JPH0448066A - Method for vacuum-depositing copper - Google Patents

Method for vacuum-depositing copper

Info

Publication number
JPH0448066A
JPH0448066A JP15622990A JP15622990A JPH0448066A JP H0448066 A JPH0448066 A JP H0448066A JP 15622990 A JP15622990 A JP 15622990A JP 15622990 A JP15622990 A JP 15622990A JP H0448066 A JPH0448066 A JP H0448066A
Authority
JP
Japan
Prior art keywords
copper
substrate
vacuum
film
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15622990A
Other languages
Japanese (ja)
Inventor
Atsushi Munemasa
淳 宗政
Tadashi Kumakiri
熊切 正
Kouichirou Akari
孝一郎 赤理
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15622990A priority Critical patent/JPH0448066A/en
Publication of JPH0448066A publication Critical patent/JPH0448066A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To form a copper film excellent in adhesive strength in a short time independently of the kind of a substrate by forming an oxide film on the surface of a clean substrate, forming copper-containing oxide layer onto this surface, and then applying vacuum deposition of copper to this surface under a vacuum atmosphere. CONSTITUTION:Bombarding treatment is applied to a substrate made of metal under a thin gas atmosphere containing inert gas to perform sputter cleaning, by which the substrate surface is formed into a clean and active state. Subsequently, an oxide film is formed on the surface under an oxygen-containing thin gas atmosphere. Then the above surface is subjected to preliminary vapor deposition treatment using copper as evaporation source under the same atmosphere as mentioned above, by which a copper-containing oxide layer is formed. After the above preliminary vapor deposition treatment, copper is vacuum- deposited onto this surface under a vacuum atmosphere. By this method, the surface temp. of the substrate is about 300-400 deg.C at the highest, the limit of application due to the kind of the substrate made of metal is minimized, and vacuum deposition treatment time can be shortened, and further, the copper film excellent in adhesive strength can be formed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、銅の真空蒸着方法に関し、詳細には真空蒸着
室内において金属製基板に前処理を施した後、その表面
に銅を真空蒸着して、密着性に優れた銅膜を形成する銅
の真空蒸着方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for vacuum evaporating copper, and more specifically, a method for vacuum evaporating copper onto the surface of a metal substrate after pretreatment in a vacuum evaporation chamber. The present invention relates to a copper vacuum deposition method for forming a copper film with excellent adhesion.

(従来の技術) 真空蒸着法により金属製基板の表面に直接銅膜を形成せ
しめると、基板と銅膜との密着性か悪いものになり、密
着性に優れた銅膜を得る事は極めて頻しい。
(Prior art) When a copper film is formed directly on the surface of a metal substrate using the vacuum evaporation method, the adhesion between the substrate and the copper film becomes poor, and it is extremely difficult to obtain a copper film with excellent adhesion. Yes.

そこで、密着性に優れた銅膜を形成し得る銅の真空蒸着
方法か種々検討され、その結果金属製基板に下記の如き
前処理を施した後、銅を真空蒸着する方法が提案され、
採用されている。
Therefore, various methods of vacuum evaporation of copper that could form a copper film with excellent adhesion were investigated, and as a result, a method was proposed in which copper is vacuum evaporated after a metal substrate is subjected to the following pretreatment.
It has been adopted.

即ち、従来の銅の真空蒸着方法は、真空蒸着室内を真空
雰囲気にし、該真空雰囲気下において、金属製基板を7
00°C以上に加熱する予備加熱処理を施した後、該基
板に銅を真空蒸着する方法(以降、従来法人という)に
より行われている。或いは、真空蒸着室内において真空
雰囲気下で、金属製基板の表面にN1等のバインダーメ
タルを真空蒸着した後、銅を真空蒸着する方法(以降、
従来法Bという)により行われている。
That is, in the conventional copper vacuum evaporation method, a vacuum atmosphere is created in a vacuum evaporation chamber, and a metal substrate is heated in a vacuum atmosphere for 70 minutes.
This is carried out by a method (hereinafter referred to as "conventional corporation") in which copper is vacuum evaporated onto the substrate after a preliminary heat treatment is performed to heat the substrate to 00° C. or higher. Alternatively, a method (hereinafter referred to as
(referred to as conventional method B).

(発明が解決しようとする課題) 前記従来の銅の真空蒸着方法によれば、密着性に優れた
銅膜を形成し得る。
(Problems to be Solved by the Invention) According to the conventional copper vacuum deposition method, a copper film with excellent adhesion can be formed.

