JPH0449261A - Production of 2-alkoxycyclohexanol - Google Patents

Production of 2-alkoxycyclohexanol

Info

Publication number
JPH0449261A
JPH0449261A JP2159381A JP15938190A JPH0449261A JP H0449261 A JPH0449261 A JP H0449261A JP 2159381 A JP2159381 A JP 2159381A JP 15938190 A JP15938190 A JP 15938190A JP H0449261 A JPH0449261 A JP H0449261A
Authority
JP
Japan
Prior art keywords
cyclohexene oxide
alcohol
catalyst
reaction
inorganic solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2159381A
Other languages
Japanese (ja)
Inventor
Shigeru Yokota
滋 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP2159381A priority Critical patent/JPH0449261A/en
Publication of JPH0449261A publication Critical patent/JPH0449261A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain in high efficiency the title compound important as an intermediate for medicines and pesticides without causing equipment corrosion or other problems in its purification by reaction between cyclohexene oxide and an alcohol using an inorganic solid acid catalyst. CONSTITUTION:The objective 2-alkoxycyclohexanol can be obtained by reaction in a liquid phase between (A) cyclohexene oxide and (B) an excess amount of an alcohol in the presence of an inorganic solid acid catalyst (esp. pref. montmorillonite). Use of said catalyst will cause no equipment corrosion and highly simplify the separation of the present compound, thus being industrially advantageous. This catalyst will also cause no problem in the purification of the final compound, thereby being advantageous.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、医・農薬中間原料として重要な2アルコキシ
シクロヘキサノールをシクロヘキセンオキシドとアルコ
ールとにより効率よく製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for efficiently producing 2-alkoxycyclohexanol, which is important as an intermediate raw material for medicines and agricultural chemicals, from cyclohexene oxide and alcohol.

(従来の技術) 分枝状ないしは脂環式のエポキシドのアルコールとの反
応によるアルコキシアルコールの製造方法は一般的に良
く知られており、−船釣には酸やアルカリの添加により
促進される。
PRIOR ART The process for producing alkoxy alcohols by reaction of branched or cycloaliphatic epoxides with alcohols is generally well known and is facilitated in boat fishing by the addition of acids or alkalis.

(発明が解決しようとする課題) 以上のように、エポキシドとアルコールとの反応により
相当するアルコキシアルコールを製造する方法は公知で
ある。
(Problems to be Solved by the Invention) As described above, a method for producing a corresponding alkoxy alcohol by reacting an epoxide with an alcohol is known.

触媒として、硫酸のような鉱酸を用いた場合、まず装置
の腐食防止および作業者に対する安全性などを考慮せね
ばならない。
When using a mineral acid such as sulfuric acid as a catalyst, first consideration must be given to corrosion prevention of equipment and safety to workers.

また、反応粗液から製品であるアルコキシアルコールを
精製する際、酸を中和すると塩が析出して配管や装置に
付着する等の問題が生じる。
Further, when the product alkoxy alcohol is purified from the reaction crude liquid, neutralizing the acid causes problems such as salt precipitation and adhesion to piping and equipment.

また、酢酸のような有機酸を用いた場合も、装置の腐食
やアルコキシアルコール精製時に酸を中和しない場合は
蒸留分離する必要が生じる。
Furthermore, even when an organic acid such as acetic acid is used, distillation separation may be necessary if equipment is corroded or the acid is not neutralized during alkoxy alcohol purification.

このような問題を解決するために、本発明者は鋭意検討
した結果、装置の腐食やアルコキシアルコール精製時の
問題を引き起こさない触媒として、無機固体酸を使用す
ることが最も好ましいことを見い出した。
In order to solve such problems, the inventors of the present invention have conducted intensive studies and found that it is most preferable to use an inorganic solid acid as a catalyst that does not cause corrosion of equipment or problems during alkoxy alcohol purification.

(発明の目的) 本発明の目的は、装置の腐食やジオール精製時の問題を
引き起こさずに、シクロヘキセンオキシドとアルコール
とを反応させてアルコキシアルコールを高活性で製造す
る方法を提供することにある。
(Objective of the Invention) An object of the present invention is to provide a method for producing alkoxy alcohol with high activity by reacting cyclohexene oxide and alcohol without causing corrosion of equipment or problems during diol purification.

