JPH0448037A - Method for recovering iridium - Google Patents

Method for recovering iridium

Info

Publication number
JPH0448037A
JPH0448037A JP15814090A JP15814090A JPH0448037A JP H0448037 A JPH0448037 A JP H0448037A JP 15814090 A JP15814090 A JP 15814090A JP 15814090 A JP15814090 A JP 15814090A JP H0448037 A JPH0448037 A JP H0448037A
Authority
JP
Japan
Prior art keywords
iridium
chloroiridic acid
ammonium
soln
ammonium chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15814090A
Other languages
Japanese (ja)
Inventor
Akihiko Okuda
晃彦 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP15814090A priority Critical patent/JPH0448037A/en
Publication of JPH0448037A publication Critical patent/JPH0448037A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To recover iridium at high yield in the shape of the crystals of ammonium chloroiridic acid by subjecting a chloroiridic acid soln. to diaphragm electrolytic oxidation and thereafter adding ammonium chloride thehreto. CONSTITUTION:A chloroiridic acid soln. is poured on the anodic side separated by a cation exchange membrane, and an electrolytic soln. is poured on the cathodic side. Electricity with an equivalent about 1/100 to 1.2 times the molar number of iridium is passed, and diaphragm electrolytic oxidation is executed. The soln. is mixed with an ammonium chloride soln. at the concn. of about 150 to 250g/l to precipitate the crystals of ammonium chloroiridic acid. By executing the diaphragm electrolytic oxidation, the recovery rate of ammonium chloroiridic acid can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、塩化イリジウム酸溶液からのイリジウムの回
収方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for recovering iridium from a chloroiridic acid solution.

(従来技術とその問題点) 塩化イリジウム酸溶液からイリジウムを回収するには、
水素化ホウ素ナトリウム、亜鉛粉末やマグネシウム粉末
でイリジウムを還元させる方法があるが、ホウ素、亜鉛
、マグネシウム等の汚染がさけ得ないことから、純度の
よい、不純物の混入の少ないイリジウムを回収するには
塩化イリジウム酸溶液に濃厚な塩化アンモニウム溶液を
加え塩化イリジウム酸アンモニウムの結晶物として回収
する方法が一般的である。
(Prior art and its problems) To recover iridium from chloroiridic acid solution,
There is a method of reducing iridium with sodium borohydride, zinc powder, or magnesium powder, but since contamination with boron, zinc, magnesium, etc. is unavoidable, it is difficult to recover iridium with good purity and less contamination. A common method is to add a concentrated ammonium chloride solution to a chloroiridate solution and recover ammonium chloride iridate as crystals.

しかしながら、塩化イリジウム酸溶液に塩化アンモニウ
ムを加えた際、塩化イリジウム酸アンモニウムの回収率
が低いという欠点を有していた。
However, when ammonium chloride is added to a chloroiridic acid solution, the recovery rate of ammonium chloroiridate is low.

この欠点はイリジウムの精製を塩化イリジウム酸アンモ
ニウムの繰り返し結晶化させる方法では精製歩留りが低
くなるという問題となっていた。
This drawback has been a problem in that the purification yield is low when iridium is purified by repeated crystallization of ammonium chloride iridate.

(発明の目的) 本発明は、上記の欠点を解消せんがためになされたもの
であり、塩化イリジウム酸溶液からイリジウムの回収率
を向上させる回収方法を提供せんとするものである。
(Object of the Invention) The present invention has been made to solve the above-mentioned drawbacks, and aims to provide a recovery method that improves the recovery rate of iridium from a chloroiridic acid solution.

(問題点を解決するための手段) 本発明は、塩化イリジウム酸溶液からイリジウムを回収
する方法に於いて、塩化イリジウム酸溶液を隔膜電解に
より酸化したのち、塩化アンモニウムを加えて塩化イリ
ジウム酸を塩化イリジウム酸アンモニウムとして沈澱さ
せることを特徴とするイリジウムの回収方法である。
(Means for Solving the Problems) The present invention is a method for recovering iridium from a chloroiridic acid solution, in which the chloroiridic acid solution is oxidized by diaphragm electrolysis, and then ammonium chloride is added to convert the chloroiridic acid into chlorinated acids. This is a method for recovering iridium, which is characterized by precipitating it as ammonium iridium.