ところか、前記従来法Aにおいては、金属製基板を70
0°C以上に加熱すると、不都合が生しる場合には適用
し得ず、金属製基板の種類により適用か制限されるとい
う問題点かある。例えば、金属製基板の融点か低く、上
記加熱により金属製基板か融解や熱変形する場合、金属
製基板の金属学的変態点が低く、上記加熱により金属が
変態して変質する場合には、前記従来法Aは適用し得な
い。
However, in the conventional method A, the metal substrate was
There is a problem in that heating above 0° C. cannot be applied in cases where inconveniences occur, and the application is limited depending on the type of metal substrate. For example, if the metal substrate has a low melting point and the metal substrate melts or thermally deforms due to the above heating, or if the metallurgical transformation point of the metal substrate is low and the metal transforms and changes in quality due to the above heating, The conventional method A cannot be applied.

一方、前記従来法Bにおいては、真空蒸着用の蒸発源(
ターゲット)として、銅ターゲツトの他にN1等のバイ
ンダーメタルターゲットを要する。
On the other hand, in the conventional method B, the evaporation source for vacuum evaporation (
In addition to the copper target, a binder metal target such as N1 is required as the target.

又、バインダーメタルを真空蒸着した後、ターゲットを
バインダーメタルターゲットから銅ターゲツトに変換す
る必要があるため、真空蒸着に要する処理時間か長く、
生産性か低いという問題点かある。
In addition, after vacuum evaporating the binder metal, it is necessary to convert the target from the binder metal target to a copper target, which increases the processing time required for vacuum evaporation.
There is a problem with low productivity.

本発明はこの様な事情に着目してなされたものであって
、その目的は従来のものがもつ以上のような問題点を解
消し、従来法Aの場合の如き金属製基板の種類による適
用制限か少なく、又、真空蒸着処理時間を従来法Bの場
合に比して短縮し得ると共に、密着性に優れた銅膜を形
成し得る銅の真空蒸着方法を提供しようとするものであ
る。
The present invention has been made with attention to these circumstances, and its purpose is to solve the above-mentioned problems of the conventional method, and to improve its application to different types of metal substrates as in the case of conventional method A. It is an object of the present invention to provide a method for vacuum vapor deposition of copper, which has fewer limitations, can shorten the vacuum deposition processing time compared to conventional method B, and can form a copper film with excellent adhesion.

(課題を解決するための手段) 上記の目的を達成するために、本発明に係る銅の真空蒸
着方法は次のような構成としている。
(Means for Solving the Problems) In order to achieve the above object, the copper vacuum evaporation method according to the present invention has the following configuration.

即ち、請求項1に記載の銅の真空蒸着方法は、不活性ガ
スを含有する希薄ガス雰囲気下において金属製基板にボ
ンバード処理を施して該基板の表面をスパッタクリーニ
ングし、次いて酸素を含有する希薄ガス雰囲気下におい
て前記基板の表面に酸化皮膜を形成し、続いてこの表面
に銅を蒸発源とする予備蒸着処理を施して銅を含有する
酸化物層を形成した後、真空雰囲気下においてこの表面
に銅を真空蒸着することを特徴とする銅の真空蒸着方法
である。
That is, the method for vacuum vapor deposition of copper according to claim 1 includes performing bombardment treatment on a metal substrate in a dilute gas atmosphere containing an inert gas to sputter-clean the surface of the substrate, and then sputter cleaning the surface of the substrate, and then sputter cleaning the surface of the substrate. An oxide film is formed on the surface of the substrate in a dilute gas atmosphere, and then a preliminary evaporation process is performed on this surface using copper as an evaporation source to form a copper-containing oxide layer. This is a copper vacuum deposition method characterized by vacuum depositing copper on a surface.

請求項2に記載の銅の真空蒸着方法は、不活性ガス及び
酸素を含有する希薄ガス雰囲気下において金属製基板に
ボンバード処理を施して該基板の表面をスパッタクリー
ニングし、該基板表面に酸化皮膜を形成し、次いでこの
表面に銅を蒸発源とする予備蒸着処理を施して銅を含有
する酸化物層を形成した後、真空雰囲気下においてこの
表面に銅を真空蒸着することを特徴とする銅の真空蒸着
方法である。
The method for vacuum vapor deposition of copper according to claim 2 includes performing bombardment treatment on a metal substrate in a dilute gas atmosphere containing an inert gas and oxygen, sputter cleaning the surface of the substrate, and forming an oxide film on the surface of the substrate. , and then performs a preliminary evaporation treatment using copper as an evaporation source on this surface to form a copper-containing oxide layer, and then vacuum evaporates copper on this surface in a vacuum atmosphere. This is a vacuum evaporation method.