(課題を解決するための手段) すなわち、本発明は、 「シクロヘキセンオキシドとアルコールとを反応させて
2−アルコキシシクロヘキサノールを製造する方法にお
いて、無機固体酸触媒の存在下で反応させることを特徴
とする2−アルコキシシクロヘキサノールの製造方法」 である。
(Means for Solving the Problems) That is, the present invention provides a method for producing 2-alkoxycyclohexanol by reacting cyclohexene oxide and alcohol, characterized in that the reaction is carried out in the presence of an inorganic solid acid catalyst. A method for producing 2-alkoxycyclohexanol.

本発明において、触媒として使用される無機固体酸触媒
としては、シリカ、アルミナ、シリカ−アルミナ、ゼオ
ライト、チタニア、ジルコニア、固体リン酸類、あるい
はこれらの組成物としての複合体、または担持物と担体
との関係を含む複合体等が用いられ、なかでもゼオライ
トが好ましい。
In the present invention, the inorganic solid acid catalyst used as a catalyst includes silica, alumina, silica-alumina, zeolite, titania, zirconia, solid phosphoric acids, a composite of these as a composition, or a support and a support. Composites containing the following relationships are used, and among them, zeolite is preferred.

また、無機固体酸を用いた場合、鉱酸や有機酸使用時の
ような装置の腐食や2−アルコキシシクロヘキサノール
精製時の問題が起こらず、触媒の回収再使用が極めて容
易となるため、本発明の方法の工業的な意義は非常に大
きいものである。
In addition, when inorganic solid acids are used, equipment corrosion and 2-alkoxycyclohexanol purification problems that occur when mineral acids or organic acids are used do not occur, and the catalyst can be recovered and reused extremely easily. The industrial significance of the method of the invention is very large.

本発明に用いる無機固体酸の濃度としては、特に制限は
ないが、好ましくは出発原料に対して0゜01〜10重
量%の範囲で用いられる。
The concentration of the inorganic solid acid used in the present invention is not particularly limited, but it is preferably used in a range of 0.01 to 10% by weight based on the starting material.

用いられる無機固体酸はペレット状、粉末状、タブレッ
ト状など形状に制限はないが、回収のし易さのことを考
慮するとペレット状のものなどが好ましい。
The shape of the inorganic solid acid used is not limited to pellets, powder, tablets, etc., but pellets are preferable in consideration of ease of recovery.

本発明を実施する場合、シクロヘキセンオキシドに対し
てアルコールの使用量は理論量以上にする必要がある。
When carrying out the present invention, it is necessary to use more than the theoretical amount of alcohol relative to cyclohexene oxide.

シクロヘキセンオキシドに対してアルコールの使用量が
理論量以下の場合は、生成した1、2−シクロヘキサン
ジオールと未反応のシクロヘキセンオキシドとが容易に
反応して目的としない物が生成するため収率が低下した
り、触媒の活性低下が激しくなる。
If the amount of alcohol used is less than the theoretical amount relative to cyclohexene oxide, the yield will decrease because the generated 1,2-cyclohexanediol and unreacted cyclohexene oxide will easily react and produce unintended products. or the catalyst activity decreases drastically.

理論量以上であれば特に制限はないが2〜100モル倍
の範囲が適当である。
There is no particular restriction as long as it is more than the theoretical amount, but a range of 2 to 100 moles is appropriate.

アルコールのモル倍率が小さいと理論量以上であっても
副反応が起き収率が低下するのでアルコールの下限量は
、収率低下の割合と精製コストから決めるべきである。
If the molar ratio of alcohol is small, side reactions will occur even if the amount exceeds the theoretical amount, resulting in a decrease in yield, so the lower limit of alcohol should be determined based on the rate of decrease in yield and purification cost.

アルコールのモル倍率が大きい場合は収率は向上するが
精製コストが増大し、反応器も大きくなるなどの不利な
ことが起きるので得策ではない。
If the molar ratio of alcohol is large, the yield will improve, but the purification cost will increase and the size of the reactor will also increase, which is not a good idea.

本発明に用い得るアルコールとしてはメタノール、エタ
ノール、プロパンオール、シクロヘキサノール、など飽
和脂肪族アルコール、アリルアルコール、クロチルアル
コールなど不飽和脂肪族アルコール、ベンジアルコール
、フェノールなどの芳香族アルコール、エチレングリコ
ール、プロピレングリコールなどの2価のアルコール、
グリセリンなどの3価のアルコールが挙げられる。
Examples of alcohols that can be used in the present invention include saturated aliphatic alcohols such as methanol, ethanol, propanol, and cyclohexanol, unsaturated aliphatic alcohols such as allyl alcohol and crotyl alcohol, aromatic alcohols such as benzyl alcohol and phenol, ethylene glycol, dihydric alcohols such as propylene glycol,
Examples include trihydric alcohols such as glycerin.

