初や最後の位置にお
けるデータの非連続的なずれが低減される。この結果、
ヘリカルスキャンの場合に特に顕著に生じるアーチファ
クトを大幅に低減させることができる。
Furthermore, the correction processing unit uses the weighted average of the data of a predetermined angle portion near the first or last position of the scan portion and the opposing data of this data as the correction data of this portion. Discontinuous shifts in data at the first and last positions are reduced. As a result,
Artifacts that occur particularly prominently in the case of helical scanning can be significantly reduced.

(実施例) 以下に、本発明の実施例を図に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の一実施例のX線CT装置の構成を示す
ブロック図である。図においてこのX線CT装置1は、
概略被検体Pに対してスキャンを行うスキャナ部2と、
スキャナ部2から送られるデータを処理するための情報
処理部3と、情報処理部3から送られる映像信号に従っ
て被検体Pの画像を表示するCRTデイスプレィ等の表
示手段4とから成る。
FIG. 1 is a block diagram showing the configuration of an X-ray CT apparatus according to an embodiment of the present invention. In the figure, this X-ray CT apparatus 1 is
a scanner section 2 that roughly scans a subject P;
It consists of an information processing section 3 for processing data sent from the scanner section 2, and a display means 4 such as a CRT display for displaying an image of the subject P according to a video signal sent from the information processing section 3.

スキャナ部2には、被検体Pを載置する寝台5と、中央
部に撮影孔6が形成された架台7が設置されている。架
台7内には、X線管8と検出器9が撮影孔6を挾んで対
向配置されている。撮影時には被検体Pを載置した寝台
5の天板5aが撮影孔6内に挿入され、X線管8及び検
出器9が被検体Pの回りを回転してスキャンを行うが、
このときX線管8.検出器9を連続的に回転させるとと
もに、天板5aを被検体Pの体軸方向(図中矢印a方向
)に移動させることにより、ヘリカルスキャンを行うこ
とができる。
The scanner section 2 is equipped with a bed 5 on which the subject P is placed, and a pedestal 7 in which an imaging hole 6 is formed in the center. Inside the frame 7, an X-ray tube 8 and a detector 9 are arranged facing each other with the imaging hole 6 in between. During imaging, the top plate 5a of the bed 5 on which the subject P is placed is inserted into the imaging hole 6, and the X-ray tube 8 and detector 9 rotate around the subject P to perform scanning.
At this time, the X-ray tube 8. A helical scan can be performed by continuously rotating the detector 9 and moving the top plate 5a in the body axis direction of the subject P (in the direction of arrow a in the figure).

情報処理部3には、検出器9から送られるデー夕に信号
処理等の前処理を行う前処理部10と、前処理部10か
ら送られるデータに後述する補間処理を行う補間処理部
11と、後述する補正処理を行う補正処理部12と、補
間処理部11及び補正処理部12から送られるデータを
基にして画像を再構成する画像再構成部13とが設けら
れている。
The information processing unit 3 includes a preprocessing unit 10 that performs preprocessing such as signal processing on the data sent from the detector 9, and an interpolation processing unit 11 that performs interpolation processing, which will be described later, on the data sent from the preprocessing unit 10. , a correction processing section 12 that performs correction processing to be described later, and an image reconstruction section 13 that reconstructs an image based on data sent from the interpolation processing section 11 and the correction processing section 12.

被検体Pの撮影時には、スキャナ部2て上記したように
被検体Pに対するスキャンを行い、検出器9で被検体P
のX線吸収係数に関するデータを得る。このデータは検
出器9から電気信号として情報処理部3に送られ、この
信号を前処理部10で信号処理、対数変換して得られる
投影データが補間処理部11及び補正処理部12に送ら
れる。
When photographing the subject P, the scanner section 2 scans the subject P as described above, and the detector 9 scans the subject P.
Obtain data regarding the X-ray absorption coefficient of. This data is sent from the detector 9 as an electrical signal to the information processing unit 3, and this signal is processed and logarithmically transformed in the preprocessing unit 10, and the projection data obtained is sent to the interpolation processing unit 11 and the correction processing unit 12. .