前記隔膜電解の方法は、陽極側に酸化すべく塩化イリジ
ウム酸溶液を入れ、陰極側に電解質の溶液を入れる。
In the diaphragm electrolysis method, a chloroiridic acid solution for oxidation is placed on the anode side, and an electrolyte solution is placed on the cathode side.

陽極液と陰極液とは陽イオン交換膜で隔てられている。The anolyte and catholyte are separated by a cation exchange membrane.

陽極には不溶性の電極としてチタンに白金を被覆したも
のを、陰極にはチタンに白金被覆した電極もしくはチタ
ン板を用いるのが良い。
It is preferable to use an insoluble electrode of titanium coated with platinum as the anode, and an electrode of titanium coated with platinum or a titanium plate as the cathode.

陰極側には電解質として例えば塩酸溶液であれば良い。The electrolyte on the cathode side may be, for example, a hydrochloric acid solution.

前記陽イオン交換膜は特定しないが耐酸性の膜を用いな
ければならず、例えばセレミオンCMV(旭硝子製)、
Nafion(デュポン製)、ネオセプタ(徳山曹達製
)等がある。
Although the cation exchange membrane is not specified, an acid-resistant membrane must be used, such as Selemion CMV (manufactured by Asahi Glass),
Examples include Nafion (manufactured by DuPont) and Neocepta (manufactured by Tokuyama Soda).

塩化イリジウム酸溶液の酸濃度は0.O1〜6規定が良
く、塩化イリジウム酸アンモニウムの結晶を効率よく回
収するにはイリジウム濃度が高い程よく、20g/I!
〜120g/I!の濃度であるのが好ましい。
The acid concentration of the chloroiridic acid solution is 0. O1-6 regulation is good, and in order to efficiently recover crystals of ammonium chloride iridate, the higher the iridium concentration, the better, 20 g/I!
~120g/I! It is preferable that the concentration is .

電流密度は陽極側で0. 1〜5A/dm!がよ(、電
流密度を大きくとると電極上に異物が析出する。
The current density is 0 on the anode side. 1~5A/dm! If the current density is too high, foreign matter will be deposited on the electrode.

通電する電気量はイリジウムのモル数に対して1/10
0〜1. 2倍の電気当量を通電すればよく、電解時間
はその時の電流密度とイリジウム量および電極面積で決
定される。
The amount of electricity to be passed is 1/10 of the number of moles of iridium.
0-1. It is sufficient to apply electricity with twice the electrical equivalent, and the electrolysis time is determined by the current density at that time, the amount of iridium, and the electrode area.

但し、イリジウムがイリジウム(■価)として存在して
いる場合はイリジウム(■価)からイリジウム(■価)
となる電気量が消費されることからイリジウム(■価)
の量だけ電気量は加算されなければならない。
However, if iridium exists as iridium (■ valence), it will change from iridium (■ valence) to iridium (■ valence).
Since the amount of electricity is consumed, iridium (■ valence)
The quantity of electricity must be added by the amount of .

このようにして隔膜電解酸化された塩化イリジウム酸溶
液に塩化アンモニウム溶液を加えると塩化イリジウム酸
アンモニウムの結晶が得られるが、前記隔膜電解酸化し
てない場合に比べると結晶の回収率が向上することを見
い出した。
When an ammonium chloride solution is added to the chloroiridic acid solution electrolytically oxidized in this way, ammonium chloriridate crystals can be obtained, but the recovery rate of the crystals is improved compared to the case where the diaphragm electrolytically oxidized is not performed. I found out.