本発明を実施する場合、反応温度は特に制限ないが、工
業的に実施していく場合の設備費などを考慮すると、常
圧下で沸点以下の温度が好ましい。
When carrying out the present invention, the reaction temperature is not particularly limited, but in consideration of equipment costs for industrial implementation, a temperature below the boiling point under normal pressure is preferred.

また、反応温度があまり低いと反応速度が遅くなり、好
ましくない。
Furthermore, if the reaction temperature is too low, the reaction rate will be slow, which is not preferable.

好ましくは、常圧下で室温以上、沸点以下の温度条件を
選定する。
Preferably, the temperature conditions are selected to be at least room temperature and at most the boiling point under normal pressure.

本発明を実施する場合、反応時間は反応温度や原料組成
によって異なるが、通常は数分から数時間の範囲から選
択すれば良い。
When carrying out the present invention, the reaction time may vary depending on the reaction temperature and raw material composition, but is usually selected from a range of several minutes to several hours.

反応を行う場合、原料の仕込み順序は工夫した方か良い
、具体的には以下のように行う。
When carrying out the reaction, it is better to devise the order in which the raw materials are added. Specifically, it is carried out as follows.

すなわち、通常回分方式で行なう場合、固体触媒を反応
器中に仕込まれたアルコールの中に分散させておき、ま
ず温度を上記の範囲内になるように調整する。
That is, when carrying out in a normal batch method, a solid catalyst is dispersed in alcohol charged in a reactor, and the temperature is first adjusted to be within the above range.

所定の温度に到達した時点てシクロヘキセンオキシドを
液中に所定の速度で供給する。
When a predetermined temperature is reached, cyclohexene oxide is fed into the liquid at a predetermined rate.

シクロヘキセンオキシドを仕込んだ反応器中にアルコー
ルを仕込む順序にすると生成した1、2シクロヘキサン
ジオールと未反応のシクロヘキセンオキシドとが容易に
反応して目的としない物が生成するため収率が低下する
ためである。
This is because if the alcohol is charged into the reactor containing cyclohexene oxide, the produced 1,2-cyclohexanediol and unreacted cyclohexene oxide will easily react, producing unintended products, resulting in a lower yield. be.

本発明は工業的に実施する場合、回分方式で行ってもよ
いし、連続方式で行ってもよい。
When the present invention is carried out industrially, it may be carried out either batchwise or continuously.

いずれの方式でも無機固体酸は回収され、再使用される
In either method, the inorganic solid acid is recovered and reused.

無機固体酸の回収は沈澱、濾過、遠心分離など通常おこ
なわれる方法が適用できる。
Conventional methods such as precipitation, filtration, and centrifugation can be used to recover the inorganic solid acid.

(発明の効果) 本発明によると、シクロヘキセンオキシドとシクロヘキ
センオキシドに対して過剰量のアルコールとを、無機固
体酸触媒の存在下液相条件下に反応させることで、装置
腐食のない、触媒分離の簡単な極めて工業的に有利なシ
クロヘキセンオキシドから2−アルコキシシクロヘキサ
ノールを製造するものである。
(Effects of the Invention) According to the present invention, by reacting cyclohexene oxide with an excess amount of alcohol relative to the cyclohexene oxide under liquid phase conditions in the presence of an inorganic solid acid catalyst, catalyst separation can be achieved without equipment corrosion. 2-alkoxycyclohexanol is produced from simple and industrially advantageous cyclohexene oxide.

次に、実施例及び比較例を挙げて本発明を説明するが、
本発明はこれらの実施例によって何ら限定されるもので
はない。
Next, the present invention will be explained with reference to Examples and Comparative Examples.
The present invention is not limited in any way by these Examples.

実施例1 ゼオライト触媒KS(日産ガードラー社製)を0.5g
とエタノール150gをガラス製のフラスコに仕込み、
70℃に撹拌しながら昇温した。
Example 1 0.5 g of zeolite catalyst KS (manufactured by Nissan Girdler)
and 150g of ethanol in a glass flask,
The temperature was raised to 70°C with stirring.