補間処理部11は、X線管8及び検出器9が被検体Pに
対して(180°+ファン角度十補正処理のために必要
な所定角度)スキャンを行って得られる投影データのみ
を用いて、後述する補間処理を行い1回転分のデータを
得る。例えば第2図に示すようなサイノブラムにおいて
、180″+ファン角度φ十所定角度α−βとすると、
スキャン角度がβであるスキャン部分の投影データを用
いる。ヘリカルスキャンを行う場合には第3図に示すよ
うに、X線管8が角度βだけ回転するスキャン部分Sの
範囲のデータのみを用いる。従って、この範囲内の天板
5aの移動距離(被検体Pの移動距離d)は1回転分の
スキャンに比べて小さくなる。
The interpolation processing unit 11 uses only the projection data obtained when the X-ray tube 8 and the detector 9 scan the subject P (180° + a predetermined angle necessary for the fan angle + correction processing). , performs interpolation processing to be described later to obtain data for one rotation. For example, in a sinobram as shown in Fig. 2, if 180'' + fan angle φ + predetermined angle α - β, then
Projection data of a scan portion where the scan angle is β is used. When performing a helical scan, as shown in FIG. 3, only the data in the scan area S where the X-ray tube 8 rotates by an angle β is used. Therefore, the moving distance of the top plate 5a within this range (the moving distance d of the subject P) is smaller than the scanning for one rotation.

ヘリカルスキャンの際に、第4図に示すサイノブラムに
おける角度−a / 2〜(180°十φ+α/2)の
投影データを用いる場合の補間処理部11の補間処理動
作について詳しく説明する。例えば同図に示す点C,D
におけるX線ビームを第5図に示すような矢印CX、D
xで表わすと、同一の通路を通る対向ビームは矢印C−
,、D”。
The interpolation processing operation of the interpolation processing section 11 when using the projection data of the angle -a/2 to (180° + φ+α/2) in the sinobram shown in FIG. 4 during helical scanning will be described in detail. For example, points C and D shown in the same figure
The X-ray beam at
Denoted by x, opposing beams passing through the same path are indicated by arrow C-
,,D”.

で表わされる。すなわち点C,Dの投影データの対向デ
ータはそれぞれ、上記サイノブラムにおいて点Cとは逆
側のチャンネル端部における角度1806−φの点C′
1点りとは逆側のチャンネル端部における角度(180
’+φ)の点D′の投影データである。
It is expressed as That is, the opposite data of the projection data of points C and D are respectively the points C' at the angle 1806-φ at the end of the channel on the opposite side from point C in the above-mentioned sinobram.
The angle at the end of the channel opposite to the single point (180
'+φ) is the projection data of point D'.

同様に、第4図に示すサイノブラムにおいて、角度(1
80’+φ+α/2)〜(360゜α/2)の範囲内の
投影データ、すなわち長方形FGB’ A’上の投影デ
ータの対向データは、平行四辺形F−G−B−A−上の
投影データである。
Similarly, in the rhinobram shown in FIG.
80'+φ+α/2) to (360°α/2), that is, the opposite data of the projection data on the rectangle FGB'A' is the projection data on the parallelogram FGBA- It is data.

補間処理部11はこの平行四辺形F−G−B″A′上の
投影データを長方形FGB’ A’上の投影データとし
て補間し、角度(180’+φ+α/2)〜(3606
−α/2)のデータを作成する。
The interpolation processing unit 11 interpolates the projection data on the parallelogram F-G-B''A' as projection data on the rectangle FGB'A', and calculates the angle (180'+φ+α/2) to (3606
−α/2) data is created.

それによって1回転分の投影データが得られる。As a result, projection data for one rotation is obtained.

補正処理部12は上記サイノブラムにおける角度−α/
2〜0″の投影データ、すなわち長方形ABDC上の投
影データと、角度(180°+φ)〜(180”+φ十
α/2)の投影データ、すなわち長方形D″EGF上の
投影データに対して次に説明する補正処理を行う。
The correction processing unit 12 calculates the angle −α/
For the projection data of 2 to 0", that is, the projection data on the rectangle ABDC, and the projection data of the angle (180° + φ) to (180" + φ ten α/2), that is, the projection data on the rectangle D"EGF, Perform the correction process described in .