この際、塩化アンモニウムの溶液濃度は高い程良く、1
50g/l〜250 g/12であるのが好ましい、ま
た、結晶生成させる際の溶液温度は60℃以上が好まし
いが、温度が高いと塩化イリジウム酸アンモニウムの溶
解度が増すことから、回収時の温度は低い方が好ましい
At this time, the higher the ammonium chloride solution concentration, the better;
It is preferable that the solution temperature is 50 g/l to 250 g/12, and the solution temperature during crystal formation is preferably 60°C or higher, but since the solubility of ammonium chloride iridate increases when the temperature is high, the temperature during recovery The lower the value, the better.

隔膜電解酸化を行った場合、塩化イリジウム酸アンモニ
ウムの回収率が向上される明確な理由はわからないが、
ひとつは隔膜電解酸化により塩素ガスが発生し、この発
生した塩素ガスが錯形成の不十分な[1rcI!、) 
   (I rcl、:l−等のクロロ錯体を(IrC
I!*]’−ヘキサクロロイリジウム錯体に交換し、結
晶物である(NH4)。
Although it is not clear why the recovery rate of ammonium chloroiridate is improved when diaphragm electrolytic oxidation is performed,
One is that chlorine gas is generated by diaphragm electrolytic oxidation, and this generated chlorine gas has insufficient complex formation [1rcI! ,)
(Ircl, :l- etc.)
I! *]-Exchanged to a hexachloroiridium complex and is a crystalline substance (NH4).

I r Cl mの錯体が多く生成するために起こるも
のであると予想される。
This is expected to occur due to the formation of a large number of I r Cl m complexes.

2つ目の理由としてIr(III価)が若干溶存してお
り、それが隔膜電解酸化によりIr(IEI価)からI
r(IV価)に酸化され、結晶物である(NHI )!
  I rcfaの錯体が形成させ、その結果回収率が
向上したものと思われる。
The second reason is that some Ir (III value) is dissolved, and it is converted from Ir (IEI value) to Ir by diaphragm electrolytic oxidation.
It is oxidized to r (IV value) and is a crystalline substance (NHI)!
It is believed that a complex of I rcfa was formed, resulting in an improved recovery rate.

以下、本発明に係わる実施例について記載する。Examples related to the present invention will be described below.

(実施例) 隔膜に強酸陽イオン交換膜セレミオンCMV(旭硝子製
)を用い、陽極および陰極には面積ldm”のチタンに
白金被覆電極をそれぞれ用い、陰極液側にはlN−HC
l溶液を陽極液側には回収すべく3N−HCI!の塩化
イリジウム酸溶液llを入れた。
(Example) A strong acid cation exchange membrane Selemion CMV (manufactured by Asahi Glass Co., Ltd.) was used as the diaphragm, a platinum-coated titanium electrode with an area of 1 dm was used as the anode and cathode, and lN-HC was used on the catholyte side.
3N-HCI to recover the l solution to the anolyte side! 1 liter of chloroiridic acid solution was added.

3A/dm2で所定の通電当量電解後の塩化イリジウム
酸溶液中に塩化アンモニウム溶液を加え、そのときの塩
化イリジウム酸アンモニウムの回収率を下表に記した。
An ammonium chloride solution was added to the chloriridic acid solution after electrolysis with a predetermined electric current equivalent of 3 A/dm2, and the recovery rate of ammonium chloriridic acid at that time was shown in the table below.

なお、実施例1〜4、従来例1.2のイリジウム濃度は
loOg/Aを用い、実施例5と従来例3は30 g/
lの濃度で行った。
In addition, the iridium concentration in Examples 1 to 4 and Conventional Example 1.2 was determined using loOg/A, and in Example 5 and Conventional Example 3, it was 30 g/A.
It was carried out at a concentration of 1.

また、塩化アンモニウム溶液の濃度は実施例1〜3と5
、従来例1と3は200g/I!を用い、実施例4と従
来例2は150 g/lを用いた。
In addition, the concentration of ammonium chloride solution was determined in Examples 1 to 3 and 5.
, Conventional Examples 1 and 3 are 200g/I! In Example 4 and Conventional Example 2, 150 g/l was used.