70℃に達したところでシクロヘキセンオキシドを毎時
7.3gの速度でトータル14.6g供給した。
When the temperature reached 70°C, a total of 14.6 g of cyclohexene oxide was fed at a rate of 7.3 g/hour.

シクロヘキセンオキシド仕込終了後、反応粗液を分析し
た結果、シクロヘキセンオキシドの変化率100%で、
2−エトキシシクロヘキサノールの収率は96.3%だ
った。
After the completion of cyclohexene oxide preparation, the reaction crude liquid was analyzed and the change rate of cyclohexene oxide was 100%.
The yield of 2-ethoxycyclohexanol was 96.3%.

実施例2 ゼオライト触媒KS(日産ガードラー社製)を1.5g
とエタノール150gをガラス製のフラスコに仕込み、
70℃に撹拌しながら昇温した。
Example 2 1.5 g of zeolite catalyst KS (manufactured by Nissan Girdler)
and 150g of ethanol in a glass flask,
The temperature was raised to 70°C with stirring.

70℃に達したところでシクロヘキセンオキシドを毎時
7.3gの速度でトータル14.6g供給した。
When the temperature reached 70°C, a total of 14.6 g of cyclohexene oxide was fed at a rate of 7.3 g/hour.

シクロヘキセンオキシド仕込終了後、反応粗液ヲ分析し
た結果、シクロヘキセンオキシドの変化率100%で、
2−エトキシシクロヘキサノールの収率は96.4%だ
った。
After the completion of cyclohexene oxide preparation, the reaction crude liquid was analyzed and the change rate of cyclohexene oxide was 100%.
The yield of 2-ethoxycyclohexanol was 96.4%.

実施例3 ゼオライト触媒KS(日産ガードラー社製)を4.5g
とエタノール150gをガラス製のフラスコに仕込み、
70℃に撹拌しながら昇温した。
Example 3 4.5 g of zeolite catalyst KS (manufactured by Nissan Girdler)
and 150g of ethanol in a glass flask,
The temperature was raised to 70°C with stirring.

70℃に達したところでシクロヘキセンオキシドを毎時
7.3gの速度でトータル14.6g供給した。
When the temperature reached 70°C, a total of 14.6 g of cyclohexene oxide was fed at a rate of 7.3 g/hour.

シクロヘキセンオキシド仕込終了後、反応粗液を分析し
た結果、シクロヘキセンオキシドの変化率100%で、
2−エトキシシクロヘキサノールの収率は95.3%た
った。
After the completion of cyclohexene oxide preparation, the reaction crude liquid was analyzed and the change rate of cyclohexene oxide was 100%.
The yield of 2-ethoxycyclohexanol was 95.3%.

実施例4 ゼオライト触媒KS(日産ガードラー社製)を4.5g
とエタノール100gをガラス製のフラスコに仕込み、
70℃に撹拌しながら昇温した。
Example 4 4.5 g of zeolite catalyst KS (manufactured by Nissan Girdler)
and 100g of ethanol in a glass flask,
The temperature was raised to 70°C with stirring.

70℃に達したところでシクロヘキセンオキシドを毎時
7.3gの速度でトータル14.6g供給した。
When the temperature reached 70°C, a total of 14.6 g of cyclohexene oxide was fed at a rate of 7.3 g/hour.

シクロヘキセンオキシド仕込終了後、反応粗液を分析し
た結果、シクロヘキセンオキシドの変化率100%で、
2−エトキシシクロヘキサノールの収率は93.2%だ
った。
After the completion of cyclohexene oxide preparation, the reaction crude liquid was analyzed and the change rate of cyclohexene oxide was 100%.
The yield of 2-ethoxycyclohexanol was 93.2%.

比較例 酢酸13.1gとエタノール150gをガラス製のフラ
スコに仕込み、70℃に撹拌しながら昇温した。
Comparative Example 13.1 g of acetic acid and 150 g of ethanol were placed in a glass flask, and the temperature was raised to 70° C. with stirring.

70℃に達したところでシクロヘキセンオキシドを毎時
7.3gの速度でトータル14.6g供給した。
When the temperature reached 70°C, a total of 14.6 g of cyclohexene oxide was fed at a rate of 7.3 g/hour.