上記サイノブラムにおける長方形ABDC上の投影デー
タの対向データは平行四辺形A−B−D−C−上の投影
データであり、長方形D″EGF上の投影データの対向
データは平行四辺形DE−G″F′上の投影データであ
る。ここで長方形ABDC上の投影データと平行四辺形
A−B”D−C′上の投影データとの加重平均を角度−
α/2〜06の投影データ(補正データ)とし、長方形
D−EGF上の投影データと平行四辺形DE−G=F−
上の投影データとの加重平均を角度(180°+φ)〜
(180”十φ十α/2)の投影データ(補正データ)
とする。それによって、角度−α/2〜(180’+φ
+α/2)のスキャン部分における両端部分で生じる非
連続的なデータのずれを低減することができる。
The opposite data of the projection data on the rectangle ABDC in the above sinobram is the projection data on the parallelogram A-B-D-C-, and the opposite data of the projection data on the rectangle D''EGF is the parallelogram DE-G'' This is projection data on F'. Here, the weighted average of the projection data on the rectangle ABDC and the projection data on the parallelogram A-B"D-C' is calculated by the angle -
The projection data (corrected data) is α/2~06, and the projection data on the rectangle D-EGF and the parallelogram DE-G=F-
The weighted average of the above projection data is calculated by the angle (180° + φ) ~
(180” 1φ1α/2) projection data (correction data)
shall be. Thereby, the angle -α/2~(180'+φ
+α/2) discontinuous data shift occurring at both end portions of the scan portion can be reduced.

例えば第4図において、直線に、と線分A−BC−D−
,D−E、FGとの交点e、f、g。
For example, in Figure 4, the line segment A-BC-D-
, DE, and the intersections e, f, and g with FG.

hの投影データの対向データが、直線に2と線分AB、
CD、DE−,t”c、”との交点e”  fg+  
h−の投影データであるとすると、線分eh上の投影デ
ータには第6図に曲線r1で示すような重みをかけ、線
分e=’h−上の投影データには同図に曲線r2で示す
ような重みをがけて両線分上のデータの加重平均を算出
する。曲線rr2は、それぞれ点e、e−,h、h−に
対しては傾きが0で、線分eh、e−h−の中間点に対
しては重みが1となり、かつ、対向する部分の重みの和
が2となるような曲線、例えば3次曲線である。得られ
たデータを線分eh、e−h−上の補正データとすれば
、データの非連続部分を滑らかにつなげることができる
The opposite data of the projection data of h is a straight line 2 and line segment AB,
Intersection e” fg+ with CD, DE-, t”c,”
Assuming that the projection data is h-, the projection data on the line segment eh is weighted as shown by the curve r1 in Figure 6, and the projection data on the line segment e='h- is weighted as shown by the curve r1 in the same figure. A weighted average of data on both line segments is calculated by applying a weight as shown by r2. Curve rr2 has a slope of 0 for points e, e-, h, and h-, a weight of 1 for the midpoints of line segments eh and eh-, and This is a curve whose weight sums up to 2, for example, a cubic curve. If the obtained data is used as correction data on the line segments eh and eh-, discontinuous portions of data can be smoothly connected.

上記補間処理部11.補正処理部12により補間処理、
補正処理が施されて得られた1回転分の投影データは画
像再構成部13に送られる。画像再構成部13はこれら
のデータにフーリエ変換等の演算処理を行って画像を再
構成し、この再構成画像を内容とする映像信号が画像再
構成部13から表示手段4に送られ、表示手段4に被検
体Pの所定断面の断層像が表示される。
The interpolation processing section 11. The correction processing unit 12 performs interpolation processing,
The projection data for one rotation obtained through the correction processing is sent to the image reconstruction unit 13. The image reconstruction unit 13 performs arithmetic processing such as Fourier transform on these data to reconstruct an image, and a video signal containing the reconstructed image is sent from the image reconstruction unit 13 to the display means 4 for display. A tomographic image of a predetermined cross section of the subject P is displayed on the means 4.

本実施例装置においては、第3図に示したように、ヘリ
カルスキャンの場合にデータが用いられるスキャン部分
Sにおける被検体Pの移動距離dが小さいので、スキ、
セン中の被検体Pの移動により生じるスライス面のずれ
が小さく、さらに上記補正処理を行うことによりデータ
の非連続的なずれが低減されるので、アーチファクトの
発生を大幅に低減することができる。
In the device of this embodiment, as shown in FIG. 3, the moving distance d of the subject P in the scanning portion S where data is used in the case of helical scanning is small, so
The deviation of the slice plane caused by the movement of the subject P during scanning is small, and furthermore, by performing the above correction processing, discontinuous deviation of data is reduced, so the occurrence of artifacts can be significantly reduced.

なお、本発明は上記実施例に限定されるものではなく、
種々変形実施が可能である。例えば、上記実施例におい
てはヘリカルスキャンを例にとって説明したが、ヘリカ
ルスキャン以外のスキャンの場合にも適用可能である。
Note that the present invention is not limited to the above embodiments,
Various modifications are possible. For example, although the above embodiment has been described using a helical scan as an example, the present invention is also applicable to scans other than helical scans.