(作 用) 本発明に係る銅の真空蒸着方法の中、請求項1に記載の
銅の真空蒸着方法は、前記のように、先ずは、不活性ガ
スを含有する希薄ガス雰囲気下において金属製基板にボ
ンバード処理を施して該基板の表面をスパッタクリーニ
ングするようにしている。その結果、該基板の表面は清
浄で活性な状態になると共に、加熱されて基板の表面温
度が高くなる。該温度はボンバード処理の条件により変
わるか、高々300〜400℃程度である。
(Function) Among the copper vacuum evaporation methods according to the present invention, the copper vacuum evaporation method according to claim 1 is characterized in that, as described above, first, metal The substrate is bombarded to perform sputter cleaning on the surface of the substrate. As a result, the surface of the substrate becomes clean and active, and is heated to increase the surface temperature of the substrate. The temperature varies depending on the conditions of bombardment treatment, and is approximately 300 to 400°C at most.

次いで、酸素を含有する希薄ガス雰囲気下において前記
基板の表面に酸化皮膜を形成するようにしている。該酸
化皮膜は、金属製基板の金属と上記酸素との反応により
生成する酸化物(M−0)であり、該基板の表面は前記
の如く清浄で活性であり且つ温度が高くなっているので
、容易に基板の金属表面に形成させ得る。このとき、M
−0形成のための基板の表面温度は、従来法への場合の
如き高温にする必要はなく、比較的低温で充分であり、
ボンバード処理後の高々300〜400°C程度でよい
。そのため、金属製基板の融点か低い場合でも、基板の
融解や熱変形を生しることなく、又、金属学的変態点が
低い場合でも、基板の変質を生じることなく、ボンバー
ド処理及びM−0形成をなし得る。従って、金属製基板
の種類による適用制限が少ない。
Next, an oxide film is formed on the surface of the substrate in a dilute gas atmosphere containing oxygen. The oxide film is an oxide (M-0) produced by the reaction between the metal of the metal substrate and the above oxygen, and the surface of the substrate is clean and active as described above, and the temperature is high. can be easily formed on the metal surface of the substrate. At this time, M
The surface temperature of the substrate for -0 formation does not need to be as high as in the conventional method; a relatively low temperature is sufficient;
The temperature after bombardment may be at most 300 to 400°C. Therefore, even if the melting point of the metal substrate is low, the substrate will not melt or thermally deform, and even if the metallurgical transformation point is low, the substrate will not change in quality and can be subjected to bombardment treatment and M- 0 formation is possible. Therefore, there are few restrictions on application depending on the type of metal substrate.

次に、上記と同様の酸素を含有する希薄ガス雰囲気下に
おいて、上記金属製基板上のM−0皮膜の表面に、銅を
蒸発源とする予備蒸着処理を施して銅を含有する酸化物
層を形成するようにしている。このように予備蒸着処理
すると、蒸発源から蒸発気化した銅(Cu)は、上記雰
囲気中の酸素により酸化されながら上記M−0−0皮膜
に到達し、主に銅の酸化物(Cu−0)となって蒸着す
る。その結果、マクロ的にみるとM−0皮膜上にCu−
0層か形成されたものになるか、ミクロ的にみるとM−
0皮膜とCu−0層との界面にM−0−Cu層か形成さ
れた状態のものになる。即ち、予備蒸着処理の初期に到
達したものは、M−0皮膜の最表面又は最表層において
M−0と反応してM−0−Cuを形成し、その上にCu
−0層が形成される。従って、前記鋼を含有する酸化物
層は、M−0−Cu層とその上層のCu−0層とからな
るものである。
Next, in the same dilute gas atmosphere containing oxygen as above, a preliminary vapor deposition process using copper as an evaporation source is performed on the surface of the M-0 film on the metal substrate to form a copper-containing oxide layer. We are trying to form a When the pre-evaporation treatment is performed in this way, copper (Cu) evaporated from the evaporation source reaches the M-0-0 film while being oxidized by oxygen in the atmosphere, and mainly forms copper oxide (Cu-0 ) and is deposited. As a result, from a macroscopic perspective, Cu-
From a microscopic perspective, whether it is 0 layer or formed layer, M-
A M-0-Cu layer is formed at the interface between the M-0 film and the Cu-0 layer. That is, those that have reached the initial stage of the pre-evaporation process react with M-0 on the outermost surface or outermost layer of the M-0 film to form M-0-Cu, and then Cu
-0 layer is formed. Therefore, the steel-containing oxide layer consists of an M-0-Cu layer and a Cu-0 layer above it.

上記予備蒸着処理後、真空雰囲気下において銅を真空蒸
着するようにしている。このようにすると、前記Cu−
0層の表面にCuが真空蒸着し、Cu膜が形成される。
After the preliminary evaporation process, copper is vacuum evaporated in a vacuum atmosphere. In this way, the Cu-
Cu is vacuum-deposited on the surface of the 0 layer to form a Cu film.

従って、以上の処理により、金属製基板の表面に、M−
0皮膜、M−0−Cu層、Cu−0層、Cu膜がこの順
に形成されることになる。
Therefore, by the above treatment, M-
0 film, M-0-Cu layer, Cu-0 layer, and Cu film are formed in this order.

前記M−0皮膜は、前記の如く清浄で活性な金属製基板
の表面に形成されるので、両者間の密着性(基板の金属
とM−0皮膜との密着性)は極めて優れている。M−0
皮膜とM−0−Cu層とは、M−0−Cu層のM−0の
作用により、両者間の親和力か高く、強固に結合されて
いる。M−0−Cu層とCu−0層とは、M−0−Cu
層のO−Cuの作用により強固に結合されている。Cu
−0層とCu膜とは、Cu−0層のCuの作用により強
固に結合されている。故に、金属製基板とCu膜とは、
M−0皮膜、M−0−Cu層、Cu−0層を介して強固
に結合されていることになる。
Since the M-0 film is formed on the surface of the clean and active metal substrate as described above, the adhesion between the two (adhesion between the metal of the substrate and the M-0 film) is extremely excellent. M-0
The coating and the M-0-Cu layer have a high affinity and are strongly bonded together due to the action of M-0 in the M-0-Cu layer. The M-0-Cu layer and the Cu-0 layer are M-0-Cu
They are strongly bonded by the action of O-Cu in the layer. Cu
The -0 layer and the Cu film are strongly bonded by the action of Cu in the Cu-0 layer. Therefore, the metal substrate and Cu film are
They are strongly bonded via the M-0 film, the M-0-Cu layer, and the Cu-0 layer.

又、前記予備蒸着処理及び銅の真空蒸着処理は、いづれ
も同一のCuターゲットにより行い得るので、従来法B
の場合の4口きターゲットの変換か不要であり、そのた
め蒸着処理時間を従来法Bの場合に比して短縮し得る。
Furthermore, since the preliminary vapor deposition process and the vacuum vapor deposition process of copper can both be performed using the same Cu target, conventional method B
It is not necessary to change the four-hole target in the case of , and therefore the deposition processing time can be shortened compared to the case of conventional method B.

更に、前述の如く、ボンバード処理により基板の表面温
度が高くなるが、高々300〜400°C程度であり、
又、M−0形成のための基板の表面温度は比較的低温で
よいので、従来法Aの場合の如き金属製基板の種類によ
る適用制限かないか、もしくは少なくなる。
Furthermore, as mentioned above, the surface temperature of the substrate increases due to the bombardment process, but it is only about 300 to 400°C at most.
Furthermore, since the surface temperature of the substrate for forming M-0 may be relatively low, there are no or fewer application restrictions depending on the type of metal substrate as in the case of conventional method A.

従って、請求項1に記載の銅の真空蒸着方法によれば、
従来法への場合の如き金属製基板の種類による適用制限
が少なく、又、真空蒸着処理時間を従来法Bの場合に比
して短縮し得ると共に、密着性に優れた銅膜を形成し得
るようになる。
Therefore, according to the copper vacuum deposition method according to claim 1,
There are fewer application restrictions depending on the type of metal substrate as in the case of the conventional method, and the vacuum evaporation processing time can be shortened compared to the case of conventional method B, and a copper film with excellent adhesion can be formed. It becomes like this.