シクロヘキセンオキシド仕込終了後、反応粗液を分析し
た結果、シクロヘキセンオキシドの変化率68.2%で
、2−エトキシシクロヘキサノールの収率は61.4%
だった。
After the completion of the cyclohexene oxide preparation, analysis of the reaction crude liquid revealed that the conversion rate of cyclohexene oxide was 68.2%, and the yield of 2-ethoxycyclohexanol was 61.4%.
was.

この比較例は、反応後蒸溜分離の必要な触媒の一つであ
る酢酸を使用して反応させても反応速度が非常に遅く、
無機固体酸が触媒活性の面でも優れていることを示して
いる。
In this comparative example, the reaction rate was very slow even if the reaction was carried out using acetic acid, which is one of the catalysts that requires distillation separation after the reaction.
This shows that inorganic solid acids are also superior in terms of catalytic activity.

Claims (2)

【特許請求の範囲】[Claims] (1)シクロヘキセンオキシドとアルコールとを反応さ
せて2−アルコキシシクロヘキサノールを製造する方法
において、無機固体酸触媒の存在下で反応させることを
特徴とする2−アルコキシシクロヘキサノールの製造方
法。
(1) A method for producing 2-alkoxycyclohexanol by reacting cyclohexene oxide and an alcohol, which is characterized in that the reaction is carried out in the presence of an inorganic solid acid catalyst.
(2)無機固体酸触媒がゼオライトである特許請求の範
囲第(1)項に記載の2−アルコキシシクロヘキサノー
ルの製造方法。
(2) The method for producing 2-alkoxycyclohexanol according to claim (1), wherein the inorganic solid acid catalyst is a zeolite.
JP2159381A 1990-06-18 1990-06-18 Production of 2-alkoxycyclohexanol Pending JPH0449261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2159381A JPH0449261A (en) 1990-06-18 1990-06-18 Production of 2-alkoxycyclohexanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2159381A JPH0449261A (en) 1990-06-18 1990-06-18 Production of 2-alkoxycyclohexanol

Publications (1)

Publication Number Publication Date
JPH0449261A true JPH0449261A (en) 1992-02-18

Family

ID=15692567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2159381A Pending JPH0449261A (en) 1990-06-18 1990-06-18 Production of 2-alkoxycyclohexanol

Country Status (1)

Country Link
JP (1) JPH0449261A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193508A (en) * 2004-12-13 2006-07-27 Sumitomo Chemical Co Ltd Method for producing alcohol
US7132092B2 (en) 2002-02-08 2006-11-07 Sumitomo Chemical Company, Limited Metallized mesoporous silicate and method of oxidation with the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7132092B2 (en) 2002-02-08 2006-11-07 Sumitomo Chemical Company, Limited Metallized mesoporous silicate and method of oxidation with the same
JP2006193508A (en) * 2004-12-13 2006-07-27 Sumitomo Chemical Co Ltd Method for producing alcohol

Similar Documents

Publication Publication Date Title
AU2002217114B2 (en) Process for preparing oxirane compounds
AU2002216112A1 (en) Preparation of oxirane compounds
JPH0446133A (en) Production of cyclohexane-1,2-diol
AU2002217114A1 (en) Process for preparing oxirane compounds
KR100286571B1 (en) Method for preparing glycol ester using reactive distillation
JPH0441449A (en) Production of cyclohexane-1,2-diol
JPH0449261A (en) Production of 2-alkoxycyclohexanol
JP2764058B2 (en) Propylene production method
CN112812001A (en) Preparation method of 9, 10-dihydroxystearic acid
JP2585737B2 (en) Method for producing terpene alcohol
KR100921944B1 (en) Process for preparing of epichlorohydrine
JPS5944305B2 (en) Method for producing N-t-butylformamide
JPH0245439A (en) Production of bisphenol
JPH0459304B2 (en)
JPS5967258A (en) Preparation of bis(4-hydroxyalkoxyphenyl)sulfone
CN108722493B (en) Catalyst for preparing diphenyl carbonate compound and application thereof
JP3521970B2 (en) Method for producing glycolic acid
JPS6115852A (en) Production of cycloalkanol
JPH0597778A (en) Production of 2-aminoindane and its salts
JP2866214B2 (en) Production method of alkane glycol
JPH0153273B2 (en)
JP3200470B2 (en) Method for producing alkyltetralin
JPH06298725A (en) Production of sulfur compound
JPS6338010B2 (en)
KR100313669B1 (en) Process for preparing N,N- dimethylacetamide