[発明の効果] 本発明のX線CT装置は以上の構成及び作用を有するも
ので、ハーフスキャンにおけるアーチファクトの発生を
低減することが可能であり、特にヘリカルスキャンの場
合に生じるアーチファクトを大幅に低減することができ
るので、ヘリカルスキャンCTの実用化を図ることがで
きる。
[Effects of the Invention] The X-ray CT apparatus of the present invention has the above-described configuration and function, and can reduce the occurrence of artifacts in half scan, and in particular, can significantly reduce artifacts that occur in helical scan. Therefore, it is possible to put helical scan CT into practical use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のX線CT装置の構成を示す
ブロック図、第2図は同実施例における補間処理を説明
するためのサイノブラム、第3図は同実施例におけるヘ
リカルスキャン時の寝台天板の位置とX線管の位置との
関係を示す図、第4図は同実施例における補間処理及び
補正処理を説明するためのサイノブラム、第5図は同実
施例における対向データを説明するための説明図、第6
図は同実施例において補正処理の際にデータにかける重
みを示す図、第7図はヘリカルスキャン時のX線管の軌
跡を示す図である。 1・・・X1jICT装置  2・・・スキャナ部8・
・・X線管     9・・・検出器11・・・補間処
理部  12・・・補正処理部13・・・画像再構成部 第2 図
Fig. 1 is a block diagram showing the configuration of an X-ray CT apparatus according to an embodiment of the present invention, Fig. 2 is a sinobram for explaining interpolation processing in the embodiment, and Fig. 3 is a helical scan in the embodiment. FIG. 4 is a diagram showing the relationship between the position of the bed top plate and the position of the X-ray tube, FIG. Explanatory diagram for explaining, No. 6
This figure shows the weight applied to data during correction processing in the same embodiment, and FIG. 7 shows the trajectory of the X-ray tube during helical scanning. 1...X1j ICT device 2...Scanner section 8.
...X-ray tube 9...Detector 11...Interpolation processing section 12...Correction processing section 13...Image reconstruction section Fig. 2

Claims (1)

【特許請求の範囲】 被検体の回りをX線管及び検出器が回転してスキャンを
行うスキャナ部と、該検出器で得られる被検体のX線吸
収係数に関するデータを基にして被検体の画像を再構成
する画像再構成部とを備えて成るX線CT装置において
、 前記X線管及び検出器が被検体に対して180゜にファ
ン角度と補正処理のための所定角度とを加えた角度だけ
スキャンを行って得られるデータを用いて補間処理を行
い1回転分のデータを得る補間処理部と、前記所定角度
に対応するデータと該データの対向データとの加重平均
をこの所定角度に対応する補正データとする補正処理部
とが設けられて成ることを特徴とするX線CT装置。
[Scope of Claims] A scanner section in which an X-ray tube and a detector rotate around the subject to scan the subject; An X-ray CT apparatus comprising an image reconstruction unit that reconstructs an image, wherein the X-ray tube and the detector are oriented at 180° relative to the subject plus a fan angle and a predetermined angle for correction processing. an interpolation processing unit that performs interpolation processing using data obtained by scanning only the angle to obtain data for one rotation; and a weighted average of the data corresponding to the predetermined angle and the opposite data of the data to the predetermined angle. An X-ray CT apparatus characterized by comprising a correction processing unit that processes corresponding correction data.
JP2153879A 1990-06-14 1990-06-14 X-ray CT system Expired - Fee Related JP2970680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2153879A JP2970680B2 (en) 1990-06-14 1990-06-14 X-ray CT system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2153879A JP2970680B2 (en) 1990-06-14 1990-06-14 X-ray CT system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11191565A Division JP2000033086A (en) 1999-07-06 1999-07-06 X-ray computerized tomograph

Publications (2)

Publication Number Publication Date
JPH0449952A true JPH0449952A (en) 1992-02-19
JP2970680B2 JP2970680B2 (en) 1999-11-02

Family

ID=15572106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2153879A Expired - Fee Related JP2970680B2 (en) 1990-06-14 1990-06-14 X-ray CT system

Country Status (1)