尚、前記酸化皮膜形成及び予備蒸着処理の際の雰囲気は
いづれも酸素を含有する希薄ガス雰囲気にする必要があ
るが、画処理の雰囲気条件(希薄ガス中の酸素量、他の
ガスの種類や量、希薄ガスの圧力等々)を同一にする必
要はなく、金属製基板の種類等により各々の処理に最適
な雰囲気条件を採用することができる。
Note that the atmosphere during the oxide film formation and pre-evaporation treatment must be a dilute gas atmosphere containing oxygen, but the atmospheric conditions for image processing (the amount of oxygen in the dilute gas, the type of other gas, It is not necessary to make the atmosphere conditions the same (e.g., the amount of diluted gas, the pressure of the dilute gas, etc.), and the optimal atmospheric conditions for each process can be adopted depending on the type of metal substrate and the like.

請求項2に記載の銅の真空蒸着方法は、前述の如く、先
ずは、不活性ガス及び酸素を、含有する希薄ガス雰囲気
下において金属製基板にボンバード処理を施すようにし
ている。このようにすると、該基板の表面ではスパッタ
クリーニング反応と共に酸素による酸化皮膜形成反応と
か進行する。
As described above, in the copper vacuum deposition method according to the second aspect of the present invention, first, a metal substrate is bombarded in a dilute gas atmosphere containing an inert gas and oxygen. In this way, an oxide film forming reaction due to oxygen proceeds on the surface of the substrate along with a sputter cleaning reaction.

このとき、上記雰囲気やボンバード処理の条件により、
スパッタクリーニング反応よりも酸化皮膜形成反応の進
行速度を大きくし得る。そうすると、スパッタクリーニ
ングされた基板表面に酸化皮膜を形成し得る。即ち、基
板の表面をスパッタクリーニングし、該基板表面に酸化
皮膜を形成し得る。
At this time, depending on the above atmosphere and bombardment treatment conditions,
The progress rate of the oxide film forming reaction can be made faster than that of the sputter cleaning reaction. Then, an oxide film can be formed on the surface of the sputter-cleaned substrate. That is, the surface of the substrate can be sputter-cleaned to form an oxide film on the surface of the substrate.

そこで、請求項2に記載の銅の真空蒸着方法では、前記
ホンバート処理を施して基板の表面をスパッタクリーニ
ングし、該基板表面に酸化皮膜を形成するようにしてい
る。このとき、該基板の表面温度が高くなるが、高々 
300〜400″C程度である。酸化皮膜(M−0)形
成のための基板の表面温度は比較的低温で充分であり、
上記の高々300〜400°C程度でよい。そのため、
金属製基板の種類による適用制限が少ない。
Therefore, in the copper vacuum deposition method according to the second aspect of the present invention, the surface of the substrate is sputter-cleaned by performing the Hombert treatment, and an oxide film is formed on the surface of the substrate. At this time, the surface temperature of the substrate increases, but at most
The temperature is about 300 to 400″C.A relatively low surface temperature of the substrate is sufficient for forming the oxide film (M-0).
The above-mentioned temperature may be about 300 to 400°C at most. Therefore,
There are few restrictions on application depending on the type of metal substrate.

次に、上記と同様の不活性ガス及び酸素を含有する希薄
ガス雰囲気下において、上記金属製基板上のM−0皮膜
の表面に銅を蒸発源とする予備蒸着処理を施してCu−
0層を形成した後、真空雰囲気下においてこの表面にC
uを真空蒸着するようにしている。
Next, under the same dilute gas atmosphere containing inert gas and oxygen as above, the surface of the M-0 film on the metal substrate is subjected to a preliminary evaporation process using copper as an evaporation source.
After forming the 0 layer, carbon is applied to this surface in a vacuum atmosphere.
U is vacuum-deposited.

このようにすると、請求項1に記載の銅の真空蒸着方法
の場合と同様の作用効果により、従来法への場合の如き
金属製基板の種類による適用制限か少なく、又、真空蒸
着処理時間を従来法Bの場合に比して短縮し得ると共に
、密着性に優れた銅膜を形成し得るようになる。
In this way, with the same effects as in the case of the copper vacuum evaporation method according to claim 1, there are fewer restrictions on application due to the type of metal substrate as in the case of the conventional method, and the vacuum evaporation processing time can be reduced. The length can be shortened compared to conventional method B, and a copper film with excellent adhesion can be formed.

尚、前記ホンバード処理及び予備蒸着処理の際の雰囲気
はいづれも不活性ガス及び酸素を含有する希薄ガス雰囲
気にする必要かあるが、画処理の雰囲気条件(希薄ガス
中の酸素量、不活性ガス量、他のガスの種類や量、希薄
ガスの圧力等々)を同一にする必要はなく、金属製基板
の種類等により各々の処理に最適な雰囲気条件を採用す
ることができる。
It should be noted that it is necessary to use a dilute gas atmosphere containing inert gas and oxygen as the atmosphere during the above-mentioned hombard treatment and pre-evaporation treatment. It is not necessary to make them the same (types and amounts of other gases, pressures of dilute gas, etc.), and it is possible to adopt the optimal atmospheric conditions for each process depending on the type of metal substrate, etc.

(実施例) 実施例I 厚み:2mm、輻10mm、  長さ:20mmのTi
板を、パフ研磨仕上げし、脱脂・洗浄・乾燥処理したも
のを基板として用いた。
(Example) Example I Thickness: 2 mm, radius 10 mm, length: 20 mm Ti
A board that had been subjected to puff polishing, degreasing, cleaning, and drying was used as a substrate.

第1図に示す高周波マグネトロンスパッタリング装置の
真空蒸着室ffl内に、前記基板のTi板(al及びC
uターゲット(C1を配した後、Ar及び0.を含有す
る希薄ガス雰囲気に蒸着室げ)内を調整し、該雰囲気下
において基板(alにホンバード処理を施して該基板t
a+の表面をスパッタクリーニングし、該基板(81表
面に酸化皮膜(Ti−0皮膜)を形成し、次いでCuタ
ーゲット(C1をスパッタリングして予備蒸着処理し、
前記T1−0皮膜上にCu含有酸化物層(Ti−O−C
u層、Cu−0層)を形成した。
The Ti plate (Al and C
Adjust the inside of the u target (after disposing C1, put it in a dilute gas atmosphere containing Ar and 0.
Sputter cleaning the surface of the a+, forming an oxide film (Ti-0 film) on the surface of the substrate (81), then sputtering a Cu target (C1 to pre-evaporate it,
A Cu-containing oxide layer (Ti-O-C
U layer, Cu-0 layer) were formed.

続いて、蒸着室(f)内の雰囲気を真空に調整した後、
該真空雰囲気下においてCuターゲッ) (C)をスパ
ッタリングしてCuを真空蒸着し、前記酸化物層の表面
にCu膜を形成せしめた。
Subsequently, after adjusting the atmosphere in the vapor deposition chamber (f) to vacuum,
In the vacuum atmosphere, a Cu target (C) was sputtered to vacuum evaporate Cu to form a Cu film on the surface of the oxide layer.

尚、前記ボンバード処理の際、希薄ガス雰囲気の圧力は
7 x 10−’Torr、該ガス中Ar量は1010
05e、02iは20secmにし、バイアス電圧はD
C電源より印加して一400volt 、高周波電圧は
一200voltとし、処理時間は5分とした。
In addition, during the bombardment process, the pressure of the dilute gas atmosphere was 7 x 10-'Torr, and the amount of Ar in the gas was 1010
05e and 02i are set to 20 seconds, and the bias voltage is set to D.
The voltage applied from the C power supply was 1400 volts, the high frequency voltage was 1200 volts, and the processing time was 5 minutes.

前記予備蒸着処理の際、希薄ガス雰囲気の圧力は7 x
 10−’Torr、希薄ガス中Ar量は!00sec
m 、 Ox量は20secmにし、バイアス電圧はD
Ct源より印加して一400volt 、高周波電圧は
一600vo!tとし、処理時間は5分とした。
During the pre-evaporation process, the pressure of the dilute gas atmosphere is 7 x
10-'Torr, the amount of Ar in the dilute gas! 00sec
m, Ox amount is 20 sec, and bias voltage is D
The voltage applied from the Ct source is -400 volts, and the high frequency voltage is -600 volts! t, and the processing time was 5 minutes.

前記Cu膜形成のためのCuの真空蒸着の際は、希薄ガ
ス雰囲気の圧力は7 X 10−’Torr、希薄ガス
中Arjlは101005c 、02量はOsccmに
し、バイアス電圧は0volt、高周波電圧は一600
voltとし、処理時間は35分とした。
During vacuum evaporation of Cu to form the Cu film, the pressure of the dilute gas atmosphere was 7 x 10-' Torr, the Arjl in the dilute gas was 101005c, the amount of 02 was Osccm, the bias voltage was 0 volts, and the high frequency voltage was 1. 600
Volt, and the processing time was 35 minutes.

上記の高周波電圧、バイアス電圧、及び、0.量の経時
変化を図示すると、第2〜4図のようになる。又、基板
上に形成される皮膜や層の種類の経時変化を図示すると
、第5図のようになる。
The above high frequency voltage, bias voltage, and 0. The changes in the amount over time are illustrated in Figures 2 to 4. Further, the changes over time in the types of films and layers formed on the substrate are illustrated in FIG. 5.

前記Cu膜形成(Cuの真空蒸着処理)後のものを真空
蒸着室から取り出し、銅膜の密着性を曲げ試験等により
調へた。その結果、基板(Ti板)とCu膜とは、Ti
−0皮膜、Ti−0−Cu層、Cu−0層を介して強固
に結合されていることか確認された。
After the Cu film was formed (Cu vacuum evaporation treatment), the product was taken out of the vacuum evaporation chamber, and the adhesion of the copper film was examined by a bending test or the like. As a result, the substrate (Ti plate) and the Cu film are
It was confirmed that they were firmly bonded through the -0 film, the Ti-0-Cu layer, and the Cu-0 layer.

実施例2 基板としてZr板を用い、この点を除き実施例Iの場合
と同様の方法により、蒸着処理を行った後、銅膜の密着
性を調べたところ、基板(Zr板)とCu膜とは、Z「
−〇皮膜、Zr−0−Cul、 Cu−0層を介して強
固に結合されており、密着性に優れた銅膜を形成し得る
ことか確認された。
Example 2 A Zr plate was used as the substrate, and the adhesion of the copper film was examined after vapor deposition was performed in the same manner as in Example I except for this point. What is Z?
It was confirmed that it was possible to form a copper film with excellent adhesion, which was strongly bonded through the -〇 film, Zr-0-Cul, and Cu-0 layer.

(発明の効果) 本発明に係る銅の真空蒸着方法によれば、従来法A (
700°C以上に予備加熱処理した後、銅を真空蒸着す
る方法)の場合の如き金属製基板の種類による適用制限
か少なく、広範囲の金属製基板に適用し得、又、真空蒸
着処理時間が従来法B(バインダーメタルの真空蒸着後
、銅を真空蒸着する方法)の場合に比して短く、生産性
を従来法への場合と略同程度にまで大幅に向上し得ると
共に、密着性に優れた銅膜を形成し得るようになる。従
って、金属製基板の金属種にかかわらず密着性に優れた
銅膜を、高生産性の蒸着プロセスにより形成し得るよう
になる。
(Effect of the invention) According to the copper vacuum deposition method according to the present invention, conventional method A (
There are few application restrictions depending on the type of metal substrate, such as in the case of a method in which copper is vacuum evaporated after preliminary heat treatment to 700°C or higher, and it can be applied to a wide range of metal substrates, and the vacuum evaporation processing time is short. It is shorter than conventional method B (a method in which copper is vacuum-deposited after vacuum-depositing binder metal), and productivity can be significantly improved to almost the same level as the conventional method, and the adhesion is improved. It becomes possible to form an excellent copper film. Therefore, a copper film with excellent adhesion can be formed by a highly productive vapor deposition process regardless of the metal type of the metal substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1に係る高周波マグネトロンスパッタ
リング装置の概要を示す側断面図、第2図は、実施例1
に係る蒸着処理時の高周波電圧の経時変化を示す図、第
3図は、同処理時のバイアス電圧の経時変化を示す図、
第4図は、同処理時の希薄ガス中の0.量の経時変化を
示す図、第5図は、同処理時の基板上に形成される皮膜
や層の種類の経時変化を示す図である。 (a)一基板(Ti板)   (bl−基板取付治具治
具1−−Cuターゲット  (d)−ターゲット取付治
具(e)−絶縁物     (f)−真空蒸着室+g+
−−永久磁石 特許出願人  株式会社 神戸製鋼折 代 理 人  弁理士  金丸 章− 第1図
FIG. 1 is a side cross-sectional view showing an outline of a high-frequency magnetron sputtering apparatus according to Example 1, and FIG.
FIG. 3 is a diagram showing changes over time in the high frequency voltage during the vapor deposition process, and FIG. 3 is a diagram showing changes over time in the bias voltage during the same process.
Figure 4 shows the 0.0% concentration in the dilute gas during the same treatment. FIG. 5 is a diagram showing changes over time in the amount of film and layer formed on the substrate during the same treatment. (a) One substrate (Ti plate) (bl-Substrate mounting jig Jig 1--Cu target (d)-Target mounting jig (e)-Insulator (f)-Vacuum deposition chamber +g+
--Permanent magnet patent applicant: Kobe Steel Oriya Co., Ltd., Patent attorney: Akira Kanamaru-- Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1) 不活性ガスを含有する希薄ガス雰囲気下におい
て金属製基板にボンバード処理を施して該基板の表面を
スパッタクリーニングし、次いで酸素を含有する希薄ガ
ス雰囲気下において前記基板の表面に酸化皮膜を形成し
、続いてこの表面に銅を蒸発源とする予備蒸着処理を施
して銅を含有する酸化物層を形成した後、真空雰囲気下
においてこの表面に銅を真空蒸着することを特徴とする
銅の真空蒸着方法。
(1) Bombarding a metal substrate in a dilute gas atmosphere containing an inert gas to sputter-clean the surface of the substrate, and then forming an oxide film on the surface of the substrate in a dilute gas atmosphere containing oxygen. Copper is formed, and then a preliminary evaporation process is performed on this surface using copper as an evaporation source to form a copper-containing oxide layer, and then copper is vacuum evaporated on this surface in a vacuum atmosphere. vacuum evaporation method.
(2) 不活性ガス及び酸素を含有する希薄ガス雰囲気
下において金属製基板にボンバード処理を施して該基板
の表面をスパッタクリーニングし、該基板表面に酸化皮
膜を形成し、次いでこの表面に銅を蒸発源とする予備蒸
着処理を施して銅を含有する酸化物層を形成した後、真
空雰囲気下においてこの表面に銅を真空蒸着することを
特徴とする銅の真空蒸着方法。
(2) Bombarding a metal substrate in a dilute gas atmosphere containing inert gas and oxygen to sputter-clean the surface of the substrate, forming an oxide film on the surface of the substrate, and then depositing copper on this surface. 1. A method for vacuum vapor deposition of copper, which comprises forming a copper-containing oxide layer by performing a preliminary vapor deposition process using an evaporation source, and then vacuum vapor-depositing copper on the surface of the oxide layer in a vacuum atmosphere.
JP15622990A 1990-06-14 1990-06-14 Method for vacuum-depositing copper Pending JPH0448066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15622990A JPH0448066A (en) 1990-06-14 1990-06-14 Method for vacuum-depositing copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15622990A JPH0448066A (en) 1990-06-14 1990-06-14 Method for vacuum-depositing copper

Publications (1)

Publication Number Publication Date
JPH0448066A true JPH0448066A (en) 1992-02-18

Family

ID=15623187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15622990A Pending JPH0448066A (en) 1990-06-14 1990-06-14 Method for vacuum-depositing copper

Country Status (1)

Country Link
JP (1) JPH0448066A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8246077B2 (en) 2008-11-11 2012-08-21 Toyota Jidosha Kabushiki Kaisha Occupant restraining device for a vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8246077B2 (en) 2008-11-11 2012-08-21 Toyota Jidosha Kabushiki Kaisha Occupant restraining device for a vehicle

Similar Documents

Publication Publication Date Title
JP3452578B2 (en) Method for forming a wear-resistant layer composed of cubic boron nitride and use thereof
AU3146399A (en) Organic substrate having optical layers deposited by magnetron sputtering and method for preparing it
US5382471A (en) Adherent metal coating for aluminum nitride surfaces
JPS6135401A (en) Reflection mirror
JPH07115213B2 (en) Manufacturing method of metal composite
JPH0448066A (en) Method for vacuum-depositing copper
US4056457A (en) Method of depositing low stress hafnium thin films
JPS62188856A (en) Piston ring
JP3506782B2 (en) Manufacturing method of optical thin film
JP2002146523A (en) Sputtering target, and sputtering system using it
JP2681875B2 (en) piston ring
JPS6362862A (en) Ceramic coated ti and ti alloy product and its production
JPH06272019A (en) White color plated personal ornament
JPH0266846A (en) Method of reparing partially damaged parts, in particular, anticathode
JP3236636B2 (en) Method of coating hard compound film on stainless steel substrate surface
JPH06116711A (en) Formation of alumina film
JP3332271B2 (en) Reflecting mirror and manufacturing method thereof
JPH0238558A (en) Manufacture of decorative steel sheet having extremely excellent corrosion resistance
JPS62283258A (en) Piston ring
JPH04276062A (en) Arc deposition device
JPS60131964A (en) Manufacture of film-coated body
JPH0361755B2 (en)
JPS6058200B2 (en) How to manufacture diamond parts
KR101616862B1 (en) A Material comprising Diamond Like Carbon layer and making process of the same
JP3362877B2 (en) Method for forming smooth thin film