(発明の効果) 上記の説明で明らかなように、本発明は塩化イリジウム
酸溶液から塩化イリジウム酸アンモニウムを回収する方
法において、塩化イリジウム酸溶液を隔膜電解酸化する
ことにより塩化イリジウム酸アンモニウムの結晶を高収
率で容易に回収できる画期的な方法である。
(Effects of the Invention) As is clear from the above description, the present invention provides a method for recovering ammonium chloriridate from a chloroiridate solution by electrolytically oxidizing the chloroiridate solution using a diaphragm. This is an innovative method that allows easy recovery with high yield.

出願人  田中貴金属工業株式会社Applicant: Tanaka Kikinzoku Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)塩化イリジウム酸溶液からイリジウムを回収する
方法に於いて、塩化イリジウム酸溶液を隔膜電解により
酸化したのち、塩化アンモニウムを加えて塩化イリジウ
ム酸を塩化イリジウム酸アンモニウムとして沈澱させる
ことを特徴とするイリジウムの回収方法。
(1) A method for recovering iridium from a chloroiridic acid solution, which is characterized by oxidizing the chloroiridic acid solution by diaphragm electrolysis, and then adding ammonium chloride to precipitate the chloroiridic acid as ammonium chloroiridate. How to collect iridium.
JP15814090A 1990-06-15 1990-06-15 Method for recovering iridium Pending JPH0448037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15814090A JPH0448037A (en) 1990-06-15 1990-06-15 Method for recovering iridium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15814090A JPH0448037A (en) 1990-06-15 1990-06-15 Method for recovering iridium

Publications (1)

Publication Number Publication Date
JPH0448037A true JPH0448037A (en) 1992-02-18

Family

ID=15665143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15814090A Pending JPH0448037A (en) 1990-06-15 1990-06-15 Method for recovering iridium

Country Status (1)

Country Link
JP (1) JPH0448037A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297656A (en) * 2006-04-28 2007-11-15 Sumitomo Metal Mining Co Ltd Method for refining ammonium hexachloroiridate (iv) containing lead

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297656A (en) * 2006-04-28 2007-11-15 Sumitomo Metal Mining Co Ltd Method for refining ammonium hexachloroiridate (iv) containing lead
JP4715621B2 (en) * 2006-04-28 2011-07-06 住友金属鉱山株式会社 Method for purifying ammonium hexachloroiridium (IV) containing lead

Similar Documents

Publication Publication Date Title
JP2690730B2 (en) Method for improving the purity of quaternary ammonium hydroxide
US5230779A (en) Electrochemical production of sodium hydroxide and sulfuric acid from acidified sodium sulfate solutions
US4917781A (en) Process for preparing quaternary ammonium hydroxides
JP3089595B2 (en) Recovery of indium by electrowinning
NO164064B (en) IMAGE PROJECTOR.
CN102839389B (en) Novel production method of electro-depositing and refining metal chloride by membrane process
EP0043854B1 (en) Aqueous electrowinning of metals
US3855089A (en) Process for the electrolytic refining of heavy metals
JPH0448037A (en) Method for recovering iridium
CN105887123A (en) Method for preparing PdCl2
ZA938996B (en) Electrolytical process for dissolving platinum, platinum metal impurities and/or platinum metal alloys.
JP5344278B2 (en) Indium metal production method and apparatus
Pavlović et al. Formation of bromates at a RuO2TiO2 titanium anode
JPS60243293A (en) Manufacture of m-hydroxybenzyl alcohol
JPH04246187A (en) Method for recovering iridium
US3364127A (en) Method for producing caustic soda and chlorine by means of electrolysis of sea water or other similar saltish water
JP2839155B2 (en) Process for producing alkali metal dichromate and chromic acid
JP2585325B2 (en) Gold dissolution method
DE69513611T2 (en) Process for the electrical extraction of heavy metals
JPS6363638B2 (en)
JPH01184293A (en) Production of iodine and iodate
JPS6363637B2 (en)
US3477925A (en) Method of electrolysing manganous chloride in a diaphragm cell
US4115220A (en) Process for the preparation of high purity antimony
CA2111793A1 (en) Electrolytic process for extracting platinum of high purity from contaminated platinum