Country Link
JP (1) JP2970680B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04288149A (en) * 1991-03-15 1992-10-13 Hitachi Medical Corp Ct apparatus
JPH0819532A (en) * 1993-09-06 1996-01-23 Toshiba Corp X-ray computer tomography device
US5991356A (en) * 1997-07-24 1999-11-23 Ge Yokogawa Medical Systems, Limited Radiation tomography method and apparatus
JP2005161078A (en) * 1997-08-01 2005-06-23 Analogic Corp Half scan ct restoration by asymmetric detector
JP2006000224A (en) * 2004-06-15 2006-01-05 Canon Inc X-ray ct apparatus
CN110327069A (en) * 2019-07-01 2019-10-15 赛诺威盛科技(北京)有限公司 A method of reducing CT helical scanning range
CN114601489A (en) * 2020-12-08 2022-06-10 平生医疗科技(昆山)有限公司 Axial bed correction method, system, medium and device in Micro CT

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227324A (en) * 1986-03-27 1987-10-06 横河メディカルシステム株式会社 Radiation tomographic apparatus
JPH03188832A (en) * 1989-11-13 1991-08-16 General Electric Co <Ge> Extrapolative reconstitution method for herical scanning

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227324A (en) * 1986-03-27 1987-10-06 横河メディカルシステム株式会社 Radiation tomographic apparatus
JPH03188832A (en) * 1989-11-13 1991-08-16 General Electric Co <Ge> Extrapolative reconstitution method for herical scanning

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04288149A (en) * 1991-03-15 1992-10-13 Hitachi Medical Corp Ct apparatus
JPH0819532A (en) * 1993-09-06 1996-01-23 Toshiba Corp X-ray computer tomography device
US5991356A (en) * 1997-07-24 1999-11-23 Ge Yokogawa Medical Systems, Limited Radiation tomography method and apparatus
JP2005161078A (en) * 1997-08-01 2005-06-23 Analogic Corp Half scan ct restoration by asymmetric detector
JP2006000224A (en) * 2004-06-15 2006-01-05 Canon Inc X-ray ct apparatus
JP4498023B2 (en) * 2004-06-15 2010-07-07 キヤノン株式会社 X-ray CT system
CN110327069A (en) * 2019-07-01 2019-10-15 赛诺威盛科技(北京)有限公司 A method of reducing CT helical scanning range
CN114601489A (en) * 2020-12-08 2022-06-10 平生医疗科技(昆山)有限公司 Axial bed correction method, system, medium and device in Micro CT
CN114601489B (en) * 2020-12-08 2024-06-11 平生医疗科技(昆山)有限公司 Axial correction method, system, medium and device for bed in Micro CT

Also Published As

Publication number Publication date
JP2970680B2 (en) 1999-11-02

Similar Documents

Publication Publication Date Title
US6292530B1 (en) Method and apparatus for reconstructing image data acquired by a tomosynthesis x-ray imaging system
US7865006B2 (en) Methods and apparatus for artifact reduction
US5046003A (en) Method for reducing skew image artifacts in helical projection imaging
JPH02211129A (en) Ct device
US6944260B2 (en) Methods and apparatus for artifact reduction in computed tomography imaging systems
US5559847A (en) Systems, methods and apparatus for reconstructing images in a CT system implementing a helical scan
US6285732B1 (en) Methods and apparatus for adaptive interpolation reduced view CT scan
EP0426464A2 (en) Computerized tomographic image reconstruction method for helical scanning
JP2001515378A (en) Online Image Reconstruction in Helical Scanning CT Scanner
US20080118024A1 (en) Method for reconstructing a local high resolution x-ray ct image and apparatus for reconstructing a local high resolution x-ray ct image
CN107845121B (en) Method for correcting weighting artifacts in detector offset scanning
JPH08215188A (en) Method and equipment for picture formation
US5438602A (en) Correction of CT attenuation data using fan beam reprojections
US6775347B2 (en) Methods and apparatus for reconstructing an image of an object
JPS627513B2 (en)
JPH0449952A (en) X-ray ct apparatus
US5546439A (en) Systems, methods and apparatus for incrementally reconstructing overlapped images in a CT system implementing a helical scan
JPH119582A (en) X-ray computerized tomograph
KR880000085B1 (en) Tomography using x-ray
US6327325B1 (en) Methods and apparatus for adaptive interpolation reduced view CT scan
WO1999038439A1 (en) X-ray image pickup device
JP4047420B2 (en) Image reconstruction device
JP3244318B2 (en) Skew Artifact Reduction Method in Helical Scan
JPH0484940A (en) X-ray ct device
JP4489845B2 (en) Computer tomography for volumetric scanning

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees